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Abstract: The 6-oxonicotinate (6-Onic) salts of a one-dimensional cationic cobalt(II) or nickel(II) coor-
dination polymers with 4,4′-bipyridine (4,4′-bpy), namely {[Co(4,4′-bpy)(H2O)4](6-Onic)2·2H2O}n (1)
and {[Ni(4,4′-bpy)(H2O)4](6-Onic)2·2H2O}n (2), were prepared hydrothermally by reactions of
cobalt(II) nitrate hexahydrate or nickel(II) nitrate hexahydrate, respectively, 6-hydroxynicotinic
acid and 4,4′-bipyridine in a mixture of ethanol and water. In the hydrogen-bonded frameworks
of 1 and 2, the one-dimensional polymeric chains of {[M(4,4′-bpy)(H2O)4]2+}n (M = Co, Ni), the
6-oxonicotinate anions and the lattice water molecules were assembled via strong intermolecular
O–H···O and N–H···O hydrogen bonds and π–π interactions, leading to the formation of the repre-
sentative hydrogen-bond ring motifs: trimeric R2

3(10) motif, the centrosymmetric tetrameric R2
4(8)

and R2
4(12) motifs and the pentameric R4

5(12) motif. The isostructural coordination polymers
1 and 2 exhibited a different electrochemical behavior, as observed by cyclic voltammetry, which can
be attributed to the nature of the metal ions (cobalt(II) vs. nickel(II)).

Keywords: coordination polymers; cobalt(II); nickel(II); 6-hydroxynicotinate; 4,4′-bipyridine;
hydrogen-bond motifs; cyclic voltammetry

1. Introduction

The design of coordination polymers has become an important field of crystal engi-
neering due to their various functional properties and many possible applications, e.g.,
in catalysis, gas and energy storage, gas separation, magnetism, luminescence, molecular
sensing, biomedical imaging [1–8]. The coordination preferences of the particular metal
ions and the respective geometric and electronic properties of the ligands have been ex-
tensively studied in the past, but are still not understood completely. Furthermore, the
supramolecular assembling of coordination polymers employing weak interactions (hydro-
gen bonds, halogen bonds, π–π interactions) is also less predictable, but gains more and
more attention, in the hope to shed light on the control of these weak interactions in the
formation of coordination polymers with the desired frameworks and properties.

By properly selecting experimental parameters such as a choice of solvents, starting
metal salts, additional ligands, temperature, hydrothermal conditions, pH value of the
reaction mixture etc., it is possible to optimize the design of the desired coordination
polymers, and thus control the outcome of the crystallization experiments [9–12]. However,
the preparation and crystallization of coordination polymers still remain very challenging.

The electrochemical properties of coordination polymers have been neglected in
the past, but are attracting more interest as of recently. Cyclic voltammetry is the most
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frequently used electrochemical technique in the characterization of coordination polymers,
whether providing information on redox activity [13,14] of the respective metal ions and
ligands, or is simply used to elucidate the electrochemical sensor properties [15,16] of
coordination polymers, e.g., as an electrode surface modifier because of their potential to
undergo reversible single-electron processes which enable them to sense many analytes,
e.g., anions [17,18], cations [19,20] or organic compounds [21]. The electrochemical sensing
ability of coordination polymers is generally affected by the type of the corresponding
metal ions and functional organic ligands. For instance, cobalt(II) coordination polymers
are considered to be promising candidates for electrochemical sensing because of their
low cost, high accessibility and great electrocatalytic performance [22]. On the other hand,
organic ligands in coordination polymers contribute significantly to their electrochemical
sensing potential, also enhancing their electron conduction rate [23].

We have prepared two structurally different 1D cobalt(II) coordination polymers
with bromine and chlorine halosubstituents: {[Co(2-Clnic)2(4,4′-bpy)(H2O)2]·4H2O}n and
{[Co(4,4′-bpy)(H2O)4] [Co(5-Brnic)4(H2O)2]·4,4′-bpy·2H2O}n. Using DFT calculations, the
influence of the type and position of halosubstituents in the pyridine ring of nicotinate
ligands was deciphered. Their position results in different structural types of coordi-
nation polymers. These structural differences should be ascribed solely to the different
positions of the introduced halogen atoms in the pyridine ring of the ligands and not
to the types of the halogen atoms [24]. Similar nickel(II) coordination polymers were
prepared in the same way, with fluorine and chlorine halosubstituents: {[Ni(6-Fnic)2(4,4′-
bpy)(H2O)2]·3H2O}n [25] and {[Ni(4,4′-bpy)(H2O)4](6-Clnic)2·4H2O}n [26]. Although being
prepared under the same experimental conditions, two different types of 1D coordination
polymers were obtained. The fluorine coordination polymer resembles the analogous
chlorine cobalt(II) coordination polymer, while chlorine nickel(II) polymer consists of a
complex cation {[Ni(4,4′-bpy)(H2O)4]2+}n and non-coordinated 6-chloronicotinate anions.
Since all experimental parameters remained unchanged, these structural differences in
the nickel(II) coordination polymers should be probably attributed to the type of halosub-
stituents (fluorine and chlorine) in the nicotinate ligands used [25,26].

Our current motivation was to further explore whether the introduction of substituents,
other than the halide atoms, e.g., hydroxyl, in the specific position (-6) in the aromatic ring
of the nicotinate ligands (6-hydroxynicotinate (6-OHnic) as opposed to 6-fluoronicotinate
and 6-chloronicotinate) has any effect on the coordination environments of the metal ions
and, consecutively, on the structural types of the obtained 1D coordination polymers. In
order to ensure this, we again used well-established cobalt(II) and nickel(II) ions (with
similar ionic radii, but different electronic configurations) and 4,4′-bipyridine linker to
enable the formation of the analogous 1D polymers. Since the halosubstituents in the
nicotinate ligands are now replaced by hydroxyl substituent, which have far greater
potential in hydrogen-bonding than halosubstituents, we were particularly interested to
check the differences in the formed hydrogen-bonded frameworks, with a special attention
on the hydrogen-bond motifs within, which might arise from an enhanced participation of
hydroxyl substituent in hydrogen bonding.

In this report, we prepared two isostructural 1D cobalt(II) and nickel coordination
polymers with 4,4′-bipyridine (4,4′-bpy) and 6-oxonicotinate (6-Onic), namely {[Co(4,4′-
bpy)(H2O)4](6-Onic)2·2H2O}n (1) and {[Ni(4,4′-bpy)(H2O)4](6-Onic)2·2H2O}n (2). Voltam-
metric studies on these two polymers were carried out to explore their different electro-
chemical properties and to determine the origin of these electrochemical differences in this
isostructural system.

2. Materials and Methods
2.1. Materials and Physical Measurements

The chemicals and materials were commercially available, of reagent purity and used
as received without further purification.
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A Carlo Erba microanalyzer at the Microanalytical Laboratory of the University of
Vienna, Austria, was used to perform CHNO elemental analyses.

IR spectra (KBr pellets) were collected on a Shimadzu IRAffinity–1 FT-IR spectrometer
in a range of 4000–400 cm−1.

TGA/DTA curves were recorded on a Shimadzu DTG-60H analyzer (from room
temperature (RT) to 800 ◦C) in a stream of synthetic air and by applying a heating rate of
10 ◦C min−1.

2.2. Preparation of Coordination Polymers 1 and 2

6-Hydroxynicotinic acid (0.050 g, 0.358 mmol) was dissolved in 4 mL of distilled water,
4,4′-bipyridine (0.028 g, 0.179 mmol) was dissolved in 2 mL of ethanol and cobalt(II) (for 1)
or nickel(II) (for 2) nitrate hexahydrate (0.052 g, 0.179 mmol) was dissolved in 2 mL of
distilled water. The solutions of the two ligands were first mixed together under stirring.
The resulting solutions was then slowly added to the cobalt(II) (for 1) or nickel(II) nitrate
(for 2) solutions under stirring. The pH of the final solutions was adjusted to 7 by adding
a sodium hydroxide solution dropwise. The reaction mixtures were heated in the Teflon
lined autoclave for 3 days at 130 ◦C and then left to cool slowly to the room temperature
over 1 day.

The pink precipitate of 1 and the green precipitate of 2 were obtained, collected by
filtration, washed with water and dried in a desiccator over CaCl2. Yield of 1: 0.0376 g
(35%). Yield of 2: 0.0231 g (21%).

The clear solutions, remained after filtration, were left to evaporate slowly at room
temperature until pink crystals of 1 and green crystals of 2, suitable for X-ray diffraction
measurements, were obtained. It took approximately two days for the crystals of 1 and
seven days for the crystals of 2.

(1): 0.0283 g (26%). Anal. calc. for C22H28CoN4O12 (Mr = 599.41): C, 44.08; H, 4.71;
N, 9.35; O, 32.03%. Found: C, 43.91; H, 4.73; N, 9.32; O, 33.34%. IR (KBr, cm−1):
3549–3415 (m) [ν(O–H)], 3234 (w), 2367 (w), 2028 (w), 1643 (s) and 1618 (s) [νas(COO−)],
1562 (m), 1530 (m), 1473 (w), 1422 (m), 1382 (s) [νs(COO−)], 1217 (m), 1132 (w), 1067 (w),
1030 (w), 986 (w), 941 (w), 802 (m), 733 (w), 637 (m), 497 (w), 469 (w), 401 (w) (Figure S1 in
the Supplementary Materials).

(2): 0.0273 g (25%). Anal. calc. for C22H28NiN4O12 (Mr = 599.19): C, 44.07; H, 4.71;
N, 9.33; O, 32.04%. Found: C, 43.81; H, 4.69; N, 9.33; O, 31.34%. IR (KBr, cm−1): 3413 (m)
[ν(O–H)], 2035 (w), 1870 (w), 1643 (s) and 1618 (s) [νas(COO−)], 1562 (m), 1532 (m), 1476 (w),
1420 (m), 1382 (s) [νs(COO−)], 1220 (m), 1134 (w), 1067 (w), 1031 (w), 986 (w), 943 (w), 802 (m),
733 (w), 636 (m), 528 (w), 500 (w), 470 (w) (Figure S2 in the Supplementary Materials).

The CHNO analyses and IR spectroscopy were used to confirm that the precipitates
and the crystals are the same compounds, in case of both 1 or 2.

2.3. Electrochemical Measurements

Preparation of MWCNT suspension (γ = 0.5 mg mL−1; V = 10 mL): 5 mg of MWCNT
was added to 10 mL of N,N-dimethylformamide (DMF), and the mixture was treated in an
ultrasonic bath for 10 h to obtain a homogeneous suspension.

Preparation of MWCNT|1(2) suspension (γ = 0.5 mg mL−1; V = 10 mL): 5 mg
of MWCNT and 5 mg of coordination polymers 1 or 2 was added to 10 mL of N,N-
dimethylformamide (DMF), and the mixture was treated in an ultrasonic bath for 10 h to
obtain a homogeneous suspension.

The working electrode was glassy carbon (GC) electrode (electrode diameter 5 mm),
modified with a suspension of multi-walled carbon nanotubes (MWCNT) and prepared
polymers 1 and 2. Prior modification, GC electrode was polished with alumina powder
(1 and 0.05 µm) and rinsed with distilled water. A homogeneous suspension (15 µL) was
transferred dropwise to the GC surface and dried in an oven for 30 min at a temperature
of 50 ◦C.
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All electrochemical experiments were performed in a standard three-electrode cell
(Pt-counter electrode and Ag|AgCl, with 3.0 mol dm−3 KCl, as a reference electrode).
Cyclic voltammograms were carried out using a potentiostat (Autolab PGSTAT 302N),
connected to a PC and GPES 4.9 Software (Eco Chemie). EIS measurements were carried
out using a Solartron SI 1287 electrochemical interface and a Solartron SI 1255 frequency
response analyzer controlled by a personal computer.

Cyclic voltammograms were recorded in a broader range from−1.0 to 1.2 V vs. Ag/AgCl,
with a scan rate of 50 mV s−1 at MWCNT electrode, MWCNT|1 electrode and MWCNT|2
electrode in 0.1 mol L−1 KNO3 solution, pH 7.0 (Figure S3 in the Supplementary Materials).
EIS measurements were performed at the open circuit potential (EOCP) over the frequency
range 100 kHz to 10 mHz and 5 mV amplitude. Nyquist plots were fitted using the Randles
modified equivalent circuit, deduced by using complex non-linear least squares (Figure S4
in the Supplementary Materials).

2.4. X-ray Crystallographic Analysis

The suitable single crystals of 1 and 2 were selected and mounted in Paratone-N oil
onto cryoloops. The Bruker D8 Venture diffractometer producing MoKα (λ = 0.71073 Å)
radiation at 50 kV and 1.4 mA, with the crystal cooled with an Oxford Cryostream
800 (100(2) K), was used for data collection. The cell refinement and data reduction were
performed using SAINT [27]. The X-ray diffraction data have been corrected for Lorentz-
polarization factor and scaled for absorption effects by multi-scan using SADABS [28].
The crystal structures were solved by SHELXT [29] and refined by SHELXL-2018/3 [30].
The refinement procedure was obtained by full-matrix least-squares methods based on F2

values against all reflections. The C1 and C2 atoms in polymers 1 and 2 were disordered
and refined in two positions, resulting with site occupancy factors of 0.502(8) for 1 and
0.508(8) for 2. These values exhibit virtually 50:50 ratio of the disorder components of those
atoms (all figures show only one component of the disordered atoms, C1A and C2A). The
C–N and C–C distances around the disordered atoms were refined freely. The figures were
made with MERCURY (Version 2020.2.0) [31]. The crystallographic data for 1 and 2 are
shown in Table 1.

Table 1. The crystallographic data for {[Co(4,4′-bpy)(H2O)4](6-OHnic)2·2H2O}n (1) and {[Ni(4,4′-bpy)(H2O)4](6-
Onic)2·2H2O}n (2).

Compound 1 2

Formula {[C10H16CoN2O4](C6H4NO3)2·2H2O}n {[C10H16NiN2O4](C6H4NO3)2·2H2O}n
Mr 599.41 599.19

Crystal system, space group monoclinic, C2/c
(No. 15)

monoclinic, C2/c
(No. 15)

a (Å) 19.0114(13) 18.9891(9)
b (Å) 11.4133(7) 11.3111(5)
c (Å) 12.0374(7) 12.0639(6)
β (◦) 99.333(2) 99.169(2)

V (Å3) 2577.3(3) 2558.1(2)
Z 4 4

Dcalc (g cm−3) 1.545 1.556
µ (mm−1) 0.737 0.830

R [I ≥ 2σ(I)] 0.0480 0.0473
wR [all data] 0.1260 0.1228

3. Results and Discussion
3.1. Syntheses

The coordination polymers 1 and 2 were prepared by reactions of cobalt(II) nitrate
hexahydrate or nickel(II) nitrate hexahydrate, respectively, 6-hydroxynicotinic acid and 4,4′-
bipyridine in the mixture of ethanol and water under hydrothermal conditions (Scheme 1).
The said compounds can be prepared exclusively under hydrothermal conditions, as the
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syntheses attempts at normal pressure and room temperature lead to the crystallization of
the ligands from the reaction mixtures.
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Scheme 1. Preparation of {[Co(4,4′-bpy)(H2O)4](6-Onic)2·2H2O}n (1) and {[Ni(4,4′-bpy)(H2O)4](6-Onic)2·2H2O}n (2) under
hydrothermal conditions.

3.2. Crystal Structures

The metal ions (cobalt(II) in 1 and nickel(II) in 2), nitrogen (N1 and N2) and carbon (C3
and C6) atoms are situated on a two-fold axis. Consequently, the asymmetric units of both
1 and 2 contain a half of a metal ion, two coordinated water molecules, a 6-oxonicotinate
anion, a half of a 4,4′-bipyridine ligand and a lattice water molecule. The molecular
structures of 1 and 2 contain a one-dimensional polymeric {[Co(4,4′-bpy)(H2O)4]2+}n cation
in 1 and a {[Ni(4,4′-bpy)(H2O)4]2+}n cation in 2, respectively. Per repeating polymeric unit
of 1 and 2, there are also two lattice water molecules and two 6-oxonicotinate anions in
their keto tautomeric form (with the protonated pyridine nitrogen atoms) (Figure 1a,b).

Compounds 1 and 2 are isostructural, as can be seen from the overlay of the respective
molecules of 1 and 2 (Figure 1c). Moreover, both compounds 1 and 2 crystallize in the same
space group (C2/c) and with the similar unit cell parameters (Table 1). The metal(II) ions
in the respective polymeric {[M(4,4′-bpy)(H2O)4]2+}n cations (M = Co, Ni) in 1 and 2 are
octahedrally coordinated by four water molecule O atoms (O1, O2, O1i, and O2i) (symmetry
code (i): −x+1, y, −z+3/2) and by two 4,4′-bipyridine N atoms (N1 and N2) in the trans
position (N1–M–N2 = 180◦) (Figure 1a,b; Table S1 in the Supplementary Materials).

The infinite one-dimensional polymeric chains of {[M(4,4′-bpy)(H2O)4]2+}n extend
along the [0 1 0] direction and are composed of the metal(II) ions connected with bridg-
ing 4,4′-bipyridine ligands (Figure 2a). As can be seen from the angles for the trans
(175.8(2)◦ and 175.1(2)◦ in 1 and 176.1(2)◦ and 174.6(2)◦ in 2) and cis (87.55(8)◦–92.45(8)◦

in 1 and 87.29(9)◦–92.71(9)◦ in 2) pairs of the ligating atoms, the octahedral coordination
environments around the metal(II) ions in 1 and 2 are only slightly distorted (Table S1
in the Supplementary Materials). The M–O and M–N bond lengths in 1 and 2 can be
compared to the analogous bond lengths in the already known structures containing
{[Co(4,4′-bpy)(H2O)4]2+}n [32] or {[Ni(4,4′-bpy)(H2O)4]2+}n cations [32–40].
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Figure 1. ORTEP-style plots of {[Co(4,4′-bpy)(H2O)4](6-Onic)2·2H2O}n (1) (a) and {[Ni(4,4′-
bpy)(H2O)4](6-Onic)2·2H2O}n (2) (b), with the atomic numbering schemes (symmetry code (i):
−x+1, y, −z+3/2). The thermal ellipsoids are drawn at the 50% probability level at 100(2) K and
hydrogen atoms are shown as spheres of arbitrary radii; the components of the disordered C1 and C2
atoms in 1 and 2 (C1B and C2B) are not shown. The overlay (RMS value of 0.0447 Å) (c) of {[Co(4,4′-
bpy)(H2O)4](6-Onic)2·2H2O}n (1) (red) and {[Ni(4,4′-bpy)(H2O)4](6-Onic)2·2H2O}n (2) (blue). The
Co, Ni, N, and O atoms were chosen for the overlay.

There are strong intermolecular O–H···O and N–H···O hydrogen bonds and weak
C–H···O hydrogen bonds, observed in the structures of 1 and 2 (Table 2). The poly-
meric chains of {[M(4,4′-bpy)(H2O)4]2+}n, the 6-oxonicotinate anions and the lattice water
molecules are connected by strong hydrogen bonds into hydrogen-bonded frameworks
(Figure 2b). There are two types of π–π interactions in the respective structures:
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Figure 2. The infinite one-dimensional polymeric chain of {[Co(4,4′-bpy)(H2O)4]2+}n cation in 1,
extending along the [0 1 0] direction (a). A fragment of the infinite hydrogen-bonded framework of
{[Co(4,4′-bpy)(H2O)4](6-Onic)2·2H2O}n (1), viewed down the [0 1 0] direction (b), with the {[Co(4,4′-
bpy)(H2O)4]2+}n cations (represented as monomeric molecules in this projection), 6-oxonicotinate
anions and lattice water molecules being connected via strong intermolecular O–H···O and N–H···O
hydrogen bonds (represented by the dotted lines).

π–π interactions between 4,4′-bipyridine and 6-oxonicotinate pyridine rings [a Cg1···
Cg2(–x, –y, 1–z) distance = 3.871(2) Å (in 1) and 3.874(2) Å (in 2); dihedral angle between
the planes = 11.9(2)◦ (in 1) and 12.2(2)◦ (in 2); slippage = 1.368 Å (in 1) and 1.355 Å (in 2);
Cg1 is the centroid of the 4,4′-bipyridine ring N2/C4/C5/C6/C5i/C4i and Cg2 is the
centroid of the 6-oxonicotinate pyridine ring N3/C7–C11], and π–π interactions between
symmetry-related 6-oxonicotinate pyridine rings N3/C7–C11 [a Cg2···Cg2(1/2–x, 1/2–y,
1–z) distance = 3.613(3) Å (in 1) and 3.573(3) Å (in 2); dihedral angle between the planes =
0.0(2)◦ in 1 and 2 and a slippage = 1.206 Å (in 1) and 1.098 Å (in 2)].

The polymeric chains of {[M(4,4′-bpy)(H2O)4]2+}n are hydrogen-bonded solely to
6-oxonicotinate anions and lattice water molecules. However, besides being hydrogen-
bonded to other 6-oxonicotinate anions, lattice water molecules and polymeric {[M(4,4′-
bpy)(H2O)4]2+}n cations, the 6-oxonicotinate anions are additionally assembled together
by π–π interactions between symmetry-related 6-oxonicotinate pyridine rings (Cg2···Cg2)
within the hydrogen-bonded framework of 1 and 2.

The most distinguished hydrogen-bonded ring motifs within the frameworks of
1 and 2 are the trimeric R2

3(10) motif, the centrosymmetric tetrameric R2
4(8) and R2

4(12)
motifs and the pentameric R4

5(12) motif (Figure 3).
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Table 2. The hydrogen bond geometry for {[Co(4,4′-bpy)(H2O)4](6-Onic)2·2H2O}n (1) and {[Ni(4,4′-bpy)(H2O)4](6-
Onic)2·2H2O}n (2).

D–H···A d(D–H)/Å d(H···A)/Å d(D···A)/Å ∠(D–H···A)/◦ Symmetry Code on A

1
N3–H31···O3 0.88(1) 1.88(2) 2.732(4) 163(4) −x + 1/2, y + 1/2, −z + 3/2
O1–H11···O5 0.84(1) 1.85(1) 2.680(4) 172(4) x, −y + 1, z + 1/2
O1–H12···O3 0.84(1) 1.87(1) 2.699(4) 169(4) −x + 1/2, y + 1/2, −z + 3/2
O2–H21···O6 0.84(1) 1.87(1) 2.704(4) 170(5) x, y, z
O2–H22···O5 0.84(1) 1.90(2) 2.729(4) 167(5) x, y, z
O6–H61···O4 0.84(1) 1.99(1) 2.823(4) 175(5) −x + 1/2, −y + 1/2, −z + 1
O6–H62···O4 0.84(1) 1.92(1) 2.755(4) 175(4) x, y + 1, z

C1B–H1B···O1 0.95 2.45 2.989(9) 116 −x + 1, y, −z + 3/2
C7–H7···O4 0.95 2.60 3.287(5) 130 −x + 1/2, y + 1/2, −z + 3/2

2
N3–H31···O3 0.88(1) 1.88(2) 2.721(4) 161(4) −x + 1/2, y + 1/2, −z + 3/2
O1–H11···O5 0.84(1) 1.86(2) 2.687(4) 166(5) x, −y + 1, z + 1/2
O1–H12···O3 0.84(1) 1.86(1) 2.696(4) 171(4) −x + 1/2, y + 1/2, −z + 3/2
O2–H21···O6 0.84(1) 1.87(1) 2.702(4) 172(5) x, y, z
O2–H22···O5 0.84(1) 1.90(2) 2.724(4) 165(5) x, y, z
O6–H61···O4 0.84(1) 1.99(1) 2.823(4) 175(4) −x + 1/2, −y + 1/2, −z + 1
O6–H62···O4 0.84(1) 1.91(1) 2.748(4) 174(5) x, y + 1, z

C1B–H1B···O1 0.95 2.40 2.923(9) 115 −x + 1, y, −z + 3/2
C7–H7···O4 0.95 2.57 3.270(5) 131 −x + 1/2, y + 1/2, −z + 3/2
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The trimeric R2
3(10) motif is formed between two 6-oxonicotinate anions (one of them

linked via an oxo atom and a pyridinium N atom, the other via carboxylate O atom) and
a polymeric cation (linked via two coordinated water molecules). The tetrameric R2

4(8)
motif is formed between two lattice water molecules and two 6-oxonicotinate ions (both
linked via a single carboxylate O atom). In addition, a tetrameric R2

4(12) motif is formed
between two polymeric cations (both linked via two coordinated water molecules) and
two 6-oxonicotinate anions (both linked via a single oxo atom). The pentameric R4

5(12)
motif is formed between two polymeric cations (both linked via a single coordinated water
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molecule), two 6-oxonicotinate anions (one of them linked via two carboxylate O atoms
and the other via oxo atom) and a single lattice water molecule.

3.3. Thermal Analysis

The TGA/DTA curves of compounds 1 and 2 are almost identical, as it would be
expected for isostructural compounds (Figures S5 and S6 in the Supplementary Materi-
als). Both compounds are thermally stable up to 100 ◦C, followed by a release of four
coordinated and two lattice water molecules in a single step with an endothermic peak
at 137.2 ◦C in 1 and 143.3 ◦C in 2 (observed mass losses 18.4% in 1 and 18.6% in 2, cal-
culated 18.0% in 1 and 2). Both coordinated and lattice water molecules are released at
the same temperature most probably due to the existence of thermally stable hydrogen-
bonded frameworks of 1 and 2 (as revealed by their crystal structures), in which these
water molecules participate extensively. Therefore, their simultaneous release upon the
collapse of hydrogen-bonded frameworks of 1 and 2 is expected. The thermal decom-
position of 1 and 2 continues through two consecutive, not well-resolved steps; first one
representing an endothermic process (peaks at 342.7 ◦C in 1 and 350.2 ◦C in 2) and the
second representing an exothermic process (peaks at 403.5 ◦C in 1 and 394.9 ◦C in 2). These
endothermic (observed mass losses 41.9% in 1 and 34.7% in 2) and exothermic (observed
mass losses 27.5% in 1 and 36.0% in 2) steps correspond to the complete decomposition of
6-oxonicotinate and 4,4′-bipyridine ligands. The observed residues (12.2% in 1 and 10.7%
in 2) at 800 ◦C correspond to CoO in the case of 1 and to NiO in the case of 2. The last
decomposition steps in 1 and 2 are exothermic, which is in accordance with the forma-
tion of thermodynamically stable metal oxides (CoO and NiO) upon total decomposition
of 1 and 2, respectively.

3.4. Electrochemical Characterization

The electrochemical properties of the modified glassy carbon (GC) electrodes were
investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS)
using a solution of 1 mmol L−1 [Fe(CN)6]3−/4− in 0.1 mol L−1 KNO3. Figure 4 shows CVs
of 1 mmol L−1 [Fe(CN)6]3−/4− and 0.1 mol L−1 KNO3 at multi-walled carbon nanotubes
(MWCNT) electrode, MWCNT|1 electrode and MWCNT|2 electrode, recorded in a po-
tential range from −0.2 to 0.6 V (vs. Ag/AgCl) with a scan rate of 50 mV s−1. Potential
ranges depend on the nature of electrode material and is established after recording in a
wider potential range. Those limits agreed roughly with the potential range characteristic
for Fe(III)/Fe(II) redox couple.

As observed in Figure 4, the MWCNT|2 electrode exhibits two redox waves, one quasi-
reversible (∆Ep is much larger than theoretical value [41]) and one reversible. The quasi-
reversible peak corresponds to the Fe(III)/Fe(II) couple, Epa1 = 0.462 V, Epc1 = −0.086 V,
and the average formal potential E1/2 is 0.188 V. The peak-to-peak separation between
the anodic and cathodic peaks (∆Ep) is 0.548 V. The ratio of cathodic peak current to
anodic peak current (ipc1/ipa1) is −20.826 (ipc1 = −45.40 µA, ipa1 = 2.18 µA), and the
ratio of anodic peak current to cathodic peak current (ipa1/ipc1) is −0.048. The second
reduction peak at ca. 0.406 V vs. Ag/AgCl corresponds to the reduction of 2. The anodic
peak corresponds to Fe(III)/Fe(II) couple obtained at MWCNT|1 and is significantly
lower than those obtained at MWCNT. In all cases, the broadened and little defined
peaks are obtained with the higher oxidation potential (compound 1, Ep,a = 467 mV, and
compound 2, Ep,a = 462 mV) with respect to the MWCNT (Ep,a = 0.269 mV), revealing an
electroinhibitory effect of the 1 and 2 on the Fe(III)/Fe(II) redox reaction. The large peak-to-
peak separation in the corresponding cyclic voltammograms (∆E 548 mV vs. ∆E 146 mV
of the MWCNT) in comparison with the MWCNT electrode can also be attributed to the
significant electroinhibitory effect of the 1 and 2 on the Fe(III)/Fe(II) redox reaction.

Cyclic voltammograms suggest very similar behavior of both 1 and 2 vs. Fe(III)/Fe(II)
redox reaction, while in the case of polymer 2 there is an additional redox pair corre-
sponding to a redox reaction of polymer 2. The observed differences can be related to
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the reaction between 2 and the Fe(III)/Fe(II) system and can be attributed to the different
electronic configurations of cobalt(II) and nickel(II) ions, leading to a different reactivity of
1 and 2 towards the Fe(III)/Fe(II) system.
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Figure 4. Cyclic voltammograms of the 1 mmol L−1 [Fe(CN)6]3−/4− redox probe in 0.1 mol L−1

KNO3 (pH 7.0) at MWCNT electrode, MWCNT|1 electrode and MWCNT|2 electrode recorded with
a scan rate of 50 mV s−1.

4. Conclusions

The introduction of a hydroxyl substituent (instead of a chlorine atom) at position -6 in
the pyridine ring of nicotinate ligands did not affect either coordination environments of the
metal ions (cobalt(II), nickel(II)) or structural type of the obtained 1D coordination polymers
1 and 2, if compared to the structurally analogous nickel(II) coordination polymer with
6-chloronicotinate and 4,4′-bipyridine ligands, {[Ni(4,4′-bpy)(H2O)4](6-Clnic)2·4H2O}n.
The only difference is in the number of lattice water molecules [26]. Indeed, the hydroxyl
substituent participates more extensively in the hydrogen bonding than it was the case
with chlorine substituent, leading to the different hydrogen-bond motifs in the hydrogen-
bonded frameworks of 1 and 2, as compared to {[Ni(4,4′-bpy)(H2O)4](6-Clnic)2·4H2O}n
(only R2

4(8) motif is the same). However, other motifs are related, differing only in the
ring size (e.g., R4

5(12) and R2
4(12) in 1 and 2 comparing to R4

5(16) and R2
4(8) in {[Ni(4,4′-

bpy)(H2O)4](6-Clnic)2·4H2O}n, respectively) [26].
The electrochemical studies of coordination polymers 1 and 2 showed that the re-

duction is metal-centered, and only polymer 2 underwent a reduction in the region of
potentials from−0.2 to 0.6 V vs. Ag|AgCl, while polymer 1 did not exhibit any redox activ-
ity. This different electrochemical behavior of the isostructural 1 and 2 can be attributed to
the nature of metal ions (cobalt(II) vs. nickel(II)). Both metal ions have different electronic
configurations, leading to a different reactivity of 1 and 2 towards the Fe(III)/Fe(II) system.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/chemosensors9120352/s1, Table S1. Selected bond lengths (Å) and angles (◦) for {[Co(4,4’-
bpy)(H2O)4](6-Onic)2·2H2O}n (1) and {[Ni(4,4’-bpy)(H2O)4](6-Onic)2·2H2O}n (2), Figure S1. IR spec-
trum of {[Co(4,4’-bpy)(H2O)4](6-Onic)2·2H2O}n (1), Figure S2. IR spectrum of {[Ni(4,4’-bpy)(H2O)4](6-
Onic)2·2H2O}n (2), Figure S3. Cyclic voltammograms recorded in a broader range at MWCNT
electrode, MWCNT|1 electrode and MWCNT|2 electrode in 0.1 mol L−1 KNO3 solution (pH 7.0),
Figure S4. Electrochemical impedance spectra of the 1 mmol L−1 [Fe(CN)6]3−/4− redox probe in
0.1 mol L−1 KNO3 (pH 7.0) recorded at Eocp for MWCNT electrode, MWCNT|1 electrode and
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MWCNT|2 electrode, Figure S5. TGA/DTA curve of {[Co(4,4’-bpy)(H2O)4](6-Onic)2·2H2O}n (1),
Figure S6. TGA/DTA curve of {[Ni(4,4’-bpy)(H2O)4](6-Onic)2·2H2O}n (2). Deposition numbers
2122274 (for 1) and 2122275 (for 2) contain the supplementary crystallographic data for this paper.
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