Supporting Information

Enhanced NO₂-Sensing Properties of Au-Loaded Porous In₂O₃ Gas Sensors at Low Operating Temperatures

Taro Ueda^{1,*}, Inci Boehme², Takeo Hyodo¹ and Yasuhiro Shimizu¹, Udo Weimar² and Nicolae Barsan²

¹Graduate School of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan

² Institute of Physical and Theoretical Chemistry, Eberhard Karls University of Tuebingen, D-72076 Tübingen, Germany

*Correspondence: taroueda@nagasaki-u.ac.jp (T. U.)

Figure S1. Schematic drawing of (a) sensor element and (b) gas-sensing measurement system.

Figure S2. Particle-size distribution of precursor mists containing In₂(NO₃)₃ and PMMA microspheres, which were prepared by the ultrasonic vibrator.

Figure S3. Variations in 70% recovery time (*t*_{70rec}) of the In₂O₃ and Au/In₂O₃ sensors in wet air (70%RH at 25°C) with operating temperature.

Figure S4. Schematic illustrations of the Gibbs energy diagram for the chemical adsorption of NO2 over (a) In₂O₃ surface and (b) Au/In₂O₃ surface.

b: adsorption intensity of NO2 on In2O3 surface

Figure S5. Schematic views of gas-adsorption properties of In₂O₃ and Au/In₂O₃ surfaces in wet air and NO₂ balanced with wet air at 100°C.