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Abstract: A novel thiosemicarbazide-based fluorescent sensor (AFC) was developed. It was success-
fully applied to detect hypochlorite (ClO−) with fluorescence quenching in bis-tris buffer. The limit
of detection of AFC for ClO− was analyzed to be 58.7 µM. Importantly, AFC could be employed as
an efficient and practical fluorescent sensor for ClO− in water sample and zebrafish. Moreover, AFC
showed a marked selectivity to ClO− over varied competitive analytes with reactive oxygen species.
The detection process of AFC to ClO− was illustrated by UV–visible and fluorescent spectroscopy
and electrospray ionization–mass spectrometry (ESI–MS).
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1. Introduction

Concern for the recognition of reactive oxygen species (ROS) has increased because of
the significant role of ROS in physiological and pathological processes [1–3]. ClO−, which
is one of the significant ROS, is critically important in the human immune system, and has
effective antibacterial and anti-inflammatory properties [4–7]. In addition, quantification
of ClO− is so important in the environmental system because it is significantly used in in-
dustrial fields, for example, as disinfectant and bleaching agent [8–10]. Abnormal amounts
of ClO− in organisms cause several diseases, such as inflammation and cardiovascular
disease [11–15]. Hence, it is absolutely critical to develop selective and practical sensors for
determining the amount of ClO− in life systems [16–20].

Various analytical methods for the detection of ClO−, such as colorimetric analysis,
fluorescent detection, electrochemistry, and spectrophotometry, have been developed
so far [21–23]. Fluorescence analysis, one of the analytical methods, has the merits of
high sensitivity, specificity, fast response time, and manageability [24–27]. A number of
fluorescent ClO− sensors have been developed in the past decade, with several functional
groups like hydrazide, thioether, thione, thioester, and C=N bond [28–33]. Nevertheless,
many of them have some problems, such as poor water solubility, complicated synthesis
methods, and nonbiological application. Therefore, it is necessary to develop fluorescent
chemosensors with good water solubility and biological application.

Acridine and its derivatives are good fluorophores for chemosensors with high fluo-
rescence quantum yield [34,35]. Moreover, amino acridine could readily form conjugated
Schiff bases with aldehyde or ketone through the imine formation [36–38]. On the other
hand, thiourea moiety is hydrophilic and well known to interact with reactive oxygen
species like ClO− [39–43]. Hence, we expected that a compound with thiourea moiety
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linked to amino acridine may be a water-soluble chemosensor capable of detecting ROS
like hypochlorite.

Here, we present a distinctly hypochlorite-specific fluorescent chemosensor, AFC,
based on acridine moiety. Sensor AFC showed obvious fluorescent quenching and spectral
variation with ClO−. In particular, AFC could monitor ClO− in zebrafish and environmen-
tal samples. With ESI–MS (electrospray ionization–mass spectrometry) analysis and 1H
NMR titration, the sensing process of AFC for ClO− was proposed.

2. Experiments
2.1. Materials and Equipment

All the reagents and solvents used for synthesis and spectroscopic measurements
were purchased from Sigma-Aldrich. A Varian spectrometer (Mercury) was used to get
13C NMR (100 MHz) and 1H NMR (400 MHz) spectra. Elemental analysis for C, H, N, and
S was carried out by using a Vario Macro/Micro-Cube elemental analyzer. PerkinElmer
UV/Visible and fluorescence spectrometers were employed for UV–VIS and fluorescent
measurements. A single-quadrupole ACQUITY QDa was employed to get ESI mass data.

2.2. Synthesis of FHC (2-Formyl-N-(Furan-2-Ylmethyl)Hydrazine-1-Carbothioamide)

An amount of 2 mmol of furfuryl isothiocyanate was dissolved in EtOH (7 mL). Then,
2 mmol of formic hydrazide was added to the solution. The mixture was shaken until a
pale-yellow-colored powder precipitated. The pale-yellowish powder was filtered and
scrubbed with methanol and ether [44]. Yield, 65%. 1H NMR in DMSO-d6: 9.88 (s, 1H),
9.40 (s, 1H), 7.98 (s, 1H), 7.95 (s, 1H), 7.56 (s, 1H), 6.38 (t, 1H), 6.23 (d, 1H), and 4.66 (s, 2H).

2.3. Synthesis of AFC ((E)-2-((Acridin-9-Ylimino)Methyl)-N-(Furan-2-Ylmethyl)Hydrazine-
1-Carbothioamide)

An amount of 1 × 10−3 mol of FHC was dissolved in EtOH (7 mL). Then, 1 × 10−3

mol of 9-aminoacridine (AAD) was dissolved in the solution. The mixture was stirred
overnight, until the yellow powder precipitated. The yellow powder filtered was scrubbed
with ether. Yield, 48%. 1H NMR in DMSO-d6, δ: 8.45 (s, 1H), 8.40 (d, 2H), 7.80 (d, 2H),
7.65 (m, 3H), 7.32 (t, 2H), 6.45 (m, 2H), and 5.17 (s, 2H). 13C NMR in DMSO-d6: δ = 166.0,
148.3, 148.1, 143.4, 141.8, 130.2, 128.0, 130.2, 128.0, 123.4, 121.7, 112.80, 110.8, 109.4, and
40.4 ppm. ESI mass: m/z calcd for [C20H17N5OS + H+ + DMSO]+: 454.14; found, 454.47.
Elemental analysis: calcd (%) for C20H19N5O2S (AFC + H2O): C, 61.05; H, 4.87; N, 17.80; S,
8.15; found (%): C, 60.96; H, 4.35; N, 17.44; S, 7.99.

2.4. General Procedures

A stock solution of AFC was prepared by dissolving AFC (0.05 mmol) in DMSO
(5.0 mL). An aqueous NaClO solution (500 µmol, 11%) was diluted in distilled water to
make a concentrated solution (100 mM). Stock solutions of varied anions and ROS were
prepared in bis-tris buffer. Fluorescent and UV–visible data were recorded in a near-perfect
aqueous media (10 mM, bis-tris, pH 7.0).

2.5. Imaging in Zebrafish

Under the previous conditions were cultured zebrafish embryos [45]. An amount
of 66 µL of a stock AFC solution (15.2 mM) was diluted to 20 mL bis-tris buffer. The
zebrafish embryos (6 days old) were treated with the diluted AFC (50 µM) for 20 min
and then smoothly washed with E2 media to get rid of the excess of AFC. Afterward, the
zebrafish were divided into two groups. One was control group and the other group was
experimental group. In the experimental group, the zebrafish were further dealt with
50 µM of ClO− for 15 min and scrubbed with E2 media. The zebrafish were narcotized by
adding ethyl-3-aminobenzoate methanesulfonate. The fluorescence images of the zebrafish
were obtained by a fluorescent microscope.
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3. Results and Discussion

Chemosensor AFC was obtained by the imine formation reaction of 9-aminoacridine
and FHC (Scheme 1). It was verified by 1H NMR, 13C NMR, and ESI–MS. The detecting
process of AFC to ClO− was studied by UV–VIS spectroscopy, fluorescent spectroscopy,
and 1H NMR titration.
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Scheme 1. Synthesis of AFC.

3.1. Spectroscopic Investigations of Chemosensor AFC to ClO−

We examined the fluorescent responses of AFC to varied anions (Br−, CN−, S2−, I−,
SCN−, OAc−, ClO−, F−, H2PO4

−, N3
−, BzO−, NO2

−, and Cl−) and ROS species (H2O2,
AcOOH, and tBuOOH) in buffer (Figure 1). Sensor AFC exhibited an intense fluorescence
emission at 455 nm with excitation at 350 nm (Φ = 0.8438). When 290 equivalents of
varied anions were added, respectively, to the AFC solution, only ClO− induced a distinct
decrease in fluorescence emission (Φ = 0.0197). By contrast, the other anions did not make
substantial changes in fluorescent intensity, and AcOOH showed some increase in intensity
at 455 nm. This result verified that chemosensor AFC could be served as an efficient
fluorescent sensor for selectively detecting ClO−.
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Spectroscopic titrations were implemented to investigate the physical responses of
AFC to ClO− (Figure 2). In addition to ClO−, the intensity of the fluorescence emission
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of AFC at 455 nm gradually decreased, and the detection limit (CDL = 3σ/k) for ClO−

turned out to be 58.7 µM (Figure S1). In the same way, UV–VIS titration was carried
out (Figure 3). The result showed a consistent increase of absorbance at 320 and 490 nm
and a decrease of absorbance at 400 nm with an apparent isosbestic point at 420 nm. In
addition, the time-dependent UV–VIS change of AFC showed that AFC was stable enough
for 1 h (Figure S2).
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The binding process of AFC to ClO− could be demonstrated with the result of the
ESI-mass experiment (Figure S3). The peak at m/z = 211.294 can be assigned as [AAD-O
+ H+]+ (calcd, m/z = 211.090). In addition, we can assign the peak at m/z = 232.287 as



Chemosensors 2021, 9, 65 5 of 11

[FHC + MeOH + H+]+ (calcd, m/z = 232.080). The outcome suggests that the C=N bond
of AFC would be cleaved by ClO− to produce FHC and AAD. Then, AAD was further
oxidized to AAD-O by another ClO−. To get more information on the cleavage of AFC,
1H NMR titration was conducted (Figure 4). Consequently, the imine proton (H6) of AFC
disappeared due to the cleavage of the imine bond. The amine protons (H5 and H5′ ) of
AAD-O and the aldehyde proton (H6′ ) of FHC appeared.
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To further understand the sensing mechanism, we investigated the fluorescent and
UV–VIS changes of AAD and FHC upon the addition of ClO− (290 equivalents). The
fluorescent intensity of AAD was substantially decreased by adding ClO−, suggesting
the oxidation of AAD into AAD-O (Figure S4). The UV–VIS spectra of AAD showed an
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increase of absorbance at around 490 nm (Figure S5). On the other hand, FHC with/without
ClO− showed no fluorescence intensity and an increase in UV–VIS absorbance at 280 nm
(Figures S6 and S7). Therefore, these observations and the results of the ESI–MS and 1H
NMR titration drove us to propose that the C=N bond of AFC was cleaved by ClO−, and
then the resultant AAD was further oxidized to AAD-O by another ClO− (Scheme 2).
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To inspect the capability of AFC as a ClO− sensor, we conducted a competitive test
in the presence of ClO− mixed with other anions of the same equivalents (Figure 5).
The result demonstrated that all other analytes did not disturb the detection of ClO−

by AFC. Therefore, sensor AFC could be applied as an efficient chemosensor for ClO−

without the interference of other analytes. Moreover, the pH condition is critical for
cellular behaviors and physiological processes. To evaluate the pH dependence of AFC, we
measured fluorescent intensity in the range of pH 6–9 (Figure 6). AFC displayed intense
fluorescence at pH 6–9, and the addition of ClO− to AFC induced fluorescence quenching
at pH 7–9. These outcomes imply that AFC could successfully detect ClO− at pH 7–9. In
addition, fluorescent analysis in the real samples including tap and drinking water was
implemented for the practicality of probe AFC. The trustworthy values of recoveries and
relative standard deviation (RSD) gave proof of the potential application of AFC to detect
ClO− in real samples (Table 1).

Table 1. Analysis of ClO− a.

Sample ClO− Added
(µM)

ClO− Found
(µM) Recovery (%) RSD (n = 3) (%)

Drinking water 0.0 0.0

40.0 b 39.7 99.15 0.24

Tap water 0.0 0.00

40.0 c 38.3 95.64 0.18
a Condition: [AFC] = 1 × 10−5 M in buffer (pH 7.0). b,c 40.0 µM of ClO− was artificially added.
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3.2. In Vivo Imaging in Zebrafish

In order to test the sensing feasibility of the biological application of AFC to ClO−

fluorescent bioimaging, experiments were conducted with zebrafish (Figure 7). We first
incubated zebrafish with AFC (50 µM), followed by treatment with ClO− (50 µM). While
the zebrafish treated with only probe AFC exhibited a green fluorescence in the swim
bladder and eyes, the zebrafish with additional treatment of ClO− showed no fluorescence
signal. The bioimaging experiments demonstrated the detecting ability of AFC to trace
ClO− in living organisms. Importantly, AFC is the second fluorescent turnoff sensor for
ClO− applicable to both real water samples and zebrafish [46–51].
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4. Conclusions

A novel thiosemicarbazide-based chemosensor AFC for detecting ClO− was synthe-
sized from the reaction of aminoacridine and a new aldehyde group synthesized from
formic hydrazide. Probe AFC selectively recognized ClO− over other anions including ROS
in aqueous solution. With ClO−, probe AFC showed remarkable fluorescence quenching.
The limit of detection of AFC for ClO− was calculated to be 58.7 µM. Additionally, probe
AFC could be applicable for quantitative analysis in real water samples and zebrafish.
Importantly, AFC is the second fluorescent turnoff sensor for ClO− applicable to both real
water samples and zebrafish. The dependable results in this study shows that AFC could
be used as an efficient chemosensor for detecting ClO− in aqueous solution and small
organisms by a fluorescent quenching method.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/chemosensors9040065/s1. Table S1: Fluorescent turnoff chemosensors for recognizing
hypochlorite in aqueous solutions. Figure S1: Determination of the detection limit of AFC for ClO−

based on the change of intensity at 455 nm. Figure S2: The time-dependent UV–VIS change (400 nm)
of AFC with/without ClO−. Figure S3: Positive-ion ESI mass spectrum of AFC upon the addition
of NaClO. Figure S4: Fluorescent change of AAD with/without ClO−. Figure S5: UV–VIS change
of AAD with/without ClO− Figure S6: Fluorescent change of FHC with/without ClO−. Figure S7:
UV–VIS change of FHC with/without ClO−.
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