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Abstract: The super-resolution imaging technique of structured illumination microscopy (SIM)
enables the mixing of high-frequency information into the optical transmission domain via light-
source modulation, thus breaking the optical diffraction limit. Correlative SIM, which combines other
techniques with SIM, offers more versatility or higher imaging resolution than traditional SIM. In this
review, we first briefly introduce the imaging mechanism and development trends of conventional
SIM. Then, the principles and recent developments of correlative SIM techniques are reviewed.
Finally, the future development directions of SIM and its correlative microscopies are presented.

Keywords: diffraction limit; super-resolution imaging; structured illumination microscopy; correla-
tive microscopy

1. Introduction

Since their first use in the 17th century to study living cells, optical microscopes
have attracted wide attention for their simple and flexible implementation and an ability
to facilitate the non-destructive observation of samples at high magnifications. Thus,
the development of microscopy raised the exciting prospect of being able to study the
nanoscale morphologies of cells. However, because of the diffraction limit of microscopic
imaging systems, their spatial resolution cannot be increased indefinitely by increasing
magnification and eliminating aberrations (about 200–300 nm) [1].

In recent years, with the development of ultrafast optical techniques and highly
sensitive probes in biosensors, various methods of super-resolution microscopy (SRM) have
been developed to solve the diffraction limit problem [2–9]. The representative techniques
are structured illumination microscopy (SIM), stimulated emission depletion microscopy
(STED), reversible saturable optical-linear-fluorescence transitions (RESOLFT) [10–14],
stochastic optical-reconstruction microscopy (STORM), and photoactivation localization
microscopy (PALM) [15–26]. STED and RESOLFT confine the region of fluorescence using
a high-powered red-shifted doughnut-shaped depletion beam [27]. STORM and PALM
improve resolution by randomly turning on and off the luminescence of a single molecule
in a diffraction-limited volume at different time points [26,28–30]. During the imaging
process, STORM and PALM switch the excitation light to different wavelengths, repeatedly
activating, exciting, and bleaching different fluorescent molecules, only recording a random
subset of the fluorescent molecules in the field of view. Only one molecule emits light in the
diffraction limit region, and subsequently, different molecules’ sets are recorded. Finally,
a super-resolution image is reconstructed. In some cases, these techniques can provide
spatial resolutions below 10 nm. However, these imaging techniques also have associated
limitations, such as low time resolution and specific requirements for fluorescent dyes.
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It is worth mentioning that except in the case of photobleaching resistance, the super-
resolution imaging technique of SIM involves no special requirements in terms of the
fluorescence dyes for the labeled sample. In SIM, the sinusoidal excitation light is su-
perimposed on the sample, which then passes through the objective, and the observed
fluorescence emission takes the form of a Moiré fringe. The Moiré fringe contains the
mixed frequency of the excitation light and the sample, together with spatial frequency
information. Using a known spatial frequency and phase shift in the structured illumina-
tion pattern, the spatial frequency information in the image is separated and reconstructed,
and super-resolution is achieved through the SIM reconstruction algorithm. Only nine
images are normally required to obtain super-resolution images. Thus, SIM presents unique
advantages over other SRMs: (1) SIM has no special requirements for dyes, and it can
be guaranteed to excite fluorescence to meet imaging standards. (2) SIM requires only a
small number of raw images. Linear SIM requires just nine images for reconstruction, and
its imaging speed is faster than those of PALM and STORM, which require hundreds of
raw images.

However, SIM is far from perfect, and, within the confines of SIM itself, one can only
improve certain aspects of the performance. To obtain more detailed sample structural
information and depth, achieve multi-functional imaging, and render SIM more adaptable
to wider applications, researchers have developed correlative microscopy technologies that
can compensate for the shortcomings of existing SIM techniques. It is worth noticing that
the development of correlative SIM can also promote the development of the biosensors;
in particular, some protein tags and components of biosensors can also be utilized for
multicolor microscopy and deep tissue imaging [31].

In this review, we focus on the research progress related to the correlative SIM. First,
a brief review of the principles of SIM and correlative microscopy are presented. Next,
we discuss the current state-of-the-art techniques in this field, including SIM with other
SRM techniques, SIM with other microscopy techniques, correlative SIM for deep learning,
correlative SIM for surface plasmon interference, and correlative SIM for quantitative
phase imaging (Figure 1). Finally, we analyze the challenges to be overcome for the
future development of this field. We believe that this review will provide an overview of
representative developments of this field, together with a useful perspective and guidance
for the development of correlative structured illumination microscopy.

Chemosensors 2021, 9, x FOR PEER REVIEW 3 of 30 
 

 

 
Figure 1. Schematic diagram of the correlative structured illumination microscopy with other mi-
croscopy techniques. 

2. Principle of Structured Illumination Microscopy 
A well-known tenet of the theory of optical imaging is that diffraction prevents the 

precise convergence of light: sharp points on an object will be blurred into finite-size spots 
(Airy disks) in the image [32]. The three-dimensional intensity distribution of the Airy 
disk is defined as the point spread function (PSF) of the microscope [33]. The resolution 
of optical microscopic imaging techniques is limited by the system cutoff frequency of the 
optical transfer function (OTF) [34,35], where the OTF and PSF are a Fourier transform 
pair. In general, under wide-field illumination conditions, the frequency components that 
are higher than the cutoff frequency are filtered out, while components that are lower than 
the cutoff frequency can be transmitted. 

SIM can employ periodically structured illumination to excite a sample to mix high 
spatial frequency details with low-frequency signals to overcome limitations imposed by 
optical diffraction [36,37]. When a sample is excited by the excitation light in an optical 
microscope (Figure 2A), the low-frequency information within the OTF passband can be 
detected, where |𝑘 | is the cutoff frequency of the system (Figure 2D), and information 
higher than the cutoff frequency will be lost. In SIM, the sinusoidal excitation light is su-
perimposed on the sample, and when this is convolved through the objective lens, the 
observed fluorescence emission takes the form of a Moiré fringe pattern. This pattern rep-
resents a mix of frequencies from both the excitation light and the object, with frequency 
information higher than the cutoff frequency [38,39].  

We can express the intensity of the sinusoidal illumination pattern 𝐼(𝑟) as (Figure 
2B): 𝐼(𝑟) = 𝐼 1 + cos 2𝜋𝑘 𝑟 + 𝜑  (1)

where 𝐼  is the average intensity of the structured illumination, r


 represents the polar 
position, 𝜑  is the phase of the structured illumination, and 𝑘  is the spatial frequency 
of the structured illumination.  

The sinusoidal illumination pattern excitation produces a fluorescence response in 
the sample 𝐵(𝑟). The raw image, 𝑆(𝑟), which is projected onto the detector, is then blurred 
by the PSF (convolution with PSF, convolution symbol is ⨂) (Figure 2C): 𝑆(𝑟) = 𝐼(𝑟)⨂𝑃𝑆𝐹 𝐵(𝑟) ⨂𝑃𝑆𝐹(𝑟). (2)

Figure 1. Schematic diagram of the correlative structured illumination microscopy with other
microscopy techniques.



Chemosensors 2021, 9, 364 3 of 30

2. Principle of Structured Illumination Microscopy

A well-known tenet of the theory of optical imaging is that diffraction prevents the
precise convergence of light: sharp points on an object will be blurred into finite-size spots
(Airy disks) in the image [32]. The three-dimensional intensity distribution of the Airy
disk is defined as the point spread function (PSF) of the microscope [33]. The resolution of
optical microscopic imaging techniques is limited by the system cutoff frequency of the
optical transfer function (OTF) [34,35], where the OTF and PSF are a Fourier transform pair.
In general, under wide-field illumination conditions, the frequency components that are
higher than the cutoff frequency are filtered out, while components that are lower than the
cutoff frequency can be transmitted.

SIM can employ periodically structured illumination to excite a sample to mix high
spatial frequency details with low-frequency signals to overcome limitations imposed by
optical diffraction [36,37]. When a sample is excited by the excitation light in an optical
microscope (Figure 2A), the low-frequency information within the OTF passband can be
detected, where |k0| is the cutoff frequency of the system (Figure 2D), and information
higher than the cutoff frequency will be lost. In SIM, the sinusoidal excitation light is
superimposed on the sample, and when this is convolved through the objective lens, the
observed fluorescence emission takes the form of a Moiré fringe pattern. This pattern
represents a mix of frequencies from both the excitation light and the object, with frequency
information higher than the cutoff frequency [38,39].
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Figure 2. Frequency shift produced by sinusoidal structured illumination for SIM. Sample (A) is
illuminated with the SIM pattern (B); then, an emission (C) enters the microscope system and is
blurred by the PSF. (D–F) show the corresponding transformation of (A–C) in frequency space.
(D) The low-frequency information k0 of the sample is within the passband of the optical transfer
function (OTF) and is detectable. (E) The Fourier transform of the sinusoidal illumination pattern
consists of high-frequency information. (F) When the sample is illuminated with a periodic fringe

pattern (±
→
k a), some high-frequency information is contained in the OTF passband.

We can express the intensity of the sinusoidal illumination pattern I(
→
r ) as (Figure 2B):

I(
→
r ) = I0[1 + cos (2π

→
k a
→
r + ϕ)] (1)
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where I0 is the average intensity of the structured illumination,
→
r represents the polar

position, ϕ is the phase of the structured illumination, and
→
k a is the spatial frequency of

the structured illumination.
The sinusoidal illumination pattern excitation produces a fluorescence response in the

sample B(
→
r ). The raw image, S(

→
r ), which is projected onto the detector, is then blurred

by the PSF (convolution with PSF, convolution symbol is ⊗) (Figure 2C):

S(
→
r ) = [I(

→
r )⊗ PSF× B(

→
r )]⊗ PSF(

→
r ). (2)

SIM improves the resolution that is obtained using Fourier transformation. Thus,

the Fourier transform of sinusoidal illumination pattern I(
⇀
k ) purely consists of delta

pulses [40] and is expressed as (Figure 2E):

I(
⇀
k ) = I0[δ(

⇀
k ) +

1
2

δ(
⇀
k +

→
k a) exp (−iϕ) +

1
2

δ(
⇀
k −

→
k a) exp (iϕ)]. (3)

The polar position
→
r in the spatial domain becomes the frequency variable k in the

Fourier domain.
Assuming that the frequency space of the system S(k) is expressed as (Figure 2F):

S(
⇀
k ) =

[
(I(

⇀
k )×OTF(

⇀
k ))⊗ B(

⇀
k )
]
×OTF(

⇀
k ) =I0

[
B(

⇀
k ) +

1
2

B(
⇀
k +

→
k a) +

1
2

B(
⇀
k −

→
ka) exp (iϕ)

]
×OTF(

⇀
k ). (4)

Note that PSF and OTF are Fourier transform pairs of each other. The PSF that is
convolved in real space is present in Equation (2), and the multiplication operation with
the OTF in Fourier domain is contained in Equation (4). Equation (4) reveals the key to

SIM: I(
⇀
k )⊗ B(

⇀
k ) results in a shifting of B(

⇀
k ) to ±

→
k a (Figure 2F). Although the frequency

ka is also limited by OTF, it does contain higher spatial frequencies.
The spectral information obtained by the SIM system is a mixture of high-frequency

and low-frequency information. Each spectral component must be separated by the al-
gorithm. Then, the high-frequency information is moved back to its original position.

Since Equation (4) contains three unknown components B(
⇀
k ), B(

⇀
k +

→
k a), B(

⇀
k −

→
k a), at

least three independent equations must be solved. The phase ϕ of the structured illumi-
nation pattern is the most important modulation parameter. Three patterns with periodic
equidistant initial phases {ϕ1, ϕ2, ϕ3} are selected to excite the sample (Figure 3A), and the

corresponding frequency-domain outputs of S(
⇀
k ), S1(

⇀
k ), S2(

⇀
k ) are recorded.

The separation matrix is constructed to separate the three unknown components, and
the corresponding frequency-domain output is obtained from the linear Equation (5): S(

⇀
k )

S1(
⇀
k )

S2(
⇀
k )

 = I0

 1 0.5e−iϕ1 0.5eiϕ1

1 0.5e−iϕ2 0.5eiϕ2

1 0.5e−iϕ3 0.5eiϕ3




B(
⇀
k )

B(
⇀
k +

→
k a)

B(
⇀
k −

→
k a)

·OTF(
⇀
k ). (5)

The separated high-frequency information is first multiplied by the shift factor to
move it back to its original position. It is reset to obtain the frequency information of the

sample B′(
⇀
k ), B′(

⇀
k +

→
k 0), B′(

⇀
k −

→
k 0) as follows:

B′(
⇀
k ) = B(

⇀
k ) (6)

B′(
⇀
k +

→
k 0) = F{[FB(

⇀
k +

→
k a)]exp(−i2π

→
k a
→
r )} (7)

B′(
⇀
k −

→
k 0) = F{[FB(

⇀
k −

→
k a)]exp(+i2π

→
k a
→
r )}. (8)
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Then, the high-frequency information obtained after separation is superimposed on
B(k). Thus, the frequency-domain information of the sample in a single direction has been
expanded to improve the resolution (Figure 3C). Finally, the range of the OTF is extended

to [(−
→
k a −

→
k 0), (

→
k a +

→
k 0)].
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Figure 3. Multidimensional spatial frequency expansion. (A) Series of images at different sinusoidal
fringe pattern illumination phases. (B) Final reconstructed super-resolution image. (C) Recombina-
tion of all components by separating the individual parts, shifting the frequency information by a
distance of ±ka to the original location. The three segment spectra are superimposed to generate an
extended OTF passband. (D) Expansion spectrum of multi-directional frequency.

As mentioned above, the frequency-domain expansion theory of structured illumina-
tion only represents expansion in a single direction. To improve the resolution isotropy
and realize frequency expansion in two dimensions, it is necessary to record samples of
structured illumination modulation in different directions to achieve spectrum expansion
in multiple directions; see Figure 3D.

The final reconstruction structure of linear SIM extends the cutoff frequencies of

the spectrum from (
→
k 0,−

→
k 0) to (

→
k 0 +

→
k a,−

→
k 0 −

→
k a); see Figure 3B. Since linear SIM

is limited by the diffraction limit (
→
k 0 ≥

→
k a), the spatial resolution cannot be more than

doubled using this technique.
In addition to traditional wide-field SIM, SIM has also been implemented in the form

of “spot-scanning” [41–47]. In spot-scanning SIM, the structured illumination pattern is
often generated by galvanometer scanning a focused light; then, it is projected onto the
detector with a 2D CCD/sCMOS camera or PMT to record the structured illumination
images. The fringes are formed with time-focused light that has a much greater penetration
depth than that in wide-field illumination. Spot-scanning SIM used in combination with
multiphoton excitation can achieve greater imaging depths and signal-to-noise ratios (SNR)
(the ratio of power of the useful signal to noise in the optical system) [48–51].
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3. Research Progress in Correlative Structural Illumination Super-Resolution
Microscopic Techniques
3.1. Correlating SIM with Other SRM Techniques

STORM can achieve higher spatial resolution in the range of 10 nm utilizing single
molecule localization [17]. However, STORM data are incomplete without clear structural
information to place it into the cellular context. In this regard, correlating SIM with STORM
is an excellent way to analyze single molecule localization data (SIM-STORM). Virginie
Hamel et al. [52] used this strategy to realize multicolor imaging of cells from the U2OS
cells. A dual-channel two-color imaging system was constructed with the channels using
different laser excitation wavelengths to image the same region using SIM and STORM
(Figure 4A). After acquiring and reconstructing the SIM and STORM images, it is necessary
to ensure that the precise molecular localization provided by STORM is placed in the
structural background of SIM (Figure 4B). However, the reconstructed image has a different
field of view and pixel size, which creates difficulty for reconstructing a SIM-STORM
image. To further reconstruct the SIM-STORM image, they used ImageJ plugin TurboReg
to perform sub-pixel registration based on intensity [53]. In the plugin, they set the STORM
image as a reference while manually scaling the SIM image until the two could overlap.
The authors utilized this system to image the triply stained U2OS cells to study their
structure. The F-actin network (Figure 4C), microtubule network (Figure 4D), and myosin
(Figure 4E) of the U2OS cells were imaged using different SIM wavelengths, and the related
structural information was obtained and reconstructed. Switching to STORM mode, the
precise molecular location of myosin in the same region was obtained (Figure 4F). Finally,
the four images were merged to generate a multicolor image (Figure 4G). Thus, correlative
SIM-STORM provides a valuable solution for accurately mapping specific structures in
their cellular context.
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excited by the structured illumination and superimposed on the sample, generates high-
spatial-frequency components. Theoretically, the number of higher harmonics and infor-
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creased to infinity, the experimental results indicate that the SNR and photobleaching 

Figure 4. Use of correlative SIM-STORM to achieve multicolor imaging [52]. (A). Schematic diagram of the optical device
used in the SIM-STORM technique. SIM is obtained by using a polarizer (P) and diffraction grating (G). To obtain a STORM
measurement, classical TIRF illumination is used. Switching between the two channels in the dual-channel setup can
be easily achieved by moving the dichroic mirrors (DM) in and out of the beam paths. (B). Flowchart of the correlative
SIM-STORM methodology. First, the sample is imaged via mode 1 (SIM) to obtain the sample background information.
Then, it is imaged via mode 2 (STORM) to locate the molecule within the same region, and finally, the two outputs are
reconstructed. SIM imaging in different wavebands: (C) action, (D) microtubules, and (E) myosin. (F) STORM mode image.
(G) Final merge image. Scale bar: 200 nm. Copyright 2014 Biomed Opt Express.
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In addition to multicolor labeling and accurate positioning information for biological
structural features, 3D nanoscale imaging of the organization and functionality of live cells
is essential for biological research. In some cases, it is also helpful to correlate other SRM
techniques with SIM for 3D imaging. The main operational principle of 3D structured-
illumination microscopy (3D-SIM) is the use of a transmission phase grating within the
system to diffract the excitation light into three beams and directly irradiate the sample [54].
The interference among the three beams generates 3D spatial–structural patterns [55].
Although 3D-SIM is based on a wide-field technique, it has the advantage of high imaging
speed and does not require any special fluorescent dyes. However, the optical resolution
of 3D-SIM is still limited to approximately half the fluorescence wavelength, and 3D-
SIM can generate structured illumination only in one radial direction as well as the axial
direction rather than all three dimensions. This leads to a lack of information in 3D-SIM
reconstruction, which is referred to as the “missing cone” [56].

To avoid optical resolution limitations, scientists have proposed the concept of nonlin-
ear structured illumination microscopy (NL-SIM), which is essential for further extending
the cutoff frequency of SIM. The nonlinear response in each fluorophore, which is excited
by the structured illumination and superimposed on the sample, generates high-spatial-
frequency components. Theoretically, the number of higher harmonics and information
components resulting from the high-spatial-frequency components is unlimited.

In general, NL-SIM methods can be classified into two types. The first type involves
producing higher harmonics using saturated excitation light [57,58]. In this type of method,
by harnessing the saturated excited state of the molecule for imaging, a spatial resolu-
tion of 50 nm can be achieved. Although the resolution can theoretically be increased
to infinity, the experimental results indicate that the SNR and photobleaching limit the
actual resolution of this type of NL-SIM. Most fluorescent molecules exhibit poor photo-
stability under light intensities corresponding to saturated excitation; hence, biological
tissues cannot be imaged. The second type of NL-SIM method achieves nonlinear effects
through photoswitching [59–61]. This method uses photoswitchable fluorescent molecules
to improve the optical resolution under low excitation laser power conditions. However,
this approach has disadvantages, such as high photostability requirements for the dyes
and slow switching times [59,62].

The principle of STED is similar to that of photoswitching, and the fluorescence is
selectively depleted by the STED effect (via a stimulated emission depletion process).
Moreover, STED depletes the fluorescence under a lower power than that in saturated NL-
SIM, and the switching time is faster than that achievable with photoswitchable fluorescent
proteins [63]. Therefore, the correlation between SIM and STED measurements may be
more meaningful in improving the optical resolution in 3D-SIM imaging.

Fumihiro Dake [64] theoretically predicted the feasibility of 3D SIM-STED. The dif-
ference between this system and traditional 3D-SIM is that structured excitation and a
structured STED pattern are generated by three-beam interference. In 3D SIM-STED, inter-
ference (caused by a diffraction grating) between the structured excitation (λex) and the
two-structured illumination of the structured STED beams (λSTED) creates a 3D interference
pattern in the sample in which the pitch and orientation are equal. Since the structured
patterns of excitation and STED have phase differences, the structured STED pattern “turns
off” the fluorescence around the structured excitation pattern via stimulated depletion. In
contrast, owing to the STED effect, the structured patterns disappear, compensating for
an imperfect overlap. Consequently, background fluorescence can be reduced. Thus, the
phase difference is the key to realizing 3D SIM-STED; it not only determines the amount
of quenched fluorescence at each lateral position, which plays a vital role in the nonlinear
effect, but also effectively suppresses background fluorescence. The nonlinear effect of
this STED technique efficiently enhances the strength of the nonlinear harmonics. Figure 5
illustrates the 3D SIM-STED illumination pattern distribution over the spatial frequencies.
The two structured patterns are produced by the incident beams on similar gratings, in
which the lateral pitches are designed to be the same; however, the axial pitches are not
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completely identical owing to the difference in wavelength. The spatial frequencies of
the STED beams are distributed closer to the circumference than those of the excitation
beams. 3D SIM-STED introduces more harmonics from the spatial frequency images than
the traditional 3D-SIM, resulting in an enhanced optical resolution. In contrast, the optical
power required by 3D SIM-STED is lower than that required by the traditional STED. This
is because 3D SIM-STED does not need to deplete the fluorescence completely, but just
enough to produce nonlinear effects, which can effectively inhibit photobleaching.
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The nonlinearity of the STED effect correlates with the 3D-SIM, where a structured
STED pattern and a structured excitation pattern efficiently induce nonlinearity and further
improve the optical resolution. However, this does not solve the problem of the “missing
cone.” Yi Xue et al. [65] proposed 3D SIM-STED based on the interference among five
beams, resulting in a 3D grid depletion pattern; this approach is called 3D 5-SIM-STED.
This pattern can generate symmetric SIM patterns radially in comparison with those in a
single radial direction of 3D SIM-STED, thus serving as an excellent solution to the “missing
cone” problem of 3D SIM-STED.

The system setup is illustrated in Figure 6A. The STED depletion pattern is diffracted
into five beams using a diffractive optical element (DOE), and a spatial light modulator
(SLM) is used to rapidly generate the illumination patterns. The excitation patterns generate
wide-field illumination on the image plane. 3D 5-SIM-STED is inspired by the SIM wide-
field technique and uses the 3D grid depletion pattern to generate a donut-shaped spot
matrix, which has a higher imaging speed than those of the STED techniques using the
point-scanning method (Figure 6B).
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For filling the “missing cone” of widefield illumination, the interference pattern
can compensate for the “missing cone” through convolution of the modulation transfer
functions (MTFs) of wide-field microscopy, and five beams produces 17 spatial frequency
components [55,66,67]. MTF represents the magnitude of OTF and measures the spatial
frequency response of the system [68] (Figure 6C). In comparison with 3D SIM-STED, the
multiple beam interference of 3D 5-SIM-STED can generate structured illumination in
multiple dimensions.

In addition to the techniques described above, correlative imaging involving more
than one type of SRM modality has also been proposed: for example, the combined
application of single-molecule localization microscopy (SMLM). The first implementation
of imaging the same region of H3K293 cells with a high structural resolution was achieved
using SMLM by Sabrina Rossberger et al. [69]. In addition, Han Zhang et al. [70] analyzed
and predicted the feasibility of an SIM-STED technique with surface plasmon resonance
enhancement to achieve high-speed imaging with a 30 nm resolution and sub-second
acquisition time.

3.2. Correlating SIM with Other Microscopy Techniques
3.2.1. Correlating SIM with Total Internal Reflection Fluorescence Microscopy Techniques

Total internal reflection fluorescence microscopy (TIRF) is a technique with good opti-
cal sectioning capability [71–73]. TIRF uses an evanescent field localized at the boundary
between refractive-index media to excite fluorophores within a thickness of one wavelength
from the coverslip surface. Its superb background rejection and sensitivity can significantly
improve the SNR, and it also has the advantages of high temporal resolution and low pho-
totoxicity fluorescence imaging. However, conventional TIRF enhances temporal resolution
at the cost of spatial resolution, reducing its effectiveness in studying dynamic phenomena.
SIM requires the collection of a small amount of raw data to achieve super resolution.
Therefore, it is an excellent compromise between a moderate increase in spatial resolution
and a tolerable temporal resolution loss. The correlative of SIM with TIRF (SIM-TIRF)
measurements is an effective approach to realize living cell imaging.

The imaging speed of SIM-TIRF is essential to record the process of living cells. Two
main factors affect the speed of SIM-TIRF. First, there is the switching time between
different phases and illumination angles of the SIM. Second, there is the acquisition time
for each individual raw image. Compared with increasing the fluorescence lifetime of the
sample, researchers are generally more enthusiastic about the possibility of improving the
system performance to achieve fast illumination switching [74–78].

Chung et al. [79] first proposed correlating TIRF with SIM technology. They achieved
a resolution of approximately 100 nm, which is twice the resolution of conventional TIRF
microscopy. Kner et al. [74]. further developed this technology. They used an SLM instead
of traditional SIM mechanical modulation, enabling switching of the excitation light mode
in microseconds. SIM-TIRF using an SLM allowed the recording of the trajectory of FGFP-
α-tubulin in S2 cells at a frame rate of 11 Hz, over hundreds of time points, with a resolution
of 100 nm. Then, Laurence J. Young et al. [77] proposed an SIM-TIRF system that realizes
automatic control of the polarization state and spatial structure of the illumination patterns,
with imaging up to 10 Hz in three colors. An SLM grating with a circular aperture is used
to align the excitation path. Only a perfectly aligned beam produces a regular circle of
illumination in the image; otherwise, artifacts are produced. The setup also incorporates
a liquid crystal variable retarder (LCVR) to control the linear polarization state of the
excitation illumination for polarization control and synchronization [80–82]. While further
improving the imaging speed of SIM-TIRF, it also improves the SNR. Various studies
have verified the excellent contrast of the SIM-TIRF method for live cell imaging and the
visualization of subcellular structures. For example, emGFP-labeled microtubules and
cytosolic GFP have been imaged.

To achieve super-resolution imaging of low-fluorescence biological samples with a
several hertz acquisition rate, Roth et al. [75] introduced an SIM-TIRF system based on a
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scanning mirror and a Michelson interferometer (Figure 7), which can generate images
with a spatial resolution of 110 nm and a temporal resolution of up to 8 Hz. By optimizing
the illumination interference contrast, high resolution can be achieved, even for moving
samples with weak fluorescence. This system is suitable for weakly fluorescent samples
and is inherently dynamic. Therefore, this super-resolution technology can be used to
analyze biological structures. For example, the imaging of dynamic proteins such as MreB
in bacteria and actin in eukaryotic cells has been demonstrated [83,84].
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The combination of SIM and TIRF is an effective approach to improve optical-sectioning
capability and temporal resolution simultaneously. Thus, it is possible to gain new compre-
hensive insights into intracellular dynamics.

In addition to the continuous optimization of improving the system performance to
achieve fast illumination switching. SIM-TIRF also has an interesting correlation method,
which is the correlative of SIM with a photonic chip TIRF (SIM-cTIRF) [85]. SIM-cTIRF
used a planar photonic chip that replaced the glass slide. The integrated waveguide chip
is used to guide the excitation illumination so that it reaches the sample directly without
passing through the objective lens; the fluorescence information is collected by the objective
lens. Therefore, the spatial frequency of the illumination pattern is no longer limited by the
numerical aperture (NA) of the objective lens, allowing the use of a low-NA objective lens
to increase the field of view without sacrificing SIM resolution. Helle et al. [85] proposed
utilization of the high refractive index silicon nitride as a planar photonic chip to image
the marker-labeled primary liver sinusoidal endothelial cells. This proves that compared
with the traditional SIM, the SIM-cTIRF resolution increases by 2.3 fold, while the field of
view is also widened. Moreover, wide-field imaging has no mechanism to remove out-of-
focus image blur from scattered light. However, the SIM-TIRF can effectively suppress the
out-of-focus blur; it can be utilized to conduct biological imaging of PI 3-kinase biosensor
localization [86]. Similar protein biosensors such as Grx1-roGFP2 green fluorescent protein
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biosensor [87] and C-Py biosensor [88] can also be detected by other correlative SIM to
increase their sensitivities.

3.2.2. Correlating SIM with Two-Photon/Second Harmonic Generation Microscopy
Techniques

Although super-resolution microscopy has made significant progress in improving
spatial resolution and imaging speed, it is still plagued by background scattering and
defocusing problems in thick samples. Two-photon microscopy (2P) is an ideal choice for
thick samples because it can achieve deep penetration into samples [89–91]. However, with
increasing penetration depth, increased light scattering will reduce the image resolution
and contrast [92]. In an attempt to enhance the imaging depth in SIM by reducing the
scattering of the excitation light, a 2P excitation scheme has been used to excite fluorescent
samples (2P-SIM).

Ben E. Urban et al. developed a 2P-SIM [93] method for nanoscopic imaging of
ganglion cell dendrites in ground squirrel retina at a depth of 100 µm from the vitreal
surface (Figure 8B). The excitation scheme improved the lateral resolution, by a factor of 1.9,
as well as the SNR. The illumination pattern is generated by using the temporal modulation
of the excitation intensity and spatial scanning instead of wide-field illumination, which
avoids the power problem of wide-field illumination [94,95]. The optical setup for 2P-SPIM
is shown in Figure 8A.
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Figure 8. Correlative 2P-SIM for increased imaging depth. (A) Schematic diagram of the optical methodology of 2P-SIM [93].
(a) Image of fluorescein solution obtained using scanning patterned illumination. (b) Results of Fourier transformation of
the images in (a). (c) Schematic of the 2P-SIM experimental setup. (B) 2P-SIM for thick sample imaging. (a) Two-dimensional
2P-SIM reconstruction image of hamster retinal ganglion cell dendrites at a depth of 100 µm from the vitreal surface. (b) 2P
and (c) 2P-SIM expanded views of the area outlined in yellow in (a). (d) 2P and (e) 2P-SIM volume renderings created from
a total of 16 slices (images) collected at 1 µm depth intervals. Copyright 2015 Physical Review E.

Second harmonic generation (SHG) enables the direct imaging of biological tissues
that are non-centrosymmetric [96,97]. In addition, the SHG imaging modality is easy to
implement within a 2P imaging modality setup. The difference is only in the optical filter
selection and detector placement. Hence, taking advantage of the similarity, Chia Hua
Yeh et al. [98] proposed correlating SHG with SIM (SHG-SIM), based on laser scanning,
and demonstrated resolution improvement using chicken tendon and mouse skin samples
(Figure 9). Compared with traditional SHG microscopy, imaging resolution in highly
scattering biological tissues is improved by a factor of approximately 1.4.
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Figure 9. Correlative SHG-SIM for thick sample imaging [98]. (A) SHG-SIM setup schematic. The only difference between
SHG and 2P-SIM is that in the former, the backward objective lens collects the excited SHG signal. (B) Traditional SHG
and SHG-SIM imaging comparison. (a,b) Traditional SHG images of the chicken tendon aligned along the x-direction and
y-direction, respectively. (c,d) SHG-SIM images showing the views in (a,b), respectively. SHG-SIM allows visualization of
the microfilament structure of the chicken tendon. Copyright 2018 Biomed Opt Express.

While most of the reported applications of other microscopy techniques correlated
with SIM have involved some form of NL-SIM, in recent years, the breadth as well as
the number of applications has increased. For example, SIM has been correlated with
lattice light-sheet fluorescence microscopy (SIM-LLSM). LLSM has orthogonal independent
excitation and detection devices. It uses objective excitation to project a thin sheet of light
through a specimen. The advantage of LLSM is that it confines the light to a plane to
eliminate the defocused background. However, previous reports detailed the optimization
of the light sheets by patterned activation or focusing a Bessel beam [99,100]. So far, a sig-
nificant challenge with LLSM is to obtain multiple parallel sheets of light [101,102]. Hence,
Panchen Gu et al. [103] reported a novel method of using the isosceles triangular array
(ITA) to produce multiplane parallel light sheets. The ITA was projected onto the SLM as a
phase mask, and the thickness and distance of the light sheet can be adjusted by changing
the ITA period. To explore the relationship between molecular function and biological
nanostructure, Frederik Görlitz et al. [104] presented correlated SIM and wide-field opti-
cally sectioned fluorescence lifetime imaging microscopy (SIM-FLIM). They demonstrated
the capability of SIM-FLIM to provide super-resolution images of cell morphology with
colocalized fluorescence lifetime readouts by imaging of discoidin domain receptor 1 in
Cos 7 cells following ligand stimulation [105–107] and the compaction of DNA during
the cell cycle [108]. SIM-FLIM adds another powerful orthogonal dimension to SIM. In
contrast to SIM-FLIM, correlating SIM with fluorescence nuclear track detector confocal
microscopy (SIM-FNTD) provides particle energy distribution information based on alpha
radiation spectroscopy [109].

3.3. Correlating SIM with Other Techniques
3.3.1. Correlating SIM with Deep Learning (DL-SIM)

With the rapid development of correlated SIM microscopy techniques, fruitful results
have been recently achieved with regard to improving speed and resolution. However,
there have been few reports regarding another limitation of SIM: obtaining a series of
structured illumination pattern images requires multiple acquisitions to generate each
high-resolution image, which accelerates photobleaching and increases the scanning time.
Recently, there has been an explosion of deep learning (DL) applications in the fields of bio-
logical morphology analysis, SNR improvement, and super-resolution imaging [110,111].
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DL has also been applied on raw images to increase the image quality and resolution of
images [112]. Since DL has a notable advantage in increasing the speed of SIM by reducing
the number of raw images, the adoption of DL for reconstructing SIM images has shown
great promise in improving the time resolution.

In order to minimize photobleaching and increase imaging speed, Luhong Jin et al. [113]
applied deep learning methods to reconstruct images using deep neural networks trained
on raw images in the spatial domain. DL-SIM requires only a few raw images to achieve
multicolor live-cell SRM under low-light illumination conditions.

The process of DL-SIM is as follows: First, the ability of convolutional neural network
architectures (U-Net) in DL to reconstruct super-resolution images is tested [114,115].
Linear SIM requires nine raw images for 2D-SIM with two-beam interference and 15 raw
images for 3D-SIM with three-beam interference. The U-Net requires 15 SIM raw images
as the input and the corresponding SIM reconstruction results as the ground truth, and
it is named U-Net-15 [113]. Second, the U-Net-15 is trained continuously to reduce the
number of input raw images to three, while the ground truth is still the result of SIM
reconstruction of 15 raw images, and it is named U-Net-3 [113]. This method uses three
raw images to reconstruct super-resolution images, which is five-fold less than that in
conventional SIM. The schematic of U-Net is shown in Figure 10A. Finally, in order to
recover the signal in low light, another U-Net is trained, named U-Net-SNR. Thus, a new
DL network architecture named scU-Net was established. The scU-Net links U-Net and
U-Net-SNR through skip-layer connections to realize SRM under low-light illumination
(Figure 10B) [116].
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The reconstruction results of the microtubules indicate that the lateral resolution of
the SIM image reconstructed using U-Net-15 and U-Net-3 is comparable to SIM reconstruc-
tion (Figure 11A). As shown at Figure 11B, both U-Net-SIM15 and scU-Net have better
reconstructed images than the conventional SIM in low-light illumination, and scU-Net
can retrieve details missed by U-Net-SIM15. The ability of DL-SIM reconstruction results
for microtubules in living cells imaging was verified (Figure 11C,D).
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Although scU-Net can be used to detect structural differences in the spatial domain
to reconstruct SIM images, this DL-SIM method cannot be utilized under every imaging
condition. In particular, when better and quantifiable spatial distributions are required for
nanoscale structures, this method is not appropriate. Therefore, Chang Qiao et al. [117]
devised a deep Fourier channel attention DL network (DFCAN) and its derivative trained
with generative adversarial network (GAN) strategy, named DFGAN, which uses the
inherent difference in the frequency content of distinct features in the Fourier domain to
adaptively rescale their weightings to learn about the precise structural representations
of various biological structures. This is another approach for obtaining high-frequency
information of the sample [118–121].

For DFCAN, SIM raw images as used as input in the training phase. Subsequently,
these raw images are fed into the Fourier channel attention (FCA) mechanism in the
DFCAN network architecture [122]. The role of FCA is to enable the network to compute the
rescaling factors according to the comprehensive contribution of all frequency components
contained in its power spectrum [123]. Then, the image is made the same size as the ground
truth image to analyze the high-frequency information. Finally, the network outputs a
super-resolution image. For DFGAN, this method is inspired by the conditional generative
adversarial network (cGAN) [124] framework. cGAN consists of two parts: the generative
model G, which is used to learn the data distribution and perform image transformation,
and the discriminative model D, which is used to distinguish whether the image comes
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from training data or is generated by the generator G. In the DFGAN framework, with
DFCAN as G, D takes G or the ground truth image as input and provides a score that
reflects the probability of the input image being the ground truth. Thus, the purpose of
G is to make D provide the ground truth as its output, and in contrast, the purpose of
D is to determine whether the input is from G or the ground truth. G and D are cross
trained to make them compete with each other and finally reach a state of equilibrium.
Furthermore, SIM reconstruction images of F-actin by DFCAN, DFGAN, and scU-net are
used to compare the three methods of SIM reconstruction ability. The result shows that
DFCAN and DFGAN can clearly resolve the adjacent F-actin filaments. However, scU-net
may sometimes fail to resolve them. Thus, DFCAN and DFGAN are significantly better
than scU-Net in representing precise biological structures.

Then, the capabilities of DFCAN and DFGAN were verified via multicolor live cell
imaging experiments. To investigate the interaction dynamics over an extended time
course, raw SIM images with about ten-fold less fluorescence than that of ground truth were
acquired. Despite the relatively low fluorescence, DFCAN- and DFGAN-SIM successfully
resolve the ring structures of the CCPs and the fine branches of actin filaments for more
than 400 time points, and there is no reconstruction artifact. It has been demonstrated that
DFCAN and DFGAN can achieve an image quality equivalent to that achieved using SIM,
which has an image acquisition time that is ten-fold longer. These experiments revealed
the detailed structure of mitochondria cristae and nucleosides, the interaction between
organelles, and cytoskeleton dynamics.

3.3.2. Correlating SIM with Surface Plasmons Interference (PSIM)

Surface plasmons (SPs) have the ability to confine optical waves into a subwavelength
scale [125]. They can also produce interference patterns with higher spatial frequency
when multiple SP waves overlap [126]. The wave vectors of the SPs can be expressed as
|k_sp | = |k_photon|[(ε_m ε_d/(ε_m + ε_d)]ˆ(1/2) [127], where k_photon is the wave
vector of the excitation light, and ε_m and ε_d are the dielectric constants of the metal
and dielectric, respectively. Therefore, k_sp is a function of the variables k_photon, ε_m,
and ε_d. It is known from the function expression that the SP wave vector |k_sp| can be
much larger than the corresponding |k_photon| by adjusting ε_m and ε_d. Figure 12A
shows the dispersion curves of SPs (a semi-infinite-metal/dielectric interface (green) and a
thin-metal-film/dielectric interface (blue)). All these SP modes have a higher wave vector
than the corresponding excitation light. In addition to adjusting k_photon, ε_m, and ε_d,
the SP mode can also be modulated by changing the thickness of the metal film (Figure 12A,
blue line) [128]. Therefore, correlating SIM with surface plasmon interference is another
novel way to further improve resolution.

Feifei Wei et al. [129] proposed two SP designs for PSIM: a thick-metal-film/dielectric
structure (Figure 12B) and a thin-metal-film/dielectric structure (Figure 12C), which in-
creases the resolution by factors of four and five, respectively, compared with conventional
epi-fluorescence microscopy. Specifically, the first option involves the use of excitation
light with wavelengths of 390 and 653 nm and different incident angles to irradiate a
100-nm-thick Ag film to excite the PSIM patterns (Figure 12B(a)). Figure 12B(b,c) illustrate
the time-averaged electric-field energy density distributions of different excitation light
wavelengths. Figure 12B(d,e) show the Fourier transforms of the SIM patterns excited by
wavelengths of 390 and 653 nm, respectively. It can be seen that there are high-frequency
components other than the zero frequency. The second SP design involves using 442 nm
excitation light with a 508 nm emission wavelength. The time-averaged power density
distribution measured under the Ag film spans 20 nm (Figure 12C(a)). The corresponding
Fourier transform (Figure 12C(b)) has multiple high-frequency components. PSIM provides
an opportunity to create periodical illumination to replace the traditional excitation light
pattern and is suitable for monitoring near-field effects [129–131].
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Inspired by PSIM, Anna Bezryadina et al. [125] proposed localized plasmonic struc-
tured illumination microscopy (LPSIM). LPSIM utilizes nanoscale plasmon antenna arrays
to generate adjustable illumination patterns, which is used with an ultra-high numerical
aperture objective. LPSIM can reduce the resolution to 50 nm while retaining high speed
and low phototoxicity.

They fabricated several uniform hexagonal lattices using 60 nm diameter silver discs
embedded in polymethyl methacrylate (PMMA) (Figure 13A(a−c)). By simulating the
near-field excitation patterns of different incident illumination angles, the optimal size
and spacing of the nano-disks were estimated with the high NA objective (Figure 13B).
To characterize the resolving power, LPSIM and conventional fluorescent microscopy
were compared for imaging green microtubes (488/550 nm) (Figure 14A) and the spatial
frequency spectra (Figure 14B,C), and then, the full width at half maximum (FWHM)
was calculated (Figure 14D,E). With the latest design of the LPSIM system, the nanoan-
tenna pitch size has been reduced, which has pushed the resolution down to a few tens
of nanometers.
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The LPSIM method has further developed the correlating SIM for surface plasmon 
interference. However, in previous works, tuning the pattern of structured SP by varying 
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Figure 13. Development of correlative SIM and surface plasmon interference. (A). Schematic of
LPSIM [125]. (a) Plasmonic antenna array at different magnifications with a hexagonal lattice shape.
(b) Cross-sectional image of silver nanodisk. (c) LPSIM with three patterned antenna array areas
with pitch sizes of 125, 135, and 145 nm. Copyright 2018 ACS Nano. (B). Near-field intensity pattern
produced by the excitation beam on the object plane. (C–E). Principle and simulation of polarization-
controlled tunable SPF-SIM [132]. (C). Schematic diagram of SPs on gold/dielectric surface excited
by fishbone grating array. (D). Principle of SP for linearly polarized light excitation. (E). Schematics
of the SPF-SIM system. The SPs shift laterally with modulation of the polarization angle using an LC
polarizer. Copyright 2020 Nano Lett.
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The LPSIM method has further developed the correlating SIM for surface plasmon
interference. However, in previous works, tuning the pattern of structured SP by varying
the excitation angle or wavefront of incident light usually required a complex optical setup
or expensive optical components such as Galvo scanners, digital micromirror devices, and
high NA objectives [125]. Qilong Tan et al. [132] reported polarization tunable structured
plasma field (SPF) structured illumination microscopy (SPF-SIM) to eliminate the need for
mechanical components. This technique forms SPs using fishbone-shaped gold membranes.
SPF is continuously moved by changing the linear polarization state of the incident beam.
The fishbone grating array is shown in Figure 13C. Each fishbone is composed of two or-
thogonal nanoslits, and the direction forms an angle ϕ of −π/4 and π/4 with respect to the
y-axis [133,134]. Therefore, each nano-aperture can be regarded as a local subwavelength
dipole antenna.

The specific method of forming sinusoidal fringes by SP is as follows: For a linearly
polarized incident beam, two polarization states, namely left circular polarization (LCP)
and right circular polarization (RCP), can exist. Their phase difference is ei2θ . Therefore,
the SP excited by each hole can be obtained as a particular circularly polarized component.
Hence, there is a phase difference of 2θ between the left and the right going SPs. Under
illumination by linearly polarized incident light, the SP on the left is excited by the LCP
component, the SP on the right is excited by the RCP component, and the two components
form an interference fringe (Figure 13D). Then, the linear polarization angle θ of the incident
beam is continuously adjusted to change the relative phase of the two components to 2θ.
Finally, a sinusoidal fringe is formed.

The imaging ability of polarization-controlled SPF-SIM was discussed by the same
authors. In the simulations, the imaging sample was a fluorescent bead with a diameter of
50 nm. In addition, it was proposed to use the SPF-SIM system shown in Figure 13E, in
which the liquid crystal (LC) polarizer was able to control the incident linear polarization
angle quickly and accurately in three different directions. The simulation results showed
that the resolution is 2.3 folds higher than that of conventional FM. SPF-SIM can tune the
phase shift range of periodic SP from 0 to 2π by rotating the incident linear polarization
direction without requiring any mechanical control.

3.3.3. Correlative SIM with Quantitative Phase Imaging Techniques

Quantitative phase imaging (QP) techniques are used to capture endogenous con-
trasts on unstained cellular samples, which can noninvasively probe the structural and
biological characteristics of cells. These techniques have been widely used in the analysis
of whole-cell morphology, mass, dispersion spectrum, and absorption/scattering, among
others [134–137]. QP uses reference light to extract the phase information associated with
the object from the intensity information. The methods used for achieving this can be
classified into two types: phase-shifting and off-axis methods. The phase-shifting method
involves changing the phase shift of the reference and recording images at different phase
shift positions, after which all the recorded images are combined [138–141]. The off-axis
method uses spatial modulation to generate phase information from a single intensity
record. First, the reference light is tilted to create spatial modulation. Then, the obtained
interference image is Fourier transformed, preserving a single piece of high-frequency in-
formation in the baseband, and filtering out the rest. Finally, the inverse Fourier transform
of the processed spectrogram is performed to obtain the phase image [142–144].

Since QP operates on unlabeled specimens, it exhibits low phototoxicity and photo-
bleaching; thus, it is complementary to fluorescence microscopy [134,135]. However, QP
imaging has no molecular specificity and does not have the ability to locate the special
structure of biological samples. In general, the two techniques are fundamentally different,
and it is difficult to find an imaging method compatible with both. Chowdhury et al. [145]
demonstrated the correlative SIM with quantitative phase imaging technique (SIM-QP)
and achieved 3D SIM and QP multi-modal imaging. They used SIM in the frequency
domain to maintain similarity with the QP off-axis method and realized compatibility
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between QP and fluorescence imaging. The schematic of the system device is illustrated
in Figure 15A. Here, 488 nm single-mode broadband light serves the dual purpose of QP
illumination and fluorescence excitation. The sinusoidal pattern written onto the SLM
reaches the sample, and the sample information (including the diffraction information
and fluorescence information) is collected via the objective lens. The fluorescence signal
and diffraction signal of the sample are separated by a DM. The fluorescence signal of
the sample is imaged onto the camera (CMOS-F), whereas the diffraction signal is passed
through a diffraction-phase setup (DG) to divide the signal into different diffraction orders.
The function of the mask (M) on the Fourier plane of the DG is to block the 1st-order
diffraction while retaining only one piece of high-frequency information and spatially
filtering the 0th-order diffraction to generate a uniform wavefront reference. Figure 15B
details the achievement of the off-axis QP imaging using the mask. In the case of SIM, each
diffraction order from the DG contains the diffraction orders produced by the SLM. Thus,
M is asymmetrical with a pinhole filter at the center. The asymmetric structure is used
to block the diffraction orders; it only allows the first-order diffraction, and the pinhole
filter is used to filter out the zero-order diffraction from the SLM contained in the DG and
generate the uniform wavefront reference required for the off-axis imaging. Finally, the
phase shift of the SIM allows solving for the spatial frequency components. Then, these
components are moved back to the appropriate region in the frequency space and then
combined to acquire the QP image.
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Figure 15. Correlative QP-SIM for multi-modal imaging [145]. (A) Schematic diagram of the optical
methodology of QP-SIM. (B) The mask achieves the detail of off-axis QP imaging. (C) Three-
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(b) Visualizes a single A549 cell of SIM. The actin morphology of the cell is clearly visible in the area
outlined in yellow. Copyright 2017 Biomed Opt Express.
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To demonstrate the multi-modal imaging performance of the system in a biological
sample, Chowdhury et al. [145] labeled A549 cells with AlexFluor-488 phalloidin for F-actin
visualization imaged QP and fluorescence (Figure 15C). As depicted in Figure 15C(a), the
vesicles surround the apical portion of the cell with QP. Figure 15C(b) shows the visualiza-
tion result of F-actin imaging with fluorescence. The biological structure information of
QP imaging is different from the 3D visualization information of the molecular labeling
components provided by the fluorescent signals.

Therefore, SIM-QP can achieve multi-modal imaging, which can simultaneously eval-
uate the morphology and other descriptions of specific cytological components, providing
a multi-angle research direction for biological applications.

In addition, SIM-QP enables multi-modal imaging of complementary information
on biological structures and multi-modal imaging of biological samples with 3D-SIM and
refractive index tomography (IR) [146–148]. Cells alter the path of light, which can lead to
aberrations in cell or tissue imaging. QP technology can measure the biophysical properties
of these aberrations known as RI and improve our potential for understanding cells and
tissues. Seungwoo Shin et al. [149] proposed and demonstrated a multi-modal approach
for measuring both the RI and fluorescence distributions of live cells with correlative
SIM-QP. To minimize the photobleaching and phototoxicity that occur in fluorescence
imaging of live cells [150], the dispersion property of a DMD can be utilized to generate
different modulation modes for QP illumination and SIM fluorescence excitation [151]. The
two imaging methods use the same optical system but different modulation modes and
excitation wavelengths. The correlation between 3D fluorescence and 3D RI data can be
easily analyzed using QP technology. This method is expected to open up new avenues for
research in cell biology for medical and diagnosis purposes.

In addition to the typical techniques described above, the correlating SIM techniques
can also be implemented in many other ways [152]. Recently, Ana I.Gómez-Varela et al. [153]
proposed the correlative SIM with a tip-scanning QI nanomechanical mapping atomic
force microscopy techniques (AFM-SIM). AFM-SIM provides a powerful nanoscale obser-
vation tool that enables simultaneous colocalization imaging, allowing the simultaneous
recording of nanomechanical data and visualization of cell dynamics. The correlating SIM
techniques with spectroscopy also have co-location capability. Isotta Cainero et al. [154]
proposed the correlative SIM with cross-correlation spectroscopy techniques (SIM-ICCS).
They used cross-correlation spectroscopy to study and quantify colocalization analysis
between multicolor images to have a more intuitive understanding of cellular processes
and their interactions through the nano-scale spatial distribution of fluorescent probes.
Moreover, in order to obtain ultrastructure information and 3D super-resolution imaging in
cryopreserved samples, researchers have proposed a series of correlating SIM techniques.
Ilias Kounatidis et al. [155] presented the correlative SIM with soft X-ray microscopy
(SIM-X-ray). They used SIM-X-ray to perform 3D imaging of cells at low temperatures.
Through the process of reovirus release from intracellular vesicles during the early stages
of infection, they identified the intracellular virus-induced structures. In addition, Michael
A. Phillips et al. [156] developed the correlative SIM with cryo-electron microscopy (SIM-
cryo). They have proved that SIM-X-ray and SIM-cryo can offer good imaging quality even
under low-temperature conditions.

4. Summary and Prospects

The super-resolution microscopy technique uses various ingenious methods to “by-
pass” the diffraction limit. It is a powerful tool for biomedical research. However, as
an emerging technology, SIM still encounters multiple challenges when applied to biol-
ogy, especially when the research object is dynamic and has a finite thickness, complex
composition, and internal structures.

The correlative SIM techniques (as we summarize in Table 1) have overcome the
above shortcomings. However, correlative SIM is not just a simple extension of traditional
correlative microscopy. It can overcome multiple technical problems and solves the problem
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of the difference in resolution between optical microscopy and high-resolution methods,
while adding a new dimension to the powerful SIM method.

Table 1. Representative the correlative SIM techniques and their applications.

Type Technique Characteristic Resolution Application

SRM

STORM-SIM [52]

The accurate position
information for cells

provided by STORM is
placed in the structural

light background of SIM.

Lateral: 40 nm
(STORM);

150 nm (SIM)
Multicolor imaging

STED-SIM [64,65] Achieving nonlinear effects
through STED beams.

Lateral: 59.9 nm
Theoretically;

Axial: 163.2 nm
Theoretically

3D imaging

Other
microscopy
techniques

SIM-TIRF [75]
Faster imaging speed for
live-cell high resolution

imaging.
Lateral: 110 nm Multicolor,

live-cell imaging

2P-SIM [93]

Illumination pattern is
generated by temporal
modulation and spatial

scanning of 2P excitation
with larger sample
penetration depth.

Lateral: 145 nm
(imaging depth greater

than 100 µm)
Thick sample imaging

SHG-SIM [98]
Enables direct imaging of
biological tissues that are

non-centrosymmetric.

Lateral: 231 nm;
Axial: 693 nm SHG imaging

Other techniques

DL-SIM [113,117]

Fewer raw images are
required to achieve

multicolor live-cell SRM
under low-light

illumination conditions.

Lateral: 160 nm Multicolor,
live-cell imaging

PSIM [125,129, 132]

Higher spatial frequency
interference patterns is

created by near field
surface plasmon waves.

Lateral: 75 nm Near-field 2D imaging

QP-SIM [145,157,158] Compatible with QP and
fluorescence imaging.

Lateral: QP: 230 nm;
SIM: 180 nm;

Axial: QP: 210 nm

3D multi-modal
imaging

Among the correlations between SIM and other SRM techniques, SIM-STORM uses
dual-channel image registration to achieve multicolor imaging of biological structures.
However, reconstructed SIM-STORM images require a complicated process because the
SIM and STORM images must be generated in the same region of interest, but they all differ
in terms of field of view and pixel size. To preserve high SIM-STORM reconstructed images,
the SIM image size must be manually adjusted to ensure that the two images completely
overlap. Thus, the SIM-STORM system can be further optimized on the reconstruction
algorithm that can automatically generate an interest region and overlap the two images.

SIM-STORM is expected to help solve critical biological problems by accurately map-
ping the location of proteins within complex structures. Electron microscopes, which
easily attain nanometer and sub-nanometer resolutions, can image more delicate biological
structures. Recent developments of SRM have correlated it with other SRM techniques
and electron microscopy methods, achieving good results [159–161]. Hence, future sig-
nificant advancements could be achieved by the correlation of SIM-STORM and electron
microscopy for multicolor imaging. This could potentially offer further improvements in
the localization accuracy of a given protein within its biological context.
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We introduced SIM-STED, which can effectively enhance the harmonics and expand
the frequency cutoff at low optical power in theory. The improvement in resolution and
the reduction in background fluorescence are theoretically compatible. However, SIM-
STED cannot solve the aberration problem. In future research, the correlation of adaptive
optics techniques and SIM-STED should further minimize aberration limitations caused
by background fluorescence [162–164], can be truly applied to biological sample imaging,
and can advance from the theoretical research stage. Another novel development direction
is to generate an SIM pattern on STED excitation light to increase the resolution two-fold
of STED.

In correlating SIM with other microscopy techniques, SIM-TIRF stands out. The supe-
rior optical slicing ability of TIRF microscopy can increase the frame rate achievable at each
time point, providing a critical window on living specimens for physiological research. In
future, SIM-TIRF technology will be extended to the imaging of biological tissues with
more complex structures and morphologies, such as macromolecular yeast nuclear–pore
complexes [165,166]. Although theoretical research on the yeast nuclear–pore complex
has reached an advanced stage, experimental verification remains challenging [167–169].
Another meaningful research area in the future is the SIM-cTIRF. It has been demonstrated
that SIM-cTIRF enables the use of a low-NA objective lens to increase the field of view with-
out sacrificing SIM resolution; however, challenges remain with this method. For example,
the power loss of the waveguide chip results in reducing the visibility of fringes. There
are many reasons for power loss, such as hot spots, process defects, etc. In future work, it
is possible to reduce power loss by designing different waveguide chip geometries and
discovering more suitable materials for waveguide chips. More importantly, waveguide
chips can manipulate light, providing new ideas for beam shaping. Photonic chips may be
used to replace mechanical modulation, which opens up an unprecedented new path for
the high-speed imaging of living cells.

The spatial scanning technique provided a solution to realize 2P excitation. Correlative
2P-SIM and SHG-SIM can effectively suppress background fluorescence and is suitable
for imaging thick samples. Several 2P-SIM and SHG-SIM methods have been reported in
recent years. However, most involve filtering out second harmonic frequency components,
thus providing limited lateral resolution enhancement. Therefore, adding high-frequency
information components to the sample to further improve the resolution is an important
frontier for future development. Multifocal excitation and line scanning modulate the
fringe grating pattern rapidly to improve the time resolution.

DL-SIM correlates SIM with a deep neural network trained on raw images to visualize
specific complex cell compartments, such as microtubules, mitochondria, etc. This has been
applied to realize multicolor, live-cell super-resolution imaging of these cell compartments.
Despite the impressive results achieved using current DL-SIM methods, it is noteworthy
that image transformation is essentially unstable. Although DL-SIM uses a significant
amount of raw data for training to achieve good statistical transformation, it is impossible
to obtain SRM images of every detail. Regardless of which DL algorithm is adopted,
asymptotic stability relative to the details of all aspects of the acquired image is relatively
straightforward to achieve, even though the ideal value cannot be attained.

Correlating SIM with SPs realizes SRM imaging with low phototoxicity and high-speed
capability by exciting light with appropriate frequencies on suitable custom-designed metal
structures. As a result of the SPF-SIM precise phase modulation of SPs without mechanical
control, this method is expected to achieve a wide range of applications, including chemical
analysis and maskless lithography. In spite of its unique advantages, the technique also has
its intrinsic limitations. It can only form high-resolution images of objects close to the metal
surface; thus, it is only suitable for 2D imaging and cannot be extended to the 3D field.

Multi-mode compatible techniques correlating SIM with QP imaging realized the
combination of the coherent and fluorescence imaging system in the SIM framework. The
synergy for the two techniques enables comprehensive study of biological components with
different molecular and biophysical/biochemical functions. SIM-QP can offer a unique
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ability to the application of whole cells imaging, such as cell growth, differentiation, loco-
motion, cytokinesis, and apoptosis [170–172]. In future work, SIM may have multi-mode
compatibility with imaging modes apart from QP. For example, photo-acoustic tomog-
raphy (PAT) [173,174] is an ultrasonic imaging technique. In the past decade, ultrasonic
imaging has been one of the most attractive techniques in the biomedical field, and it is
widely applied to clinical imaging, such as magnetic resonance imaging [175], position
emission tomography [176], computed tomography, etc. [177–180]. This technique, excited
by thermoelastic expansion, is used to reconstruct optical absorption distribution. Com-
pared with QP imaging, the scattering of PAT imaging is two to three orders of magnitude
weaker in samples. Consequently, the correlative SIM with PAT can provide good resolu-
tion with non-invasive imaging of internal structure and function, which is a good future
development prospect.

In addition, the wide popularity of correlative SIM in biological and chemical sensor
also benefits greatly from its three distinct advantages, i.e., target specificity, compatibility
with live samples, and wide field of view. Yet, the resolution quantitative imaging of
fluorescent biosensors [181–183] is still challenging. Therefore, the development of a
variety of protein fluorescent probes is also vitally important. In conclusion, alongside
the progress in sample preparation, image processing, and other related technologies,
correlative SIM will provide more increasingly meaningful data for biomedical research
and create new insights for nanoscale research in the future.
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