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Abstract: With the advancement of technology and increasing industrial activity, anthropogenic
contaminants are currently detected where there is no record of their presence or insufficient in-
formation about their toxicological impact. Consequently, there are not sufficiently robust local or
global regulations, the ecotoxicological and human health risks are critical, and they may not be
routinely monitored despite being ubiquitous. The interest in studying environmental contaminants,
including micropollutants and emerging contaminants, in complex environmental water samples
has grown in the last decade. Due to the concentrations in which they are typically found in the
environment and the rapid global dispersion, the detection procedures for these substances must be
capable of measuring very low concentrations. Many efforts have been made to improve remediation
procedures or develop novel analytical methods for their determination. Although there are several
robust and reliable standard analytical techniques for their monitoring, pollutant contamination
requires simple and inexpensive methods for massive, in situ monitoring campaigns. In this regard,
biosensors have emerged as devices with high selectivity, sensitivity, easy operation, and short analy-
sis times. Aptasensors are biosensors based on a nucleic acid recognition element (aptamer). Due to
their synthetic nature, stability, and easy production, aptamers are frequently employed to develop
bioassays. This work presents a systematic review of the trends in using aptasensors for detecting
environmental contaminants present in environmental water samples, as well as the estimation of the
potential technological contribution these devices might give to environmental monitoring.

Keywords: aptasensors; pollutants; emerging contaminants; nanomaterials; water contamination

1. Global Problem of Contaminants in Water

The growing requirements of consumers for new products for everyday use have
generated the appearance of many contaminants in the environment, mainly in aquifer
systems. These substances, known as emerging contaminants (ECs), are found in trace
concentrations in water bodies. ECs are currently of high environmental interest because
they are recalcitrant compounds, ubiquitous throughout the ecosystems and, in many cases,
have unknown toxicological effects [1,2].

The sources of environmental contaminants are mainly due to industrial practices or
anthropogenic activities [2,3]. As shown in Figure 1, several contaminants are transferred
by different routes to water systems. Wastewater treatment plants (WWTPs) constitute
one of the main factors for the spread of contaminants. When contaminant degradation
or removal processes are not appropriate, these substances are released into water bodies
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in high amounts due to an enrichment and accumulation effect [3–6]. After release from
WWTPs to water systems, contaminants can bioaccumulate in aquatic species [7–9] and be
transported to different water bodies (groundwater, river water, lakes) where risk exists to
reach water for human consumption (tap water, bottled water) [2,10–13].
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Figure 1. (1) Environmental contaminants from a synthetic origin are produced by different kinds
of industrial activities for several applications. (2) Industrial, urban, and rural activities release
contaminants in waste landfills and liquid discharge lines (3 and 4). These liquid waste dumps must
be treated (5) before being released into natural water bodies (7). However, in various regions of the
world, they are disposed of directly without prior treatment (6). Even when treated, in most cases it
is not possible to eliminate or degrade contaminants. Thus, they will be then released into natural
waters and eventually used for (8) industrial, urban, and rural activities.

Regarding the risks for the ecosystems and human health due to the presence of
environmental contaminants in the hydric system, the World Health Organization (WHO)
and the governments of different regions have established minimum concentration levels
of some of these substances in water [14–18]. The concentrations allowed in water bodies,
depending on the type of compound, are, generally, in the order of pico- to micro-molar
in heavy metals [18–20], pesticides (insecticides, fungicides, herbicides) [21–23], phar-
maceutical substances (anti-inflammatories, analgesics, antibiotics, hormones, diuretics,
anxiolytics) [24–26], plasticizers and micro- and nano-plastics [27,28].

Traditional methods for their monitoring are based on chromatography coupled to
mass spectrometry (GC-MS and LC-MS) and direct detection methods based on lumines-
cence (absorption and fluorescence). GC-MS and LC-MS are frequently based on complex
analytical procedures, requiring well-trained personnel and laborious sample treatments
with associated high costs and low throughput. These techniques are undoubtedly suitable
as a confirmatory method. By contrast, the development of screening analytical methods
to be performed directly in the field is mandatory for monitoring programs. Screening
methods allow the use of confirmatory methods only on positive findings, thus decreas-
ing the number of samples to be analyzed and reducing the cost of the whole analysis.
In this context, methods based on biosensors [29] are of particular interest. Indeed, any
screening method must meet the Affordable, Sensitive, Specific, User-friendly, Rapid and
Robust, Equipment-free, and Deliverable to End-users (ASSURED) criteria established by
the WHO [18,30]. Recently, aptasensors have emerged as interesting tools in the detection
of environmental contaminants due to their high selectivity in binding to the target and
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their synthetic nature, compared to other biorecognition elements, such as antibodies or
enzymes [31–33].

Aptamers are single-stranded oligonucleotides with high-affinity binding to a given
target analyte, produced by in vitro selection. They fold into complex three-dimensional
structures upon association with their target, providing multiple molecular interactions
of different types (electrostatic, hydrogen bonding, etc.) that govern selective recognition.
Aptamers are produced by chemical synthesis, avoiding biological raw materials, or living
animals. Aptamers are selected by a universal approach that does not depend on a particu-
lar analyte with the possibility to use toxins as well as molecules that do not elicit a good
immune response [34–36].

Moreover, aptamers have other interesting features such as high thermal stability
and the opportunities for further chemical modifications that provide the immobilization
of aptamers onto solid support with mild alteration of selectivity. Due to these features,
aptamers are frequently used in biosensor assembly and are frequently combined with a
wide variety of nanomaterials, improving the sensing performance [35,37–40].

Considering the above-mentioned advantages, this work aims to systematically re-
view the use of aptasensors for detecting environmental contaminants in water bodies to
evaluate the current trend, sensitivity projections, assembly materials, and the ability to
reuse the devices. Although there has been a noticeable increase in the number of review
papers related to aptasensors for detecting contaminants in environmental water samples
in the last five years (see Figure 2), the vast majority are focused on describing only the
original research on the development and functionality of aptamers, in a specific type of
transducer (optical or electrochemical) [38,41–48], the effectiveness of certain materials
(metallic nanoparticles, metal–organic framework, quantum dots, single- and multi-walled
carbon nanotubes) [49–52], or type of contaminants (heavy metals, pharmaceutical com-
pounds, pesticides, endocrine disruptors) [53–62]. Nevertheless, a systematic analysis that
includes these aspects, emphasizing the analysis of water samples of environmental origin
or that had undergone purification treatment, has not yet been published.
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Figure 2. History of the number of review papers on the detection of contaminants in environmental
water samples using aptasensors. Data extracted from Scopus on 20 March 2024.

2. Materials and Methods

This review followed the preferred reporting items for the systematic review and
meta-analysis statement (PRISMA). The literature search focused on reports published
in peer-reviewed journals indexed in Web of Science and Scopus databases and available
in English.
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The search for studies concerning aptasensors was performed by evaluating keywords,
titles, and abstracts. Studies that did not assess the applicability of aptasensors in detecting
contaminants in environmental water (river, lake, groundwater, wastewater) were excluded.
Only articles published from the past five years were considered (2019–2023).

Focus questions were prepared based on the problem, intervention, comparison, and
outcome (PICO) method: (P) what water contaminants are usually detected using ap-
tasensors? (I) What configurations are frequently applied for aptasensors elaboration for
contaminant detection? (C) Are aptasensors sensitive enough for environmental contami-
nant detection at ultra-low concentrations in complex environmental water samples? (O)
What aptasensor exhibits the higher performance stability for analyzing real water samples?

The search was performed using the following components for every database:
Search component 1 (SC1), including the key terms: Aptasensor OR Aptamer AND

Water; Search component 2 (SC2), including the key terms: Aptasensor OR Aptamer AND
water OR wastewater OR groundwater OR river OR Sewage OR Environment.

The following data were extracted and captured in an Excel spreadsheet featuring
the following information: article title, year, analyte, analyte classification, transducer
type, detection principle, sensitivity, water sample type, test on real samples, aptasensor
selectivity/specificity, reproducibility/repeatability, stability, and reusability. Table 1 shows
the concept and description of the data searched.

Table 1. Description of the primary data sought in the systematic review.

Concept Description

Analyte Name of environmental contaminant.

Analyte classification
The environmental contaminants were classified according

to their chemical family: metals, pesticides, toxins,
industrial chemicals, and pharmaceutical compounds.

Transducer type
Electrochemical, optical,

photoelectrochemical/electroluminescence
(opto-electrochemical) transducers.

Sensitivity

Sensitivity according to the LOD 1 using the following
ranges as a basis: low (LOD > 0.1 mg/L), medium

(0.1 mg/L > LOD ≥ 1 µg/L), high (1 µg/L > LOD >
0.1 ng/L), and ultra-high (LOD < 0.1 ng/L).

Water sample type Water used from a complex matrix: river water, lake water,
wastewater, or seawater.

Test on real sample
Refers to whether the target analytes were found in real

water samples, or the compounds were spiked to the
water samples.

Selectivity/specificity

Presence of interferents in the complex matrix and whether
the assay was performed: (1) with the target in the presence

of the interferents in the same sample (mixed with
interferents); (2) whether the target and interferents were

analyzed separately (individual); (3) if the target was
analyzed with one of the interferents (individual interferents

with the target); and 4) if this test was not reported (NR).

Reproducibility/repeatability Reported RSD 2.

Stability To evaluate the behavior of the aptasensor over time.

Reusability Determines if the same device can be used in
different periods.

1 Limit of detection; 2 relative standard deviation.

This review considered only original research articles in English directly related to
detecting or quantifying water environmental contaminants using aptamers as recognizing
elements. The exclusion criteria for full-text articles were articles written in a language dif-
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ferent from English, aptasensors applied for the detection of other chemicals not considered
environmental contaminants, abstract-only papers as proceeding papers, and conference,
editorial, and author response theses and books. Finally, aptasensor applications in model
water samples (distilled, buffer, or synthetic environmental water samples) or uncomplex
water samples, such as those from drinking or tap water, were excluded as they were not
useful to answer the research questions.

3. Results and Discussion

A total of 250 studies were found in the Scopus database and 286 in the Web of Science
database, totaling 536 from 2019 until 2023. After duplicate exclusions, 151 studies that met
the inclusion criteria remained. In addition, 42 reviews on aptasensors for contaminants
application were identified in the same search period; of these, 13 reviews related to the
detection of water contaminants were selected to identify some other original publications not
collected in the initial search. The rest of the reviews were not selected because they focused
on the development of aptasensors for a particular contaminant or a family of them (arsenic,
bisphenol, pesticides, mycotoxins, metals, viruses, microorganisms, antibiotics) in another
type of compartment (food, biological fluids, or plants); some other reviews focused on the
detection of biomolecules in biological fluids, for the diagnosis of diseases (Alzheimer, cancer),
molecular monitoring of metabolites or drugs in the body; and other reviews focused on the
transduction system (electrochemical, optical). None of the 42 reviews were of the systematic
type but rather were of the narrative type. In the eligibility step, the rest of the 13 reviews
were excluded and no additional papers evaluated were chosen. The consultation of the full
texts of the articles to determine the inclusion and exclusion criteria led to the exclusion of
36 articles, mainly because the articles excluded in this step applied the aptasensor in simple
water samples such as buffer or distilled water and those applied in food samples, although
the abstract mentioned that it could be applied in environmental samples or environmental
monitoring. In total, 73 studies that fully met the inclusion criteria were subsequently analyzed
to answer the research questions. The PRISMA flow diagram template used in this systematic
review is shown in Figure 3. Table S1 of the Supporting Information details the 73 studies
with the concepts developed in Table 1.
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3.1. Production of Aptamers as Recognizing Elements

The aptamer selection process, called Systematic Ligand Evolution by Exponential En-
richment (SELEX), is a technique developed almost simultaneously by Tuerk and Gold [63],
and Ellington and Szostak [64] in the 1990s. The SELEX technique consists of the following
steps: selection, partitioning, and amplification (Figure 4). To carry out the selection, it
is necessary to synthesize a library of approximately 1013–1018 random oligonucleotide
sequences. Each oligonucleotide contains random bases (20–50 NTs) flanked by two con-
served primer binding sites, which are used for PCR amplification. In the selection step,
the oligonucleotide library is incubated with target molecules, which are immobilized
on solid phase supports; after incubation, the unbound sequences are separated using
different methods. The target-bound sequences are amplified by PCR (DNA SELEX) or
reverse transcription PCR (RNA SELEX); the products are used for the next selection round,
performing the same sequence and target molecule interaction process. After several
rounds of selection, the enriched oligonucleotides are sequenced and evaluated for their
binding capabilities [63–66]. However, there are some deficiencies to be overcome; one
of them is stringency, as SELEX assumes that the most enriched sequences are the most
specific binders, which is not always the case, and high-affinity binders can sometimes be
overlooked due to insufficient stringency in selection conditions. The process can enrich for
non-specific binders that bind to the matrix used rather than the target molecule, leading to
false positive results; in addition, minimal mistakes in the initial library result in a biased
library; another restriction is the limited scale. Moreover, SELEX can be limited in its ability
to identify specific binders for targets with low binding specificity or for targets with highly
structured regions [37,67–71]. Over time, different modified SELEX procedures have been
developed and continue to be developed to improve the efficiency, specificity, or speed
of the selection process, including variations in the separation stage. Some examples are
shown in Table S2.
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3.2. Overview of Data Collection

As can be seen in Figure 5 and Table S1, the 73 papers reported the detection of
30 aqueous contaminants: 5 metals, 6 pesticides, 4 industrial chemicals, 2 toxins, and
13 pharmaceutical compounds. In particular, the study of antibiotics stands out due to
the promotion of bacterial resistance, an issue of global concern. Different environmental
water matrices were analyzed: municipal and industrial wastewaters, lakes, rivers, ponds,
and canal water. However, most of the assays were performed in spiked water samples,
allowing for the study of the effects of natural interferents, but the concentrations used in
these assays are usually much higher than the environmental ones. Most of the papers
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studied the selectivity of aptasensors using chemically similar analytes, added to the
assay individually or in a mixture of interferents, in significantly higher concentrations.
However, very few addressed the study of the reusability of the aptasensor, a parameter
of major importance in the environmental area, where a massive number of readouts are
performed, which implies a high cost for an adequate determination of contamination in
time and space.
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the number of total papers. Created with flourish.studio.

3.3. Analysis of Categorizations
3.3.1. Environmental Contaminants

The systematic analysis of the literature on applying aptasensors in environmental water
over the past five years shows that pharmaceuticals (PhCs) are the most studied, with
26 papers and 13 compounds reported (Table S1). In recent years, there has been a boom
in the literature on monitoring PhCs as emerging contaminants [72,73]. Antibiotics are
undoubtedly the most studied PhCs, and there are several reasons for this. First, they are the
most widely used drugs worldwide for human, animal, and plant health; second, because
of the above, they are expected to be discharged into the environmental compartments
by various household, hospital, and industrial discharges. Thirdly, they are the cause of
bacterial resistance, an issue of great concern worldwide, where the global action plans
against antimicrobial resistance promote the monitoring of both resistant microorganisms
and the antimicrobials commonly used as a reference [74]. In a recent work [2], it was
found that, among the 53 compounds reported, those with the highest calculated relevance
were PhCs, with antibiotics having the highest proportion.

In second place was the detection of metals, with 21 works for detecting copper,
mercury, lead, cadmium, and arsenic. Metals are pollutants with a broader concentration
range, from mg/L to ng/L, because they are produced by intensive industrial activity from
several sectors; in addition, they can be released into the environment from natural sources.
They have been studied for many years, and their toxic effects and environmental impact
are known. Hence, the search for accurate, sensitive, and stable methods or devices will
promote the development of research and innovation in the field. Indeed, aptasensors have
been widely applied to detect metals, as reported in recent literature reviews [32,53].
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The other family of contaminants analyzed using aptasensors is pesticides. These
compounds are widely discharged into aqueous compartments upon spraying over large
areas, so they are prone to being partially deposited outside the target sites and carried into
streams or reservoirs by runoff or filtration. Their presence as contaminants is documented,
as is their effects on human and environmental health [75–77]. Although applied in large
quantities, some undergo chemical and biological transformation reactions, leading to
their detection at µg/L or ng/L concentrations. The most studied pesticides are diazinon,
chlorpyrifos, atrazine, acetamiprid, quinclorac, and malathion, as reported in 13 papers.

Fewer papers have been devoted to the determination of industrial chemicals (8 papers,
4 chemicals) and toxins (5 papers, 2 toxins), as reported in Table S1. Studies performed
within complex samples and in the presence of many interferents indicate that aptamers
are robust molecules capable of maintaining their affinity towards the analyte of interest in
environmental conditions.

3.3.2. Sensor Design and Sensitivity

Regarding the most used sensor configurations (Figure 6), 77% of the cases (56 ar-
ticles) used the aptamer without further modification or a simple modification, such as
functionalization with an amino group or thiol group to anchor at the surface of the trans-
ducer. On the transducer side, three types were documented. Electrochemical, optical,
and opto-electrochemical techniques were used within these transducers. With the term
opto-electrochemical, we include both electrochemiluminescent and photoelectrochemi-
cal systems.

To enhance aptasensor performance, nanomaterials have become a prevalent strategy.
Their well-documented properties enable them to exert significant influence on several
critical aspects, including controlling assembly density, regulating the accumulation of
the aptamers, optimizing the orientation of these elements for target interaction, and
facilitating the rate of electron transfer at the sensor interface [78]. In this review, 60% of
the papers used composites of two or more materials of metallic or carbonaceous type,
or their combination. Among those, noble metal nanoparticles, graphene and graphene
oxide, carbon nanotubes, quantum dots, and metal–organic frameworks are the most
widely employed. Particularly, 18 papers used electrochemical transducers modified with
nanocomposites, while 18 papers used opto-electrochemical transducers with a surface
composed of two or more materials, and only 9 were optical with nanocomposites. A
total of 28 papers used a “simple” interface with only one or no nanomaterial, most using
the optical transducer (colorimetric analysis). Figure 6a shows the number of papers
classified based on the transducing principle. Figure 6b–d describe a simplified subdivision
of the works in line with the heterostructure used, i.e., (i) simple: bare surface or one
nanomaterial; (ii) composite: heterostructures of two nanomaterials; (iii) complex: more
complex heterostructures. Moreover, a further classification according to sensitivity is
also reported.

Regarding sensitivity, in the selected works, the reported LODs displayed a wide inter-
val of values, from mg/L to ag/L. A total of 82% of LODs (60 papers) fall in the value here
defined as high to ultrahigh sensitivity (LOD < 1 µg/L), 14% showed a medium sensitivity
(0.1 mg/L > LOD > 1µg/L), and only three papers showed a low LOD (LOD > 0.1 mg/L)
(Figure 6). It is well known that aptamers present dissociation constants like those shown
by antibodies, with values of approximately 10−9 M, which helps to achieve high sensitivity.
Regarding the type of transducer on the sensitivity parameter, 100% of the papers using
opto-electrochemical transducers showed high and ultra-high sensitivity, followed by 90%
of the electrochemical and 50% of the optical transducers (Figure 6).

The data presented in Tables 2 and S1 show that the high sensitivity of the aptasensors
can be attributed to the coupling of specific aptamers with nanomaterials.
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Table 2. Examples of aptasensors for environmental applications.

Sensitivity (LOD) Transducer Nanomaterials Target Classification Reference

7.11 ag/L Opto-electrochemical Graphitic carbon loaded by CoN
nanoparticles (CoN/g-C3N4) Pesticides [79]

0.33 pg/L Electrochemical CoMoS4 hollow nanospheres Mycotoxins [80]

2.07 pg/L Electrochemical Nanocomposite structure of
AuNPs/PPy/Ti3C2Tx

Heavy metals [81]
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Table 2. Cont.

Sensitivity (LOD) Transducer Nanomaterials Target Classification Reference

0.601 pg/L Opto-electrochemical

Ru(bpy)3
2+-doped silica

nanoparticle-nitrogen-doped
graphene quantum dots

(Ru@SiO2-NGQDs)

Heavy metals [82]

3.01 fg/L Opto-electrochemical
(CoAl LDH/g-C3N4)

two-dimensional/two-
dimensional structure

Pharmaceutical
compounds [83]

0.742 pg/L Electrochemical Cu@carbon nanoneedles
(Cu@CNNs) Heavy metals [84]

12.64 pg/L Opto-electrochemical
NiFe layered double hydroxide
(NiFe LDH)/graphitic carbon
nitride (g-CN) heterojunction

Pharmaceutical
compounds [85]

97.8 pg/L Electrochemical

Nanostructure composed of MoS2
nanosheets and conductive
polypyrrole nanoparticles

(PPyNPs)

Pharmaceutical
compounds [86]

3.6 fg/L Electrochemical
Zeolitic Imidazolate Framework-8
(ZIF-8)-derived Ag@Au core–shell

nanoparticles (Ag@Au/ZIF-8)
Heavy metals [87]

22 fg/L Optic Magnetic beads and gold
nanoparticles (AunNPs) Heavy metals [88]

15 pg/L Optic Not applicable Pharmaceutical
compounds [89]

0.189 pg/L Electrochemical Gold-plated coplanar
electrode array Heavy metals [90]

0.22 pg/L Electrochemical
CoNi-based metal–organic

framework (MOF),
CoxNi3-x,(HITP)2,

Pharmaceutical
Compounds [91]

29.86 pg/L Electrochemical ZnO quantum dots decorated B, N
co-doped graphene (BNG/ZnO) Mycotoxins [92]

29.86 pg/L Electrochemical
3D cobalt-based oxide modified

boron and nitrogen co-doped
graphene hydrogel (3D BNG/Co)

Mycotoxins [93]

75 fg/L Opto-electrochemical Metal–organic framework
NH2-MIL-125(Ti)

Pharmaceutical
compounds [94]

80 fg/L Electrochemical Thionine (Thi)-functionalized
MoS2-rGO nanocomposite Industrial chemicals [95]

0.20 pg/L Electrochemical
Nanohybrid of Ag, Ag2O, Ag2S,
and ultra-thin MoS2 nanosheet
(Ag/Ag2O/Ag2S/MoS2(600))

Industrial chemicals [96]

15 pg/L Opto-electrochemical Cu(I) modified carbon nitride
(Cu/g-C3N4) Industrial chemicals [97]

18 ag/L Electrochemical

Multi-walled carbon nanotubes
(MWCNT), amino-functionalized
magnetite, and gold nanoparticles

(NH2-Fe3O4/Au NPs)

Industrial chemicals [98]

99.86 pg/L Opto-electrochemical N-doped TiO2 nanotubes
(N-doped TiO2 NTs) Industrial chemicals [99]
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Table 2. Cont.

Sensitivity (LOD) Transducer Nanomaterials Target Classification Reference

0.22 pg/L Electrochemical

Co-based metal–organic
frameworks (Co-MOF) and

terephthalonitrile-based covalent
organic framework (TPN-COF)

(Co-MOF@TPN-COF)

Pharmaceutical
compounds [100]

17.4 pg/L Electrochemical

Nanohybrids of Covalent organic
framework (COF) and Ce-based

metal organic framework
(Ce-MOF) (Ce-MOF@COF

hybrid nanostructure)

Pharmaceutical
compounds [101]

As an example of an electrochemical transducer, Zhao et al. [98] recently reported an
aptasensor for bisphenol A (BPA) detection (Figure 7). Their design employed a glassy
carbon electrode (GCE) modified with a composite material consisting of multi-walled
carbon nanotubes (MWCNTs), amino-functionalized magnetite (NH2-Fe3O4), and gold
nanoparticles (Au NPs). The combination of these elements resulted in a limit of detection
(LOD) of 0.08 aM (18 ag/L) for BPA, along with a linear detection range spanning from
10−19 M to 10−14 M. The authors reported an advantage in using a dual-signal amplifi-
cation effect based on (i) the synergic properties of the composite material and (ii) the
conductivity of the SWCNTs. The specific aptamer also facilitated a “signal-on” sensing
scheme, contributing to a simple and efficient protocol.
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pulse voltammetry responses at different concentrations of BPA (10−19 M, 10−18 M, 10−17 M, 10−16 M,
10−15 M, 10−14 M) in lake water. (C) BPA calibration curve in lake water. Reprinted from reference [98]
with permission from Springer Nature.

Besides nanomaterials, an interesting signal enhancement mechanism that can be
introduced when dealing with aptamers relies on nucleic acid amplification techniques. In
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an optical aptasensor developed by Tian et al. [88], the detection of Hg2+ was accomplished
through a dual recycling amplification strategy (Figure 8). The method utilizes a functional
aptamer (DNA 1) harboring Hg

2+ recognition sites and amplification regions. Additionally,
hairpin DNA conjugated to magnetic nanoparticles and a SERS probe comprised of capture
DNA and labeling DNA (Rox-DNA) immobilized on gold nanoparticles (AuNPs) were
employed. Upon Hg2+ addition, the first amplification cycle generates numerous trigger
DNA strands. These unfold the hairpin DNA so that a second amplification cycle can
start through the capture of SERS probes by the unfolded hairpin DNA. This complex
formation triggers the release of more trigger DNA strands through the sequential action
of polymerase and endonuclease enzymes. These released strands initiate the formation of
additional complexes with hairpin DNA and SERS probes. Magnetic separation of these
complexes effectively eliminates background noise caused by excess SERS probes. In this
way, a limit of detection (LOD) of 0.11 fM (22 fg/L) was obtained, with a linear detection
range of 0.2–125 fM.
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Figure 8. (a) Schematic diagram of SERS aptasensor based on dual recycling amplification for trace
Hg2+ detection; (b) SERS spectra under different concentrations of Hg2+; (c) linear relationship
between Raman intensity and different mercury ion concentrations. Reprinted from reference [88]
with permission from Elsevier.

As seen in the first quartiles of Figure 9, the aptasensor configurations can reach
levels lower than 1 ng/L, which is sufficiently sensitive for detecting contaminants in real
environmental samples. Nine works reported LODs below the ag/L level (Table S1). These
ultralow values could be found in environmental water a certain time after the discharge
event when the original concentrations had decreased significantly due to spontaneous
transformations (biodegradation, adsorption, chemical oxidation, etc.). The highest LOD
values reported were in the order of mg/L for metals (2–10 mg/L) (Table S1). These
values seem unrealistic in environmental samples unless they can be found at sites of high
industrial activity. At this point, it can be concluded that aptasensors could have enough
sensitivity to detect contaminants in real environmental water samples. However, further
testing on real, unfortified, contaminated samples is needed to determine their feasibility
more accurately.



Chemosensors 2024, 12, 59 13 of 25
Chemosensors 2024, 12, x FOR PEER REVIEW 14 of 27 
 

 

 
Figure 9. Limits of detection for the different configurations of aptasensors. The red line represents 
1 μg/L. The points are the total papers according to the LOD of the aptasensor. 

The limit of detection (LOD) analysis demonstrates the exceptional sensitivity of ap-
tasensors for contaminant detection in real environmental water samples, reaching con-
centrations quite below 1 μg/L (Figure 9). Notably, the median LOD achieved with opti-
cal transducer systems was 0.045 μg/L. This sensitivity significantly improved for opto-
electrochemical transducers, reaching a median LOD of 0.00056 μg/L. The most impres-
sive performance was observed with electrochemical detection, achieving an ultra-low 
median LOD of 0.000064 μg/L. These remarkable sensitivities suggest the aptasensors’ 
suitability for real-world environmental monitoring applications where contaminants 
are often present at trace levels. 

3.3.3. Accuracy and Precision 
In terms of accuracy and precision, aptasensors showed real application potential 

when tested in different environmental water matrices, from surface water (river or lake) 
to effluents from municipal, hospital, and industrial treatment plants. Although in 92% 
of the cases, the tests were performed with spiked samples, in the remaining 8%, the ap-
tasensors were applied in a real analyte concentration (Table S1). For the spiked sam-
ples, the accuracy was measured as recovery (comparison of the added to the measured 
concentration). In the cases where the natural concentration was measured, the accuracy 
was obtained by comparing the measured amount with the concentration measured 
with a reference standard technique, such as high-performance liquid chromatography 
coupled to mass spectrometry (HPLC-MS) [102,103], inductively coupled plasma (ICP) 
[104,105], atomic absorption spectroscopy [106] or enzyme-linked immunosorbent assay 
(ELISA) [107]). Both accuracy and precision were interesting, with recovery values in the 
90–110% range, and precision, as measured by the coefficient of variation of the repli-
cates made, was less than 10%. 

As an example, Wang et al. [108] reported a detection method for microcystin-LR in 
spiked water samples from Jinshan Lake using a laser-induced graphene-based electro-
chemical aptasensor. The accuracy and precision were then compared with the HPLC-
MS/MS technique, observing a correlation between the two methodologies. A good 

Figure 9. Limits of detection for the different configurations of aptasensors. The red line represents
1 µg/L. The points are the total papers according to the LOD of the aptasensor.

The limit of detection (LOD) analysis demonstrates the exceptional sensitivity of
aptasensors for contaminant detection in real environmental water samples, reaching
concentrations quite below 1 µg/L (Figure 9). Notably, the median LOD achieved with
optical transducer systems was 0.045 µg/L. This sensitivity significantly improved for
opto-electrochemical transducers, reaching a median LOD of 0.00056 µg/L. The most
impressive performance was observed with electrochemical detection, achieving an ultra-
low median LOD of 0.000064 µg/L. These remarkable sensitivities suggest the aptasensors’
suitability for real-world environmental monitoring applications where contaminants are
often present at trace levels.

3.3.3. Accuracy and Precision

In terms of accuracy and precision, aptasensors showed real application potential
when tested in different environmental water matrices, from surface water (river or lake) to
effluents from municipal, hospital, and industrial treatment plants. Although in 92% of the
cases, the tests were performed with spiked samples, in the remaining 8%, the aptasensors
were applied in a real analyte concentration (Table S1). For the spiked samples, the accuracy
was measured as recovery (comparison of the added to the measured concentration). In
the cases where the natural concentration was measured, the accuracy was obtained
by comparing the measured amount with the concentration measured with a reference
standard technique, such as high-performance liquid chromatography coupled to mass
spectrometry (HPLC-MS) [102,103], inductively coupled plasma (ICP) [104,105], atomic
absorption spectroscopy [106] or enzyme-linked immunosorbent assay (ELISA) [107]).
Both accuracy and precision were interesting, with recovery values in the 90–110% range,
and precision, as measured by the coefficient of variation of the replicates made, was less
than 10%.

As an example, Wang et al. [108] reported a detection method for microcystin-LR in
spiked water samples from Jinshan Lake using a laser-induced graphene-based electrochem-
ical aptasensor. The accuracy and precision were then compared with the HPLC-MS/MS
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technique, observing a correlation between the two methodologies. A good agreement
between the results achieved with a photoelectrochemical aptasensor and HPLC were also
found by Zhang et al. [109] for atrazine detection in real environmental water samples.

3.3.4. Selectivity

In 71 of the 73 papers analyzed, the selectivity of the method or device was investigated.
Selectivity was measured in different ways, for example, by quantifying the response in the
presence of a similar chemical compound but in the absence of the analyte of interest; it can
also be performed in the presence of the analyte and adding one interferent at the same
time, or it can be performed in the presence of the analyte and a mixture of interferents.
Many papers (50 out of 71) reported the addition of an interferent with a similar chemical
structure to the pollutant tested; the remaining 21 works did the same but also studied
the mixture of compounds. Usually, the interferents were added in concentrations up to
100 times higher than the analyte under study. Table 3 shows some examples of studies
that examined the selectivity using structurally similar interferents, both in individual and
mixed forms.

Table 3. Selectivity and interference assessment of some aptasensors: criteria (ultrahigh) and (indi-
vidual and mixed with interferents) selectivity.

Aptasensor Contaminant Selectivity % Interference Reference

Sandwich-like
AuNPs/PPy/Ti3C2Tx Pb2+ Individual and mixed

interferents

The aptasensor was used to test
the response towards eleven other
ions; excluding Pb2+ and Mix, all

other ions caused negligible
response changes

[81]

Aptamer linked with
AuNPs and
Ru@SiO2-NGQD

Hg2+ Individual and mixed
with interferents

Ten different interfering ions. The
response caused by individual

interfering ions or their mixtures
was nearly negligible

[82]

Urchin-like Cu@carbon
nanoneedles modified
electrode

Hg2+ Individual and mixed
with interferents

Each of eight interferents with the
concentration of 1 µM

produced a negligible signal
response compared to that
generated by 1 nM Hg2+

[84]

ZIF-8-derived Ag@Au
core–shell
nanoparticles
(Ag@Au/ZIF-8)

Hg2+ Individual interferents
with the target

The presence of a 100-fold higher
concentration of eight metal ions
produced negligible effect on the

current response of aptasensor

[87]

CoNi-based
metal–organic
framework (MOF),
CoxNi3−x,(HITP)2

Enrofloxacin Individual and mixed
with interferents

No significant response was
observed for each individual

interferent (thirteen antibiotics,
small biomolecules, and harmful
ions). In addition, the response

with a mix is comparable to that of
a pure enrofloxacin
solution (104.4%)

[91]

Metal–organic
frameworks
NH2-MIL-125(Ti)

Diethylstilbestrol Individual and mixed
with interferents

There was no significant difference
between the response of the sensor

with diethylstilbestrol and the
response of three different

interferents or their mixture

[94]
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Table 3. Cont.

Aptasensor Contaminant Selectivity % Interference Reference

Nanohybrid of Ag,
Ag2O, Ag2S, and
ultra-thin MoS2
nanosheet

Bisphenol A Individual and mixed
with interferents

The response with nine
interferents showed fluctuations of
approximately 2.3–4.8%. When all
the interferences were mixed with
bisphenol A, the obtained value
was 106.28% compared to that of

pure bisphenol

[96]

Multi-walled carbon
nanotubes (MWCNT),
amino-functionalized
magnetite, and gold
nanoparticles
(NH2-Fe3O4/AuNPs)

Bisphenol A Individual interferents
with the target

In the presence of four interferents
and bisphenol A, the response is
close to that of the bisphenol A

alone, with <3% difference
in value

[98]

Nanohybrids of
Covalent organic
framework (COF) and
Ce-based metal organic
framework (Ce-MOF)
(Ce-MOF@COF hybrid
nanostructure)

Oxytetracycline Individual and mixed
with interferents

Negligible response variation in
the presence of eleven interferents

(some ions, biomolecules, and
antibiotics), except
for oxytetracycline

[101]

Graphene oxide (GO) Tetracycline Individual and mixed
with interferents

The system responded only to
tetracycline, whereas other

analogs (eight antibiotics) did not
produce significant signal changes

[110]

As reported in Table 3, Salandari-Jolge et al. [87] observed no effects (<5%) on the
current response of the aptasensor for the detection of Hg2+ even in presence of a 100-fold
higher concentration of other metal ions. Working with another aptasensor configuration,
Xu et al. [100] developed a fluorescent aptasensor based on graphene oxide for tetracycline
detection. The selectivity towards tetracycline was tested in the presence of other chemically
related compounds, such as doxycycline, chlortetracycline, minocycline, demeclocycline,
lymecycline, methacycline, sarecycline, and their mixture. Significant signals were only
obtained when in the presence of tetracycline, except for a low response with oxytetracycline
due to the dramatic homologue structures between the two molecules.

Lin et al. (2023) [89] developed a rapid lateral flow assay based on aptamers for the
simultaneous detection of ampicillin (AMP) and kanamycin (KAN) utilizing G-quadruplex
fragments as an internal standard to achieve high assay selectivity (Figure 10). The latter
was demonstrated by testing it with various non-target antibiotics (streptomycin sulfate,
oxytetracycline hydrochloride, etc.). In the presence of these antibiotics, there was no signif-
icant signal change on the AMP and KAM lines, confirming that the aptamers specifically
bind only to the target antibiotics. The method proposed successfully detected antibi-
otics in water samples from diverse sources, including hospital wastewater, chicken farm
wastewater, tap water, and aquaculture water.

The reported studies exhibited excellent selectivity in most cases, with interference
values below 10%. Notably, the use of environmental water samples did not significantly
impact analyte quantification, suggesting a tolerance for potential natural interferents.
However, it is crucial to acknowledge that these findings may not translate directly to
real-world scenarios. Environmental water matrices are inherently complex, often har-
boring mixtures of pollutants. Even minimal cross-reactivity with common ions, organic
compounds, or a confluence of changing physicochemical and environmental conditions
can lead to inaccurate readings or false positives. Therefore, while the current research
suggests adequate selectivity, further optimization in this area remains paramount for
reliable on-site water quality monitoring applications. Developing aptasensors with high
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and unequivocal target selectivity is essential to ensure the accuracy and robustness of
these analytical tools in complex environmental matrices.
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3.3.5. Stability

An important performance criterion in environmental monitoring is the stability of
the method or device. In 43 papers, stability studies were reported (Table S1). The stability
reported was mainly storage stability, which is the ability of the device or method to give
the same response after being stored in suitable laboratory conditions, such as 4 ◦C, neutral
pH, etc. The results varied in testing time; the most prolonged time reported was 30 days,
where the same response was maintained as on day 1 [84,104,111,112]. Some papers
discussed other types of stability such as signal stability; in the case of opto-electrochemical
aptasensors, the device’s response to different cycles of light stimuli in the same test was
registered. Reports showed that the photocurrent response almost remained stable after
20 cycles [79,94], 7 cycles [113], 12 cycles [83,85] and 50 scanning cycles [84] under light
off-on irradiation. An additional type of stability is given by considering the reusability
or regeneration of the device. Liu et al. [84] reported an electrochemical aptasensor for
Hg2+ detection consisting of a gold electrode modified with Cu@carbon nanoneedles, in
situ constructed through a controllable pyrolysis process of melamine and CuCl2. The
principle of detection involved an exonuclease-III-assisted cycling amplification strategy.
To regenerate the aptasensor, the modified electrode was immersed in distilled water for
10 min at 80 ◦C to dissociate the DNA-based signal-reporting structure, rinsed with buffer
and subjected to another reading cycle. The stability was measured through 30 cycles and
the signal response remained almost unchanged.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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In the work of Yildirim-Tirgil et al. [112], a biosensor-containing probe-DNA immobi-
lized on functionalized SWCNTs for oxytetracycline (OTC) detection was developed. The
protocol involved an initial incubation step where OTC was exposed to its specific aptamer
for 3 min. Following the completion of this binding phase, the incubated mixture was
injected across the surface of a gold chip. This facilitated the interaction of any remaining
free aptamers with their complementary immobilized DNA counterparts on the semicon-
ducting surface. The sensing surface could be regenerated for upwards of 20 cycles while
maintaining minimal signal loss (less than 15%). This regeneration process was achieved
through a simple washing step with a 0.5% SDS solution for 5 min, followed by a rinsing
step with a buffer solution at pH 7.2. The reusability of this sensor was attributed to the
precise control of assembly parameters during the aptasensor fabrication process, which
ultimately led to the creation of a stable system.

In a separate study, Song et al. [96] developed electrochemical aptasensors using
bimetallic AgMo heteronanostructures to detect bisphenol A (BPA). To demonstrate the
reusability of the sensor, after each BPA measurement, the aptasensor was rinsed with
1 mM NaOH at room temperature for 5 min. This step disrupted the bond between the
aptamer (recognition molecule) and BPA. The sensor was then rinsed with a large volume
of phosphate buffer solution, allowing the aptamer to return to its original shape. Finally,
the electrode was dipped into a fresh BPA solution for the next detection cycle. Notably,
the sensor’s response signal showed minimal variation even after seven cycles.

While aptasensors have shown promising stability in controlled environments, their
suitability for commercial applications, particularly in pollution monitoring, requires
further investigation. Environmental monitoring demands frequent and geographically
dispersed measurements, making reusability crucial for cost-effective implementation.
In-depth studies incorporating cost–benefit analyses are necessary to determine the optimal
number of reuse cycles that balance sensor performance with economic viability. This will
help establish whether aptasensors can offer a cost-competitive and sustainable solution
for environmental monitoring.

3.3.6. Scalability

All the inherent advantages of aptasensors position them favorably for the design of
user-friendly and portable devices for in-field analyses. Indeed, (micro)fluidic approaches
have gained wide interest as a tool in the automation of sample collection and handling,
allowing for on-line and continuous measurements [114,115]. New smartphone-assisted
platforms or other compact analyzers based on colorimetric and electrochemical readouts
have been introduced in recent years [116,117]. C. Xu and co-workers [118], for instance,
replaced the common microplate reader used for optical readouts with the camera of a
smartphone for the detection of acetamiprid. J. Wei et al. [80] developed a sunlight-driven
self-powered portable system based on a digital multimeter and aptamers for the on-site de-
tection of microcystin-arginine-arginine. Unfortunately, only very few works have exploited
their advantages and scalability for real-time decentralized monitoring of contaminants;
thus, the traditional laboratory-based procedure remains the most effective approach.

4. Conclusions

The detection of environmental contaminants in water bodies is becoming increasingly
imperative. Thus, detection methodologies capable of rapidly detecting such contaminants
for screening purposes have been studied and developed in the last decade. Among
those, aptasensors, namely biosensors that rely on aptamers as biorecognition elements,
have received great attention. This systematic review provides an in-depth analysis of
the trends in the use of aptasensors for the detection of contaminants in environmental
water samples. All scientific papers on this topic, published from 2019 to 2023, were
identified, screened, and evaluated according to precise inclusion criteria. A total of
73 studies passed the phase of eligibility and were further analyzed and categorized
based on the environmental contaminant(s) examined, transduction system employed,
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sensitivity, accuracy and precision, selectivity, and stability achieved. A total of 29 aqueous
contaminants were investigated, including pesticides, metals, industrial chemicals, toxins,
and pharmaceutical compounds, with the latter being the most studied.

Most of the works focused on optical transducers; nevertheless, electrochemical trans-
ducers showed lower limits of detection overall. Aptasensors have demonstrated recoveries
of 90–110% in the detection of environmental contaminants in spiked and real environ-
mental water samples. Stability—considered either as the reusability of the device or the
ability to provide comparable outputs upon long storage times—was evaluated by fewer
works among those under analysis. Although promising, the results cannot ensure proper
stability for commercial applications over long and continuous monitoring periods.

On balance, aptasensors have proven to be a valuable and cost-effective tool in the
detection of environmental contaminants of high concern in water bodies. Indeed, thanks to
their versatility and ease of synthesis, which overcome ethical problems linked to the more
widely used antibodies, aptamers might encounter increasing demand in the future over
their protein counterparts. Nonetheless, considering that most of the works herein reported
analyzed the analytes in buffered solutions or spiked samples, further investigations
focused on real contaminated samples over long-term monitoring are required to better
assess their strengths and limits.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/chemosensors12040059/s1, Table S1: Studies included through systematic
review. Table S2: SELEX variants and purposes employing different technologies. References [119–167]
are cited in the supplementary materials.
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