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Abstract: A novel electrochemical sensor based on Cu-loaded carbon nanospheres (Cu–CNSs) was
designed and fabricated. Initially, the CNSs were synthesized using a natural or inexpensive carbon
source (dark brown sugar), and Cu was loaded to enhance the electrocatalytic properties of the
material. Subsequently, the synthesized Cu–CNSs were modified onto a screen-printed carbon
electrode (SPCE), termed Cu–CNS/SPCE, to simultaneously detect the biomarkers dopamine (DA)
and melatonin (MT) through differential pulse voltammetry. The surface characterization of the
Cu–CNSs confirmed the formation of carbon spheres and Cu nanoparticles covering the spheres.
Electrochemical studies showed that the Cu–CNS/SPCE had a high selectivity and sensitivity toward
DA and MT, with a significant peak separation of 0.502 V. The two linear ranges of DA were
0.125–20 µM and 20–100 µM and the linear range of MT was 1.0–100 µM, with corresponding
detection limits of 0.34 µM and 0.33 µM (S/N = 3), respectively. The quantification limits for DA
and MT were 2.19 and 1.09 µM (S/N = 10), respectively. The sensor performance is attributed to
the high conductivity and large, electrochemically active surface area of the Cu–CNS. In human
serum samples, the Cu–CNS/SPCE exhibited good selectivity and satisfactory reproducibility for the
simultaneous determination of DA and MT.

Keywords: electrochemical sensor; copper-loaded carbon nanospheres; natural or inexpensive carbon
source; screen-printed carbon electrode; dopamine; melatonin

1. Introduction

The biomarkers dopamine (DA) and melatonin (MT) play important roles in almost
all physiological functions of the central nervous system. The decline in the production of
DA and MT in aged individuals is largely responsible for the development of neurodegen-
erative diseases (NDs), such as Alzheimer’s disease and Parkinson’s disease [1], and major
depressive disorder (MDD) [2]. MDD comprises various forms of depression, including
single-phase, bipolar, and psychotic depression [3]. Currently, there are no recognized
biomarkers for diagnosing NDs or MDD. However, emerging evidence suggests that NDs
and MDD are intricately linked to a variety of neurotransmitters and neurohormones [3].
Therefore, the simultaneous determination of relevant neurotransmitters and neurohor-
mones is essential to support the clinical diagnoses of NDs and MDD. In this context, the
development of inexpensive and simple electrochemical sensors capable of monitoring both
DA (a neurotransmitter) and MT (a neurohormone) levels in human samples is currently
receiving extensive attention [4].

DA, a catecholamine neurotransmitter, is synthesized mainly in the brain. The DA
levels in healthy human serum lie between 0.01 and 10 µM [3,5]. Dysregulated DA levels
can lead to NDs and MDD symptoms, including anhedonia (loss of interest) and sleep
disturbances. However, these symptoms can be alleviated by regulating the levels of DA [6].
As DA stimulates the heartbeat, breathing, and digestion, it is a clinically important drug
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molecule used in the treatment of hypertension, bronchial asthma, cardiac surgery, and
myocardial infarction [7]. MT, a neurohormone or a circadian hormone, is basically the
chemical compound N-acetyl-5-methoxytryptamine. It is prominently synthesized in the
pineal gland and is secreted in a phasic manner, being stimulated at night, and suppressed
by daylight. Since the circulating levels of MT vary in a daily cycle, normal MT levels
usually range from 0.043 µM during the day to 0.86 µM at night. Deviations from normal
MT levels may cause MDD; therefore, MT is an important target for MDD diagnosis [8]. As
DA and MT coexist in bodily fluids and have a significant impact on NDs and MDD, the
development of an electrochemical sensor with a high sensitivity and selectivity for the
simultaneous determination of DA and MT is of great importance.

Thus far, several analytical methods such as high-performance liquid chromatogra-
phy [9], radioimmunoassays and calorimetric techniques [10], spectrofluorometric tech-
niques [11], and electrochemical sensing methods [12] have been utilized for quantifying
neurological biomarkers in biological samples. Among these methods, electrochemical
sensing methods are highly preferable for the determination of neurological biomark-
ers due to their user-friendly operational process, ease of portability, fast-responding
sensors, cost-effectiveness, and good stability in testing real samples [5,13]. Unwanted
background signals can be eliminated by improving the real-time interactions between the
target biomarkers and the sensor. Briefly, the bare or unmodified electrodes are susceptible
to fouling by oxidation products of DA, thus complicating the electrochemistry of DA.
However, the incorporation of nanomaterials can possibly improve the sensitivity and
selectivity of the analysis, decreasing the extent of electrode fouling during DA redox
recycling [7,14].

For a bare electrode, the simultaneous determination of two or more analytes is dif-
ficult because of overlapping electrooxidation peaks. Therefore, efforts have been made
on a global scale to enhance the “4 s” characteristics of sensors, namely, stability, sensi-
tivity, selectivity, and speed [15], by modifying nanomaterials. To improve the detection
sensitivity, simultaneous electrochemical sensors have been modified using different nano-
materials that exhibit desirable properties for sensor fabrication and sensing mechanisms.
Some examples of these nanomaterials include single elements, metal oxides, and car-
bon nanostructures, although they are not restricted to these materials alone. A unique
preparation technique that has recently gained popularity is the combination of one or
more metal/metal oxides with carbon materials. The advantage of this technique is that
carbon materials, which have high electrical conductivities, play a crucial role in reducing
recombination and promoting electron transport [16]. Metal/metal-oxide-loaded carbon
materials possess distinct structural advantages, relatively small sizes, and prominent
target-sensing capabilities originating from their nanoscale dimensions, rendering them an
excellent choice for designing sensitive electrochemical sensors [15,17]. Nanostructured
Cu has been used in combination with carbon materials for sensor fabrication because it
is inexpensive and has electrocatalytic capabilities similar to those of noble metals [18].
Cu can endow carbon materials with specific catalytic and electronic properties, thereby
expanding their utility for simultaneous electrochemical sensing applications.

In this work, we demonstrate a facile, rapid, sensitive, and cost-effective electrochemi-
cal sensor based on bioinspired Cu–carbon nanospheres (Cu–CNSs) for the simultaneous
determination of DA and MT. Instead of glucose or sucrose, the carbon source utilized is
dark brown sugar, which is relatively inexpensive compared to other commercial carbon
sources. The synthesized Cu–CNSs demonstrate high electrocatalytic activity and a large
active surface area, possibly because of the strong electronic interactions between Cu and
the CNSs, which form heterojunctions at the electrode–analyte interface and accelerate
the charge transfer capacity. The method used in this study is advantageous because the
synthesis of Cu–CNSs necessitates no complicated steps, less time, and a natural or inexpen-
sive carbon source, thus eliminating the need for commercial carbon sources. Differential
pulse voltammetry (DPV) was employed for the simultaneous sensing of DA and MT at the
Cu–CNS-modified screen-printed carbon electrode (SPCE). The schematic representation
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of the DA and MT electrochemical reactions on the fabricated Cu–CNS/SPCE is illustrated
in Scheme 1.
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Scheme 1. Schematic representation of the fabricated Cu–CNS/SPCE for the simultaneous detection
of DA and MT. The orange line shows the drop casted Copper-loaded carbon nanospheres (Cu–CNS)
material (Brown color sphere: CNS and Blue color spheres: the loaded Cu nanoparticles).

2. Materials and Methods
2.1. Reagents and Chemicals

Potassium ferricyanide and ferrocyanide [Fe(CN)6]3−/4−, hydrochloric acid (HCl,
37%), concentrated sulfuric acid (H2SO4), ethanol (99.5%), toluene (99.5%), and copper
nitrate Cu(NO3)2 · H2O were procured from Sigma–Aldrich (Seoul, Republic of Korea). DA,
MT, ascorbic acid (AA), uric acid (UA), urea, creatinine, epinephrine (EP), and glucose (Glu)
were also purchased from Sigma–Aldrich and were used for the selectivity experiments.
All reagents were used as received without further purification. The dark brown sugar
(Quality No. 1) used was manufactured by a local sugar brand in South Korea.

The components of the buffer were also obtained from Sigma–Aldrich, Seoul, South
Korea. Phosphate buffers (0.1 M) of varying pH were prepared as the supporting electrolyte
by combining KH2PO4 and K2HPO4 with added KCl (0.1 M), following the standard
protocol of our lab [19]. Sodium chloride, Magnesium chloride, or other ions were not
added to the buffer. All the solutions were prepared using water (18.2 MΩ) obtained from
a Milli–Q water purifier.

2.2. Synthesis of Cu-CNS

The carbon source (dark brown sugar, 4 g) and 140 mg of Cu(NO3)2 · H2O were
separately dissolved in 30 mL of water and stirred (300 rpm) at room temperature (25 ◦C)
for 60 min to obtain clear solutions. The two solutions were mixed by stirring (300 rpm)
at 100 ◦C for 12 h. The solution mixture was placed in a 40 mL Teflon-sealed autoclave
and heated to 180 ◦C for 24 h. The resultant product was separated by three centrifu-
gation/washing/redispersion cycles in water, followed by centrifugation in ethanol to
remove excess or unloaded copper ions. The product was oven-dried at 100 ◦C for 12 h.
Subsequently, it was calcined in a tube furnace under an argon gas flow at 450 ◦C for
3 h. The resulting product was re-dispersed in ethanol and designated as Cu–CNS [20].
A schematic of this simple synthesis process is shown in Scheme 2.
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2.3. Fabrication of Voltammetric Sensor

An SPCE (Model name: C11L) procured from Metrohm DropSens (Oveido, Spain)
was utilized as a base electrode material. The geometric area of the working electrode in
the SPCE was 0.1256 cm2. Approximately 6 µL of Cu–CNSs (1.0 mg mL−1) were drop-cast
over the SPCE. The large surface area of the Cu–CNSs favored an easy and stable layer
formation on the SPCE via simple physical adsorption.

2.4. Characterization and Electrochemical Measurements

Surface analyses of the synthesized materials were performed using field emission
scanning electron microscopy (FE–SEM; Zeiss GEMINI500, (Carl Zeiss Microscopy Deutsch-
land GmbH., Oberkochen, Germany) coupled with energy dispersive X–ray spectroscopy
(EDS). Transmission electron microscopy (TEM) images were acquired using a HITACHI
H–7600 200 kV TEM, Hitachi High-Tech Corp., Tokyo, Japan. Cyclic voltammetry (CV) and
electrochemical impedance spectroscopy (EIS) were performed using a potentiostat (model
604E, CH Instruments, Inc., Austin, TX, USA). Differential pulse voltammetry (DPV) was
performed using an electrochemical apparatus (Compactstat.h standard, Ivium Technolo-
gies, B.V., Eindhoven, The Netherlands) interfaced with a personal computer, using the
software from the same company for data acquisition and analysis.

A 2 mL disposable electrochemical cell was constructed for the CV, EIS, and DPV
experiments. The sensor was placed in 2 mL of a 0.1 M KCl solution containing 5.0 mM
[Fe(CN)6]3−/4−, and the potential was swept from −0.4 to +0.6 V at different scan rates.
The EIS measurements were taken in the frequency range of 100 kHz to 0.1 Hz under the
open circuit potential. For DPV, a 2 mL disposable well with phosphate buffer solution was
set up; the sensor was polarized in the range of potential from −0.1 to 0.8 V. After 10 s of
equilibration time, DPV scans were recorded upon the addition of the DA and MT solutions.
The current responses after baseline subtraction are shown. For individual determinations,
DPV scans were taken while maintaining one analyte at a fixed concentration and increasing
the concentration of the other analyte. For simultaneous determination, DPV scans were
obtained with increasing concentrations of both DA and MT. Finally, the calibration curves
for each analyte were generated with a standard deviation of more than four values.
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2.5. Preparation of Real Samples

A human serum sample (H4522; from male human AB plasma) was procured from
Sigma-Aldrich (Seoul, Republic of Korea). Various dilutions were prepared and analyzed
using the regular addition method to suppress the matrix effects of the serum samples.
The 1:10 diluted sample demonstrated less interference than the undiluted serum and was
chosen as the sample with the least matrix effects for further experiments. The dilution
factor for the spiked samples was 8.0. The concentrations in the DA- and MT-spiked serum
samples were also determined following the DPV measurement conditions described in
the Section 2.4.

2.6. Data Analysis

A one-way analysis of variance was used to compare the differences in mean values
of the three sensors (bare SPCE, CNS/SPCE, and Cu–CNS/SPCE). Tukey’s test was then
used to estimate the differences between them.

3. Results and Discussion
3.1. Physicochemical Characterization

The morphology of the synthesized materials was examined by FE-SEM and TEM, as
shown in Figure 1. In FE-SEM, at a scale of 1 µm, the CNSs material (Figure 1a) showed well-
distributed nanospheres with slight aggregation and a rough surface, whilst the Cu–CNSs
material (Figure 1b) showed a uniform formation of evenly distributed nanospheres with
a much smoother morphology due to the Cu loadings. The Cu–CNSs material had more
carbon spheres compared to the CNSs material, suggesting a slight decrease in the particle
size after successful Cu loading. The TEM image in Figure 1c confirmed the presence of
spherical CNSs with an ordered porous structure. The TEM image of the Cu–CNSs material
(Figure 1d and inset) showed bright Cu particles with a size of 10–20 nm evenly spread
over the carbon spheres.
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To study the detailed composition and structure of the CNSs material, high-angle
annular dark-field (HAADF) scanning transmission electron microscopy (STEM) images
and STEM-EDS elemental mapping spectra were obtained. As shown in Figure 2, all
four elements (C, Cu, N, and O) were homogeneously distributed in the spherical particles,
consistent with the conventional TEM images. The atomic percentages of C, Cu, N, and
O were 96.76%, 1.77%, 0.3%, and 1.12%, respectively. These results indicate the successful
incorporation of Cu ions into the carbon-rich matrix.
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3.2. Electrochemical Performance of the Sensors

CV was used to characterize the modified sensors in 5.0 mM Fe(CN)6]3−/4− solu-
tion prepared in 0.1 M KCl at a 50 mV s−1 scan rate. Figure 3a compares the CV re-
sponses of the bare SPCE, CNS/SPCE, and Cu–CNS/SPCE. The bare SPCE exhibited
weaker redox peaks compared to the modified sensors owing to sluggish/insufficient
electron transfer kinetics. For the bare SPCE, CNS/SPCE, and Cu–CNS/SPCE, clear re-
dox peaks with oxidation/anodic peak potentials (Epa) corresponding to 0.367, 0.360, and
0.305 V were recorded. Additionally, the peak-to-peak separation (∆Ep) of the three sen-
sors was 0.27, 0.25, and 0.18 V. The low ∆Ep value of the Cu–CNS/SPCE signifies the fast
electron transfer properties of the Cu–CNS modifications. Compared to the bare SPCE and
CNS/SPCE, the Cu–CNS/SPCE exhibited a dominant, reversible redox peak, indicating the
possibility of increased electron transfer between the sensor and redox probe. However, the
anodic/oxidation peak current (Ipa) value for the Cu–CNS/SPCE was 198.27 µA, which was
1.7 times higher than the bare SPCE (115.215 µA) and 1.3 times higher than the CNS/SPCE
(148.86 µA), indicating that the Cu–CNSs improved the conductivity of the sensor.
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EIS was performed to estimate the electron transfer properties of the sensors at the
solution interface. The EIS profiles at the open-circuit potential in the frequency range of
100 kHz to 0.1 Hz are represented as Nyquist diagrams in Figure 3b. The total resistance
depended on the solution resistance (Rs) and the resistance due to Cu and the CNSs. As is
evident from Figure 3b, diffusion occurred at low frequencies, while resistance existed at
higher frequencies at the sensor surface. The higher semicircular curve and high charge–
transfer resistance (Rct) value around 38.8 Ω cm−2 correspond to the bare SPCE, indicating
high resistance in this sensor. Fitting with the equivalent Randles circuit, R(Q(RW))(QR)
exhibited smaller semicircular curves and lower Rct values of 18.1 and 15.1 Ω cm−2 for
the CNS/SPCE and Cu–CNS/SPCE, respectively. As the solution resistance was slightly
higher, it led to a slight increase in the surface resistance of the sensor, and additional
capacitance and resistance elements were required. Therefore, a different circuit from
the typical Randles circuit was applied to estimate the resistance and capacitance of the
sensor. This may be considered as an inhomogeneous model because the properties of the
first layer differ from those of the bulk layer. This concept is justified by the observation
that the layer density decreases from the sensor surface in the direction of the electrolyte
boundary. Owing to the better conductivity of the CNSs and the increased catalytic activity
of Cu, the Cu–CNS/SPCE exhibited the lowest resistance, similar to the resistence reported
previously [21]. The CV and EIS results for Fe(CN)6]3−/4− indicate the diffusion-controlled
electron transport properties of the Cu–CNS/SPCE sensor.

Figure 4a,c,e show the electrochemical performance of the sensors at different scan
rates in the same redox probe. The Epa and cathodic peak potentials (Epc) reveal notable
shifts towards negative regions, with the general trend of increasing peak currents upon
increasing the scan rates. As shown in Figure 4b,d,f, linear plots of the peak current as
a function of the square root of the scan rate indicate a predominantly diffusion-controlled
process in the Cu–CNS/SPCE sensor in contrast to the process in the other sensors. As the
electron transfer at the sensors is a reversible process, the electrochemically active surface
area (ECSA) of each sensor was calculated using the Randles–Ševčík equation [22,23]. The
ECSAs of the bare SPCE, CNS/SPCE, and Cu–CNS/SPCE sensors were 0.1262, 0.1480, and
0.1964 cm2, respectively. The ECSAs of the CNS/SPCE and Cu–CNS/SPCE were 1.2 and
1.6 times larger, respectively, than that of the bare SPCE. The presence of Cu on the CNSs
enhanced the number of active sites on the Cu–CNS/SPCE. The larger ECSA confirms the
enhanced catalytic activity due to the Cu–CNSs.

The redox mechanisms of DA and the oxidation mechanism of MT on the bare SPCE,
CNS/SPCE, and Cu–CNS/SPCE were examined using CV. Figure 5 shows the CV curves
of the modified sensors against 2 µM DA and 6 µM MT in a deoxygenated 0.1 M phosphate
buffer solution with a pH of 7.0. Weak redox peaks for DA and MT were recorded for the
bare SPCE and CNS/SPCE sensors, whereas the Cu–CNS/SPCE exhibited a well-defined
oxidation peak for DA at approximately +0.223 V and a cathodic peak at 0.1 V. A small and
a broad irreversible oxidation peak for MT at approximately +0.710 V with no observable
cathodic peak in the reverse scan was observed for MT. This behavior suggests that MT
oxidation is an irreversible process (Figure 5a). The peak-to-peak separation (∆Ep) of the
Cu–CNS/SPCE was 60.5 mV/z, where z is the number of electrons (n = 2) in a reversible
redox system. The ∆Ep value of 60.5 mV/z is slightly higher than the theoretical value of
59 mV/z (0.059 V/z). These results demonstrate that the Cu–CNS/SPCE can effectively
catalyze the electrooxidation of DA. Additionally, the peak shapes of MT were significantly
improved when compared to those observed for other modifications. This is attributed to
the large surface area and catalytic effects of the Cu–CNSs. On the Cu–CNS/SPCE, the Epa
of DA was negatively shifted (Figure 5b), while MT showed only a negligible negative shift
(Figure 5c); this may be attributed to its hydrophobic nature, which warrants the application
of a high potential. The electrocatalysis of DA was evident, while the electrocatalysis of MT
was negligible.



Chemosensors 2023, 11, 254 8 of 18

Chemosensors 2023, 11, x FOR PEER REVIEW 8 of 19 
 

 

electron transfer at the sensors is a reversible process, the electrochemically active surface 
area (ECSA) of each sensor was calculated using the Randles–Ševčík equation [22,23]. The 
ECSAs of the bare SPCE, CNS/SPCE, and Cu–CNS/SPCE sensors were 0.1262, 0.1480, and 
0.1964 cm2, respectively. The ECSAs of the CNS/SPCE and Cu–CNS/SPCE were 1.2 and 
1.6 times larger, respectively, than that of the bare SPCE. The presence of Cu on the CNSs 
enhanced the number of active sites on the Cu–CNS/SPCE. The larger ECSA confirms the 
enhanced catalytic activity due to the Cu–CNSs.. 

 
Figure 4. (a) CV results of the Bare SPCE in 5 mM Fe(CN)6]3−/4− contained in 0.1 M KCl at  
increasingscan rates from 10 to 200 mVs−1and (b) their corresponding calibration plot. CV results of 
(c) CNS/SPCE and (e) Cu-CNS/SPCE at different scan rates in the same redox probe. Calibration 
plots of (d) CNS/SPCE and (f) Cu-CNS/SPCE. In the calibration plots, Black: Ipa Red: Ipc. 

The redox mechanisms of DA and the oxidation mechanism of MT on the bare SPCE, 
CNS/SPCE, and Cu–CNS/SPCE were examined using CV. Figure 5 shows the CV curves 
of the modified sensors against 2 μM DA and 6 μM MT in a deoxygenated 0.1 M phos-
phate buffer solution with a pH of 7.0. Weak redox peaks for DA and MT were recorded 
for the bare SPCE and CNS/SPCE sensors, whereas the Cu–CNS/SPCE exhibited a well-
defined oxidation peak for DA at approximately +0.223 V and a cathodic peak at 0.1 V. A 

(a) (b)

(c) (d)

(e) (f)

0.1 0.2 0.3 0.4 0.5
−300

−200

−100

0

100

200

300

 Ipa

 IpcI (
mA

)

Scan rate1/2 (V×s-1)1/2    

R2 = 0.998

R2 = 0.997

−0.4 −0.2 0.0 0.2 0.4 0.6
−300

−200

−100

0

100

200

300

I (
mA

)

E/V (vs. Ag/AgCl)

10 mV s-1

200 mV s-1

0.1 0.2 0.3 0.4 0.5
−300

−200

−100

0

100

200

300

 ipa

 ipc

I (
mA

)

Scan rate1/2 (V×s-1)1/2    

R2 = 0.988

R2 = 0.997

0.1 0.2 0.3 0.4 0.5
−300

−200

−100

0

100

200

300

 ipa

 ipc

I (
mA

)
Scan rate1/2 (V×s-1)1/2    

R2 = 0.993

R2 = 0.991

−0.4 −0.2 0.0 0.2 0.4 0.6
−300

−200

−100

0

100

200

300

I (
mA

)

E/V (vs. Ag/AgCl)

10 mV s-1

200 mV s-1

−0.4 −0.2 0.0 0.2 0.4 0.6
−300

−200

−100

0

100

200

300

I (
mA

)

E/V (vs. Ag/AgCl)

10 mV s-1

200 mV s-1

Figure 4. (a) CV results of the Bare SPCE in 5 mM Fe(CN)6]3−/4− contained in 0.1 M KCl at
increasingscan rates from 10 to 200 mVs−1 and (b) their corresponding calibration plot. CV results of
(c) CNS/SPCE and (e) Cu-CNS/SPCE at different scan rates in the same redox probe. Calibration
plots of (d) CNS/SPCE and (f) Cu-CNS/SPCE. In the calibration plots, Black: Ipa Red: Ipc.

The significant differences in the Ipa responses for both targets against the three
modified sensors were analyzed using a one-way ANOVA and Tukey’s test, and the results
are shown in Figure 5d,e. The bare SPCE and CNS/SPCE sensors showed nearly similar
current responses for both DA and MT (non-significant differences in mean values; n.s.;
p > 0.05), while the Cu–CNS/SPCE demonstrated a significant increase in the current
responses (p < 0.001) over the other two sensors. The redox peak currents and reversibility
of the DA redox process were improved after the Cu–CNS modification (Figure 5d). The
enhancements in the peak current and the decrease in overpotentials are clear evidence
of the catalytic effects of the Cu–CNSs toward DA. The same increased trend in current
responses was notable on the Cu–CNS/SPCE toward MT (Figure 5e). The loading of Cu
onto the CNSs accelerated the electron transfer, resulting in remarkably increased peak
currents for these targets.
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Figure 5. (a) CV responses of Cu–CNS/SPCE in 0.1 M phosphate buffer solution, pH 7.0, containing
2.0 µM DA and 6.0 µM MT. The corresponding Epa plots of (b) DA and (c) MT, and Ipa values plots for
(d) DA and (e) MT. The bar charts represent the mean ± s.d. (n = 3). A highly significant increase in
current response (p < 0.001), a significant increase (p < 0.01), and no significant difference (n.s.; p > 0.05).

3.3. Optimization of Solution PH

The supporting electrolyte pH plays a pivotal role in determining the oxidation poten-
tials and currents of DA and MT on the Cu–CNS/SPCE. The influence of pH was studied
using CV in the pH range of 6.0–8.0, and the voltammograms are provided in Figure 6a.
CV measurements were performed at an increasing pH, and the DA and MT oxidation
potentials were slightly shifted toward the negative potential region. A linear relationship
was evident between the Epa and pH, as shown in Figure 6b. The slope (dEP/dpH) for
DA was −50.0 mV/pH, indicating that the same number of electrons and protons (2e−;
2H+) was involved in the electrooxidation of DA to dopamine o-quinone [12]. The slope
(dEP/dpH) for MT was −52.0 mV/pH, which clearly demonstrates the involvement of
two electrons and one proton (2e; H+) in the oxidation of MT to form quinone imine;
these results are consistent with those reported previously [24]. However, the slopes of
−50.0 and −52.0 mV/pH for DA and MT, respectively, are nearer to the calculated Nernst
value of −59 mV. Furthermore, the Ipa responses (Figure 6c) were enhanced only at an
electrolyte pH of 7.0; reduced peak currents were observed at other pH values (6.0, 6.5, 7.5,
and 8.0). Moreover, MT protonation is difficult at a slightly acidic pH (6.0), as previously
observed [24,25]. At pH 7.0, DA has a pKa value of 8.9 [26], and MT has pKa values of
16.51 and −0.69. MT remains uncharged/neutral in the entire pH range [27]. In completely
protected aqueous medium (without oxygen and exposure to light), MT has pKa values of
5.8 and 10.2. MT is known to interact with the nanomaterial (Cu-CNSs) at highly acidic
(pH 1.0–3.0), near neutral (pH 7.0), and highly alkaline pH (pH 10.0–13.0) levels [28]. Hence,
as our target was to measure MT in human sample matrices, pH 7.0 was selected as the
optimum pH for the simultaneous sensing of these biomarkers.
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Figure 6. (a) CVs of Cu–CNS/SPCE in 0.1 M phosphate buffer solution (pH 7.0) containing 25 µM
DA and 50 µM MT and the corresponding plots of (b) Epa values and (c) Ipa values.

3.4. Effect of Scan Rates on Cu–CNS/SPCE

The influence of different scan rates on the peak currents and peak potentials of
DA and MT on the Cu–CNS/SPCE was evaluated. As shown in Figure 7a, the redox
peak currents of DA and the Ipa responses of MT increased with increasing scan rates.
Additionally, the Epa of DA was slightly shifted toward the negative side with increasing
scan rate, as shown in Figure 7b.
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The number of electrons required for the oxidation of MT on the Cu–CNS/SPCE
could be ascertained by the shift in the Epa with respect to the scan rate in CV. The linear
regression equations obtained by plotting the log of the scan rate versus the Epa are
as follows:

Epa = 0.26002 ± 0.02442 × logv, R2 = 0.989 (MT)

The standard rate constant, Ks, for the irreversible voltammogram of MT alone was
found using the Laviron equation, as follows:

Ep = E0 + (2.303RT/αnF) log(RTK0/αnF) + (2.303RT/αnF)logv (1)

Here, Ep and E0 represent the anodic and formal potentials of the sensor; R is the
universal gas constant, T represents the temperature, α is the electron transfer coefficient, F
is the Faraday constant, and n is the number of electrons transferred [29]. The value of α
is assumed to be 0.5. Using Equation (1), the number of electrons transferred for MT was
calculated to be 2.1, suggesting a two-electron transfer mechanism coupled to a one-proton
mechanism.

The linear relationship between the square root of the scan rates (10–200 mV s−1) and
their respective peak currents against 20 µM of DA and MT is shown in Figure 7c. For
these plots, the slopes of the Ipa values were nearly 0.4, and the electrochemical reaction of
these biomarkers was predominantly a diffusion-controlled process rather than a surface-
controlled process, similar to the results reported elsewhere [12]. These results suggested
that the Ipa responses increased owing to the release of two electrons and one proton from
and to the sensor and the MT. Therefore, the Cu–CNS/SPCE was not fouled by these
biomarkers, and the selectivity of detection was not compromised during the analysis.

3.5. DPV Parameters Optimization

The DPV technique eliminates rectangular capacitive currents and is more sensitive
than CV. To achieve optimum working conditions for the Cu–CNS/SPCE, the DPV param-
eters (pulse time, pulse amplitude, potential step, and scan rate) were varied against fixed
concentrations of DA and MT (2.0 µM), following a previous report [30]. The obtained
optimum DPV parameters after 10 s of equilibration in DA and MT were as follows: pulse
time—25 ms; pulse amplitude—75 mV; potential step—5.0 mV; scan rate—20 mV s−1.

3.6. Voltammetric Estimation of DA and MT

Individual determinations of DA and MT on the Cu–CNS/SPCE were performed
using the DPV method, within the potential window, −0.1 V to 0.8 V). Initially, the DPV
responses to the addition of individual analytes, DA and MT, were tested, and their
respective voltammograms are shown in Figure 8a,c. Well-resolved oxidation peaks of
DA and MT were detected at 0.15 and 0.6 V (vs. Ag/AgCl), confirming the efficiency of
the Cu–CNS in detecting both the analytes separately. The constructed calibration curves
are shown in Figure 8b,d. The rationale behind the two linear ranges or the break in the
calibration curve for DA reflects the formation of a sub-monolayer in the first range of
calibration and the formation of a monolayer in the second range, which is similar to results
reported elsewhere [31].

Subsequently, DPV was performed for varying concentrations of one biomarker while
maintaining a constant concentration of the other biomarker. At an MT concentration of
5.0 µM, the DA concentration was changed from 0.125 to 22.0 µM; the obtained voltam-
mograms as presented in Figure 9a. Similarly, at a DA concentration of 5.0 µM, the MT
concentration was changed from 2.0 to 100 µM; the voltammograms are shown in Figure 9c.
The corresponding linear plots for DA and MT are displayed in Figure 9b,d. Distinguish-
able peak currents were observed for both DA (~0.15 V/vs. Ag/AgCl) and MT (~0.6 V/vs.
Ag/AgCl) in the mixed analyte form. Therefore, no adsorption or fouling occurred in the
examined concentration range.
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Figure 8. (a) DPV responses of the Cu–CNS/SPCE in different DA concentrations (125 nM to 26 µM),
(b) DA calibration plot in two linear concentration ranges (125 nM to 4.0 µM) and (5.0 to 26.0 µM),
(c) DPV responses against different MT concentrations (500 nM to 120 µM), and (d) calibration plot of
MT in a wide linear range from 500 nM to 120 µM.
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of the Cu–CNS/SPCE in increasing concentrations of MT from 2 µM to 100 µM with a fixed 5 µM
concentration of DA; (d) MT calibration plot.
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DPV was performed to detect the targets, DA and MT, simultaneously. The voltammo-
grams are shown in Figure 10a, and the calibration curves are shown in Figure 10b,c. The
two linear ranges for DA were 0.125–20.0 µM and 20.0–100.0 µM, with the linear regression
equations being Ipa, DA (µA) = 2.010CDA + 0.8858 (R2 = 0.995) and Ipa,
DA (µA) = 2.2672CDA + 0.1651 (R2 = 0.995), respectively. A sensitivity of 8.34 µA mM−1

cm−2 and a detection limit of 0.34 µM (S/N = 3) were obtained for DA. The linear range
of MT was obtained in the concentration range of 1.0–100 µM, with the linear regression
equation being Ip, MT (µA) = 0.155CMT + 0.2496 (R2 = 0.998). The sensitivity and detection
limits for MT were 1.23 µA mM−1 cm−2 and 0.33 µM, respectively. The limits of quantifi-
cation of DA and MT (S/N = 10) were 2.19 and 1.09 µM, respectively. The low detection
and quantification limits further confirmed the high sensitivity of the Cu–CNS/SPCE.
The recorded detection limits of the Cu–CNS/SPCE for DA were comparable to those
in previous reports [4,26], and those of MT were much lower than those in previous re-
ports [23,24,32] (Table 1). The high sensitivity and wide linear range of the Cu–CNS/SPCE
were due to the enhanced ECSA and rapid electron transport between the Cu–CNS/SPCE
and the targets.
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Table 1. Comparative study of the electrochemical sensors for the simultaneous determination of DA
and MT.

Electrochemical
Sensor

Electrochemical
Technique

Linear Range (µM) LOD (µM)
Real Samples Reference

DA MT DA MT

Au/pBDD DPV 0.1–1000 - 0.06 - - [33]

Au-MoS2/GCE DPV and
Amperometry - 0.033–10.0 - 0.0157 Human urine [34]

PdNP/Al2O3/CPE DPV 0.05–1450 0.006–1400 0.0365 0.0216
Human serum

and drug
formulations

[35]
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Table 1. Cont.

Electrochemical
Sensor

Electrochemical
Technique

Linear Range (µM) LOD (µM)
Real Samples Reference

DA MT DA MT

Ionic
liquid/SnO2/Co3O4/

rGO
CV and DPV - 0.02–6.00 - 0.0032

Human serum,
urine, and

drug
formulations

[32]

18-BDD/Ta DPV and
Amperometry 0.40–600 0.40–600 0.1 0.003 Human serum [4]

CNTs and graphene
based SPCE DPV - 0.005–3000 - 1.1 Human serum

and urine [36]

CDE CV - 0.0025–1100 - 1.3 Human serum
and urine [24]

Graphene/SPCE Amperometry and
CV - 0.05–50 - 0.87 Drug

formulations [23]

Graphene/Fe3O4/CPE Square wave
voltammetry 0.02–5.80 0.02–5.80 0.0084 0.0065

Human serum,
urine, and

drug
formulations

[37]

Wrinkled rGO/SPCE
CV and Linear

sweep
voltammetry

0.10–300 - 0.134 - Mouse brain
tissue [26]

Cu–CNS/SPCE DPV 0.125–2020.0–100 1.0–100 0.34 0.33 Human serum This
work

Au—gold; pBDD—porous boron-doped diamond; MoS2—molybdenum disulfide; GCE—glassy carbon electrode;
PdNP—palladium nanoparticles; Al2O3—alumina; CPE—carbon paste electrode; SnO2—tin (IV) oxide; Co3O4—
cobalt tetroxide; rGO—reduced graphene oxide; 18-BDD/Ta—polycrystalline boron-doped diamond/tantalum
substrate; CNT—carbon nanotube; CDE—carbon disk electrode; Fe3O4—iron (III) oxide.

3.7. Selectivity

Selectivity experiments using the Cu–CNS/SPCE for the simultaneous sensing of
DA and MT were performed in the presence of interfering species such as ascorbic acid
(AA), glucose, uric acid (UA), urea, and creatinine. the simultaneous determination of DA
(20.0 µM) and MT (20.0 µM) in the presence of a ten-fold excess concentration (200 µM) of
the mentioned species did not influence the oxidation currents of DA and MT (Figure 11a).
AA and UA, which are negatively charged at pH 7.0, exhibited strong electrostatic repulsion,
as previously reported [38]. The oxidation potentials of AA (−0.1 V) and UA (0.3 V) were
distinguishable from those of DA and MT. Moreover, the addition of glucose, urea, and
creatinine exhibited no significant changes in the peak currents of DA and MT. A fifteen-fold
excess concentration (300 µM) of Na2+, Fe+, K+, and Mg2+ demonstrated no appreciable
signals and therefore did not affect the oxidation of DA and MT (Figure 11b). Interference
studies revealed the selectivity of the Cu–CNS/SPCE toward DA and MT.
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Figure 11. (a) Selectivity results of the Cu–CNS/SPCE for the simultaneous determination of DA and
MT in the presence of a ten-fold excess of various interfering compounds (AA, glucose, UA, urea,
and creatinine). (b) Effect of other common interferents in DA and MT determination.
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3.8. Possible Mechanism of Target Estimation Using Cu–CNS/SPCE

Cu–CNS materials possess a carbonized core with aromatic rings and a hydrophilic
surface that readily interacts with DA and MT through aromatic and electrostatic π–π
interactions [20]. Briefly, the aromatic interactions between the benzene ring of DA and
the Cu–CNSs and the electrostatic π–π stacking interactions might facilitate fast electron
transfer, improving the sensitivity of DA detection. At a neutral pH, DA is present in
the pronated form (-NH3

+), interacting with the π-electron clouds of Cu–CNSs [38]. At
a neutral pH, MT can be easily oxidized to its intermediate quinoneimine ions, which are
vulnerable to nucleophilic attack and form the corresponding dimers [25]. In contrast, at an
acidic or alkaline pH, the protonation of MT is highly compromised. Similar to DA, the
aromatic interactions between the benzene ring of MT and Cu–CNSs and the electrostatic
π–π stacking interactions contribute to the fast electron transfer [25].

3.9. Reproducibility and Stability

DPV experiments were performed using four identically prepared Cu–CNS/SPCEs
against 10 µM DA and MT. The voltammograms after baseline subtraction are shown in
Figure 12a. The current responses for DA and MT were measured and are illustrated in
Figure 12b,c, respectively. The relative standard deviation (RSD) values were 2.4% and 2.3%
for DA and MT, respectively, suggesting a satisfactory reproducibility of the Cu–CNS/SPCE
in simultaneously detecting DA and MT.
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Figure 12. (a) Reproducibility results of the four fabricated identical sensors against 10 µM DA and
MT. The corresponding plots of Ipa values for (b) DA and (c) MT.

The long-term stability of the Cu–CNS/SPCE was examined over four weeks. The
Cu–CNS/SPCE demonstrated that 82.5% and 81.8% of Ipa responses were retained for DA
and MT, respectively. The Ipa decreased to 17.5% and 18.2% only. The Cu–CNS/SPCE
sensor was stored under ambient conditions and was not used. Hence, these results confirm
the stability properties of the sensor in the simultaneous determination of DA and MT.
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3.10. Analysis of Real Samples

The practical applicability of the Cu–CNS/SPCE was tested by using the regular
addition method to measure the concentrations of DA and MT in human serum samples.
The same DPV measurement conditions were used for the spiked serum samples. The DPV
results (Table 2) demonstrated satisfactory recovery percentages (approximately 100%),
with a much lower relative standard deviation (RSD) value of less than 4.0%. The slightly
higher recovery percentage of above 100% indicates the absence of matrix effects on these
determinations, signifying the good performance of the sensor in the serum sample instead
of the phosphate buffer [39]. Possibly, errors in the sensor’s repeatability (in several
replications for each concentration) and instrumental errors could cause higher recovery
percentages [40].

Table 2. Comparison of DA and MT concentrations measured in human serum samples.

Samples Added (µM) Found (µM) Recovery (%) RSD (%)

DA

- 0.109 ± 1.0 - 1.1

5.0 4.865± 2.6 95.2 2.9

10.0 9.642 ± 2.7 95.4 2.1

20.0 20.701± 3.4 102.9 3.7

MT

- 0.1196± 1.3 - 1.3

10.0 10.056 ± 1.8 99.4 3.3

20.0 19.654 ± 2.5 97.7 2.5

40.0 38.536 ± 2.0 96.1 1.7
SD: standard deviation; RSD: relative standard deviation.

4. Conclusions

In this study, we have successfully synthesized Cu–CNS materials with a carbonized
core and a hydrophilic surface that readily interacts with DA and MT through aromatic
and electrostatic π–π interactions. Loading Cu onto the CNSs accelerated electron transfer,
resulting in a remarkably increased Ipa responses with a peak-to-peak separation of 0.502 V.
The enhanced electrochemical performance of the Cu–CNS/SPCE was attributed to its high
ECSA of 0.1964 cm2. The Cu–CNS/SPCE exhibited wide linear ranges, a high sensitivity,
and the lowest detection limits for both DA and MT. Additionally, the Cu–CNS/SPCE
exhibited a high selectivity, satisfactory reproducibility, and long-term stability toward
DA and MT. In human serum samples, the Cu–CNS/SPCE exhibited excellent recovery
percentages and low relative standard deviations, signifying the reliability of the Cu–
CNS/SPCE in sensing DA and MT. The recoveries were recorded in the range of 91.0–98.0%,
with RSDs of less than 5.5% in the human serum samples. Thus, the Cu–CNS/SPCE can be
applied for simultaneously detecting DA and MT in biological samples.
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