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Abstract: Table grape quality is of importance for consumers and thus for producers. Its objective
quality is usually determined by destructive methods mainly based on sugar content. This study
proposed to evaluate the possibility of hyperspectral imaging to characterize table grapes quality
through its sugar (TSS), total flavonoid (TF), and total anthocyanin (TA) contents. Different data pre-
treatments (WD, SNV, and 1st and 2nd derivative) and different methods were tested to get the best
prediction models: PLS with full spectra and then Multiple Linear Regression (MLR) were realized
after selecting the optimal wavelengths thanks to the regression coefficients (β-coefficients) and the
Variable Importance in Projection (VIP) scores. All models were good at showing that hyperspectral
imaging is a relevant method to predict sugar, total flavonoid, and total anthocyanin contents. The
best predictions were obtained from optimal wavelength selection based on β-coefficients for TSS
and from VIPs optimal wavelength windows using SNV pre-treatment for total flavonoid and total
anthocyanin content. Thus, good prediction models were proposed in order to characterize grapes
while reducing the data sets and limit the data storage to enable an industrial use.

Keywords: hyperspectral imaging; phenolics; anthocyanin; table grapes; total soluble solids; PLS;
MLR; prediction; model

1. Introduction

Grapes are one of the most consumed fruits in the word, as fresh fruit, grape juice,
raisins, and wine. About 36% of grape production concerned the fresh fruit consumption
(International Organization of Vine and Wine statistics). The European production of table
grapes (~1.9 million tons) is mainly located in the Mediterranean area, with the domination
of Italy (61%), Greece (16%), Spain (15%), and France (1.5%) [1]. The French production
of table grapes is mostly in Vaucluse and Tarn-et-Garonne. About 80% of the production
concern only three varieties: Alphonse Lavallée, Chasselas, and Muscat de Hambourg.
French table grape production (~30,000 tons) represents approximately 40% of the national
consumption, while the 60% remaining is mainly imported from Spain and Italy.

The right commercial harvest of table grapes is usually determined by different param-
eters like skin color, texture softening, titratable acidity, total soluble solids, and sometimes
with flavonoid content, and aromatic compounds [2,3]. Visual attributes of table grapes,
such as intensity and uniformity of color, large size of berries, and brightness are the main
characteristics that influence consumer choice [4,5]. Color is of high importance to assess
quality in the food industry [6]. Furthermore, some studies have found clear evidences that a
greater consumption of fresh grapes decreases the risk of cardiovascular diseases and can-
cer [7,8]. This beneficial effect is mainly related to the presence of minerals, fibers, vitamins,
and phytochemical compounds including flavonoids and anthocyanins [9,10]. However,
the concentration of these quality attributes changes during postharvest storage and thus
influence sensory perception and nutritional value of table grapes.
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The quality parameters of table grapes can be assessed by a few methods [11–13].
Nevertheless, conventional analytical methods need a preparation of the sample, they
are destructive and limit thus their use in an on-line/in-line industry for quality monitor-
ing [14–16]. These methods require furthermore time and solvents and generate chemical
waste. Despite being time consuming and expensive, the destructive analytical approach
provides data for a limited number of samples, and, thus, their statistical relevance could
be limited [17]. Several studies in the field of post-harvest are focused on non-destructive
analytical techniques, which are fast, reliable, and allow to analyze a higher number of
samples and repetitions of the same batch in real time.

The development of non-destructive techniques suitable to increase the number of
samples analyzed is the objective of current researches, in any field. The possibility to get
real-time information of quality attributes of fruits and a robust statistical data analysis is
clearly aimed at these studies [18]. Infrared spectroscopy (FT-NIR and ATR-FTIR) has been
applied for the prediction of procyanidin concentration [19], total polyphenol content [20],
malvidin-3-O-glucoside, pigmented polymers and tannin contents [21] in cocoa, green
tea, and fermenting red wine, respectively. This technology has also been employed to
determine, pH, total soluble solids, glycerol, and gluconic acid in grape juice [22] and to
measure condensed tannins and the dry matter in homogenized red grape berries [23].

Hyperspectral imaging spectroscopy (HIS) is a non-destructive spectroscopic tech-
nique that records hundreds of narrow-wavelength bands and spatial positions [24]. This
technique is a system combining imaging and spectroscopy [25,26], providing the spatial
information of spectra obtained from each pixel in the hyperspectral image [25,27]. A
hyperspectral image is thus a three-dimensional (3D) cube that includes spatial information
in two dimensions (of x rows and y columns) and spectral information in one dimension
(of λ wavelengths) [28]. The hyperspectral image cube “hypercube” consists of a series of
sub-images at small interval wavelengths ranging from 400 to 2500 nm in VIS and NIR
spectral regions.

Over the last decade, HIS has been applied for fruit and vegetable quality assess-
ment [24,27], food safety control [29–31], and classification tool [32,33]. Likewise, total
acidity, pH, soluble solid content, technological maturity, total anthocyanin concentra-
tion, antioxidant activity, and total phenolic compounds in grapes were determined using
VIS−NIR hyperspectral imaging of few fruits [34,35] but a lack of study appeared for table
grapes. HIS has an advantage compared to the spectroscopic method, i.e., it acquires the
spectral information on a larger area of the fruit surface analyzed and therefore consid-
ers the heterogeneity within the berries, on the contrary to a spectrophotometer [35,36].
Moreover, the conventional RGB imaging detects only surface features and could not be
able to measure the chemical composition of the fruit. The HSI technique, instead, acquires
information in a different region of the electromagnetic spectrum, which is strictly linked to
the chemical composition of the samples [37]. The HIS has also the advantage of receiving
spatially distributed spectral responses at each pixel of a fruit image. Another advantage
is that once appropriate calibration models are developed, they can be re-inserted in the
hypercube to create chemical mapping images. For the grape industry, the interest would
be to separate berries one by one depending on their average representative spectrum, and
not spatial information within each berry, in order to get several final batches for different
transformations, storage conditions, or quality arrays.

The objective of this study was to determine if hyperspectral imaging would be
able to predict the sugar content and the concentration of Total Flavonoids and Total
Anthocyanins of white and red table grapes. Additionally, as keeping whole spectra for all
samples would generate big data to manage and a higher time to analyze in a potential
on-line tool, the second objective was to define if it was possible to reduce the number
of wavelengths with still having good models of prediction. Thus, this study developed
calibration and prediction models for three quality attributes of table grape based on
hyperspectral imaging:
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I. Developing partial least square (PLS) models to validate the correlation between
hyperspectral imaging spectra and Total Anthocyanins (TA) and Total Flavonoid
(TF) contents and Total Soluble Solids (TSS), using the visible and short-wave near-
infrared region;

II. Selecting the lowest number of optimal wavelengths, based on regression coefficient
(RC) and Variable Importance in Projection (VIPs) algorithms, which gave the highest
correlation between the spectral data and the three selected quality parameters;

III. Developing Multiple Regression Models (MLR) using spectra from only the optimal
wavelengths and then checking the validation of the developed calibration models.

The novelty of this study was to estimate the potential of hyperspectral imaging as
possible prediction model supplier for quality parameters (TF, TA, and TSS) usable for all
table grapes. Moreover, the use of specific wavelengths and not the full spectra for these
products represented a new approach.

2. Materials and Methods
2.1. Chemicals

The following chemicals were used: ethanol 96%, hydrochloric acid ≥ 37%, (FlukaTM,
Muskegon, MI, USA), malvidin-3-O-glucoside 92.7% (Extrasynthese, Genay, France), and
(+)-catechin 99.2% (Sigma–Aldrich, Saint-Louis, MI, USA). All the chemicals were at least
of analytical grade. Ultrapure water was prepared from deionized water obtained a Milli-Q
system (Millipore SAS, Molsheim, France).

2.2. Samples

Seven table grapes varieties were bought in regional markets at commercial harvest
ripeness: Three white table grapes (Sugarone Superior Seedless, Thompson Seedless, and
Victoria) and four red/black table grapes (Sable Seedless, Alphonse Lavallée, Lival, and
Black Magic). Alphonse Lavallée and Lival were chosen because they represented French
cultivars produced in the south-east of France and mostly consumed throughout the
country. The other 5 cultivars were chosen because they are largely diffused around the
world. Approximately 5 kg of clusters randomly selected were sampled for each cultivar.
A subsample of 50 berries of each variety, with short attached pedicels, was collected from
different bunch parts (shoulders, middle, and bottom). Grapes were then washed and
gently dried with absorbent paper, stored at 4 ◦C until the HIS acquisitions.

For the 7 varieties, 50 berries of each were analyzed in triplicate by hyperspectral
imaging, then they were chemically analyzed, leading to 350 mean spectra and 350 TF and
TSS and 200 TA. Then, PLS and MLR were applied on pre-treated data.

2.3. Hyperspectral Imaging System (HIS)

The system is composed of the following components (Figure 1): (a) a hyperspectral
imaging camera (Pika L, Resonon, Bozeman, MT, USA) coupled with an objective lenses
(Xenoplan 1.4/23, Schneider-Kreuznach, Bad Kreuznach, Germany); (b) an illumination
unit, which consists of four 35 W quartz tungsten halogen (QTH) MR16 35 W lamps
adjusted at angle of 45◦ to illuminate the camera’s field of view; (c) a mounting tower; and
(d) a transport stage (PS-12-20-1.0, Servo Systems Co., Rockaway, NJ, USA), with motor
(DMX-J-SA-17, Arcus Technology Inc., Livermore, CA, USA). The sensor has 900 spatial
channels each with 281 spectral channels covering the range from 387 to 1026 nm. The
maximum spectral resolution is 2.1 nm. The camera was set up at 450 mm from the target.
The spectral images were collected in a dark room where only the halogen light source
was used. The HIS was controlled by a PC with the software SpectrononPRO (Resonon,
Bozeman, MT, USA) for image acquisition.
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Figure 1. Hyperspectral imaging system: (a) a charge-coupled device (CCS) camera, (b) a spec-
trograph with a standard C-mount zoom lens, (c) quartz tungsten halogen (QTH) lighting unit,
(d) translation stage, and (e) a PC with image acquisition software.

2.4. Image Acquisition

The samples were kept at room temperature (20 ◦C) for 1 h prior to the imaging
acquisition in the reflectance mode. The hyperspectral image of each sample (one berry)
was recorded in three different berry positions corresponding to berry rotations of approx-
imately 120◦ between positions. The berries reflectance measurement was made along
the berry “equator” when considering the pedicel to be the “pole.” This is a common
practice reported by several articles [38,39]. The hyperspectral images were recorded by the
SpectrononPRO software (Resonon, Bozeman, MT, USA) using an exposure time of 12 ms
and a stage speed of 11 mm s−1 with a gain of 10. The spectral data in the wavelength
range of 411–1000 nm was used in the data analysis for removing noise and reducing data
redundancy out of this range. For each sample (50 berries), three reflectance spectra were
collected, corresponding to the berry rotations, and averaged over the spatial dimension.

2.5. Preprocessing of Hyperspectral Images

All the acquired images were processed and analyzed using SpectrononPro 5.1 Hyper-
spectral Imaging System software (Resonon, Bozeman, MT, USA). The hyperspectral images
were firstly corrected with a white and a dark reference (WD). The dark reference was used to
remove the effect of dark current of the CCD detectors, which are thermally sensitive.

The corrected reflectance (R) is estimated using the following Equation (1):

R =
S− D
W − D

∗ 100 (1)

where S is the intensity of an image, W is the intensity of the white reference image (Teflon
white board with 99% reflectance), and D is the intensity of the dark reference image (with
0% reflectance) recorded by turning off the lighting source with the lens of the camera
completely covered. The corrected reflectances were the basis for the subsequent image
analysis to extract the spectral response of each fruit, select effective wavelengths, and
predict physicochemical parameters.

2.6. Data Analysis
2.6.1. Determination of Reference Parameters: Total Soluble Solids (TSS), Total
Anthocyanin (TA), and Total Flavonoid Content (TF)

Immediately after image acquisition, each berry was subjected to the determination of
Total Soluble Solids (TSS), Total Flavonoids (TF), and Total Anthocyanins (TA). Each berry
was weighed, manually peeled, and the juice was collected separately. Total Soluble Solids
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were measured by a portable refractometer (Mettler Toledo Refracto 30PX) with a 0.2◦Brix
incertitude. The skins were separately weighed and extracted four times with 7.5 mL of
hydrochloride ethanol solution (ethanol/water/hydrochloric acid 70/30/1 v/v/v). The
samples were shaken for 60′ with a horizontal shaker VXR vibrax (IKA-Werke, Staufen,
Germany) at 1500 rpm and centrifuged at 5000 rpm for 5′, and the supernatant was collected
in a volumetric flask. The supernatants were collected together, brought to the volume of
25 mL and, stored at −80 ◦C until analyses. The quantification of TA and TF was carried
out spectrophotometrically by recording the UV–visible spectra in the range of 220–700 nm
using a Safas UV mc2 spectrophotometer (Safas, Monaco City, Monaco) and measuring
the absorption values at 280 and 520 nm, as previously reported [40]. The results were
expressed as mg (+)-catechin equivalents/kg fresh grape and mg malvidin-3-O-glucoside
equivalents/kg fresh grape for the flavonoids and anthocyanins, respectively.

2.6.2. Spectral Analysis for Predicting Quality Attributes

• Collecting spectral data

Only regions of interest (ROIs) were collected as already described [41] and an average
spectrum was calculated by averaging the relative reflectance spectra.

• Spectra pre-treatments

To overcome or reduce unwanted spectral variation, baseline shifts, and various noise,
a series of pre-treatment methods was applied on the mean spectral data to decrease the
influence of high-frequency random noises, the nonuniformity in samples, and the surface
scattering. Before building the validation model, different Equations (2) to (4) were used
for spectral pre-treatments [42]:

SNV: Standard Normal Variate (SNV). The average intensity (Amean) and standard
deviation (ASD) of the spectrum are calculated and inserted in Equation (2):

Bi =
Ri − Rmean

RSD
(2)

1st derivative: The first derivatives A′i was calculated using the symmetric difference
quotient 1st derivative (3):

R′i =
Ri+1 − Ri−1

2∆λ
(3)

2nd derivative: The second derivate A′′i was calculated using the symmetric difference
quotient 2nd derivate (4):

R′′i =
R′ i+1 − R′ i−1

2∆λ
. (4)

With i = 1 to N, N being the number of samples.

2.6.3. Hyperspectral Imaging Calibration

• Model establishment

The use of chemometrics in modeling spectral data is widely employed, being consid-
ered as a standard procedure for building predictive models in the analysis of hyperspectral
images. The partial least squares (PLS) analysis between one quality attribute (TA and TF
or TSS) and the spectral data (average spectra with 276 wavelengths in the range from 411
to 1000 nm) was conducted using XLSTAT software (Addinsoft, Paris, France, 2019). No
outlier detection was performed in order to keep all spectra and the heterogeneity due to
the vegetal material.

A total of 350 reflectance mean spectra were obtained from 350 berries. The calibration
and validation sets were established by ordering the fruit samples according to their
physicochemical references. Briefly, 4 samples per varieties, i.e., 28 samples in total were
randomly selected for the prediction set. The two highest and two lowest values were
assigned to the calibration set. Afterward, two-thirds of the samples were randomly
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selected as calibration data and one-third of the samples were defined as validation data in
a 2:1 leave-one-out procedure. Thus, calibration set and validation set were independent.

PLS regression used to develop calibration models was carried out with two calibration
sample sets: (i) N = 207 samples for TF and TSS and (ii) N = 116 samples for TA. The building
of PLS models for TF and TSS took into account both the white and red table grape cultivars,
while for TA was considered only the red and rosé grape cultivars since white grapes do
not have anthocyanins. To reduce the probability of an over fitting of the experimental
data [43], PLS models with 1–15 latent variables (LVs) were fitted, and the model with
a number of PLS factors that maximized the coefficient of determination (R2

cal) for the
calibration and minimized the root mean square error of calibration (RMSEC) was selected.
These two parameters would allow the evaluation of the models.

• Hyperspectral imaging model validation

Two validation sets (N = 103 samples for TF and TSS; N = 56 samples for TA) were
used to calculate the root mean square error of validation (RMSEV), the coefficient of
determination (R2

val), the Bias, and the Ratio Performance Deviation (RPD) of the PLS
models as follow [42]:

RMSEV =

√√√√ 1
N
×

N

∑
i=1

(
yre f

i − yi

)2
(5)

Bias =
∑N

i=1

(
yre f

i − yi

)
N

(6)

RPD =
SD (yre f

i : yre f
i+1)

RMSEP
(7)

where N is the number of samples, R is the number of PLS factors, yre f
i is the reference

value for sample i, and yi is the predicted value for sample i.

• Hyperspectral imaging prediction

The quality of prediction of the models was tested using 4 samples per variety. The
level of prediction is discussed base on R2

pr and RMSEP values. The RMSEP was calculated
as follow:

RMSEP =

√√√√ 1
N
×

N

∑
i=1

(
yre f

i − yi

)2
(8)

• Selection of optimal wavelengths

Spectral wavelengths in hyperspectral images are characterized by their large degree
of dimensionality with collinearity and redundancy. Researchers are often interested in
finding the most important wavelengths which contribute to the evaluation of quality
parameters and eliminate wavelengths having no discrimination power. After proving the
good performance of the PLS models on the validation set, the next step was to select only
the wavelengths that showed the maximum spectral information.

The regression coefficients (RC), also called β-coefficients, and the Variable Impor-
tance in Projection (VIP) scores were applied to select the most informative wavelengths,
which provided the best PLS calibration model built with the full spectrum as variables.
The wavelengths that corresponded to the highest absolute values of β-coefficients were
considered optimal wavelengths [44]. Based on the studies conducted by Olah et al. [45],
all wavelengths at which the VIP scores were above a threshold of 1.0 (highly influential)
were selected and compared with those identified using β-coefficients. In this study, only
the wavelengths with highest β-coefficients (absolute values) from one side and highest
VIP scores (above the threshold of 1.0) on another side were selected to establish Multiple
Linear Regression (MLR) models, instead of using the whole spectral range. Moreover, all
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the wavelengths with VIP score above 1 (spectral windows) were also used to carry out
another PLS regression model in order to improve its performance.

2.6.4. Statistical Analyses

One way ANOVA on quality attributes of table grapes was performed with XLSTAT
2019.1 software (Addinsoft, Paris, France). Mean values were separated with Tukey’s test
(p < 0.05) to present the significant differences between varieties.

3. Results
3.1. Grape Composition

Berries from each grape variety were characterized by their sugar content (Total
Soluble Solids (TSS)), their Total Flavonoid content (TF), and Total Anthocyanin content
(TA). Table 1 shows that the selected varieties had different total flavonoid content, from
201 mg kg−1 FW for Victoria grapes to 1642 mg kg−1 FW for Lival grapes, with white
grapes presenting the lowest phenolic concentration as expected. This result is in agree-
ment with Mikulic-Petkousek et al. [46], which showed that Victoria variety has a low
phenolic content. Similarly, a large amount of total anthocyanin content was observed from
217 mg kg−1 FW for Alphonse Lavallée to 590 mg kg−1 FW for Sable seedless. Their sugar
concentration was between 14.0 g/100 g (Victoria) to 24.8 g/100 g (Alphonse Lavallée) cor-
responding to ripening level [2]. Statistics showed that TF, TA, and TSS were significantly
dependent on the grape cultivar.

Table 1. Grape composition. Total Anthocyanins (TA), Total Flavonoids (TF) Content, and Total Soluble Solids (TSS) of table
grapes. a b c, and d letters within the same column indicate significant differences among table grape cultivars according to
Tukey-b test (p < 0.05). FW: fresh weight.

Grape Cultivars Origin TF
(mg kg−1 F)

TA
(mg kg−1 FM)

TSS
(g 100 g−1)

Sable Seedless South Africa 1131 ± 267 c 590 ± 163 a 19.0 ± 1.8 b

Alphonse Lavallée South Africa 829 ± 153 d 217 ± 61 c 24.8 ± 1.1 a

Lival France 1642 ± 374 a 588 ± 222 a 15.0 ± 1.7 cd

Black Magic Italy 1279 ± 259 b 399 ± 132 b 15.4 ± 0.9 c

Sugarone Superior Seedless South Africa 162 ± 43 e 0 14.7 ± 1.0 d

Thompson Seedless Egypt 826 ± 136 d 0 15.5 ± 1.9 c

Victoria Italy 201 ± 28 e 0 14.0 ± 1.5 e

p < 0.001 p < 0.001 p < 0.001

3.2. Spectral Profiles

The mean reflectance spectra profile of each grape variety is presented in Figure 2.
These spectra obtained by HIS showed clear differences between the grape varieties, as
already reported by Baiano et al. [47] on 7 other varieties. White grapes exhibited important
reflectance from about 500–650 nm on the contrary of reds. Chlorophyll pigments absorb
indeed around 540 nm giving the green-yellow color to these varieties as hypothesized
by Costa et al. (2019) [48]. All grapes presented much higher reflectance percentage
between 700 and 950 nm, with a mix of intensity between reds and whites but varieties
showed similar trends depending on the variety color: whites had higher intensity around
700–720 nm, which decreased to 950 nm, and reds showed flattened bell curve with a
maximum around 820 nm. Absorption band at 840 nm is mainly due to sugar [47] and
more than 960 nm due to water [48,49].
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Figure 2. Mean reflectance spectra profiles obtained by hyperspectral imaging spectroscopy. Sable
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ple), Lival (turquoise), Black Magic (orange), and Vittoria (clear blue) table grapes samples.

3.3. Modelization of Table Grape Composition Using the Whole Spectral Range of 411–1000 nm

PLS were developed to establish the relationship between the spectral data and
the corresponding TA, TF, and TSS content analyzed by conventional chemical method.
First of all, the whole dataset was dedicated to select the best pre-treatment for each
quality parameter. The results are reported in Table 2. Five parameters were used to
select the best model: R2, LVs, RMSE, and Bias. RMSE has to be minimized and RPD
has to be maximized [48]. HIS data were relevant [49] for modelizing Total Flavonoid,
Total Anthocyanin contents, and TSS, since all determination coefficients (R2

cal and R2
val)

were over 0.87 (Table 2). All pretreatments showed good results. Thus, we decided for
similar range of R2 and RMSE, to select the pre-treatment leading to the lower number
of LVs, that is to say the SNV pre-treatment for all quality parameters. In details, for the
modelization of TF, the SNV pre-treatment used only 9 LVs, with R2

cal = 0.94, R2
val = 0.93,

with RMSEV = 141 mg kg−1. For Total Anthocyanins, the SNV model was characterized
by R2

cal = 0.93, R2
val = 0.95, and RMSEV = 47 mg/kg with only 3 LVs. Finally, for TSS,

the model, thanks to 10 latent variables, generated a R2
cal = 0.94 and a R2

val = 0.91 with
RMSEV = 1.1 g/100 g. As for residual validation deviation (RPD), selected pre-treatments
(mainly WD) generated values close to 4, which suggest the capability of the models to
provide a good quantification and satisfactory prediction of TF, TA, and TSS [50,51]. The
relatively low number of LVs of the models generated, and in particular for TA, and the
fact that the models were built using grape berries of seven different cultivar contributed to
the robustness of the models. Moreover, measured data vs. validated data were plotted for
the three models selected (Figure 3). These graphs validated the selected models proving
the ability of hyperspectral imaging data to predict TF, TA, and TSS in table grapes.
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Table 2. Performance of partial least square (PLS) models depending on data pre-treatments for predicting TF, TA, and SSC,
using full spectra (400–1000 nm). TF: Total Flavonoids, TA: Total Anthocyanins and TSS: Total Soluble Solids, WD: white
and black correction, der: derivative, SNV: Standard Normal Variate. LVs: number of latent variables.

Variable
Pre-

Treatment LVs
Calibration Set Validation Set Prediction Set
R2

c RMSEC R2
val RMSEV BIAS RPD R2

pr RMSEP

TF

SNV 9 0.94 146 0.93 141 −9.45 3.90 0.92 159
1st DER 9 0.95 128 0.93 148 5.2 3.70 0.96 120

WD 12 0.94 134 0.94 132 −0.13 4.16 0.95 130
2nd DER 5 0.93 149 0.89 183 13.0 3.01 0.89 196

TA

SNV 3 0.93 59 0.95 47 6.7 4.61 0.98 33
1st DER 4 0.93 61 0.92 56 6.8 3.87 0.97 39

WD 6 0.91 65 0.93 56 5.0 3.90 0.97 41
2nd DER 4 0.90 70 0.91 65 14.0 3.32 0.96 50

TSS

SNV 10 0.94 1.0 0.91 1.1 −0.05 3.45 0.95 0.9
1st DER 6 0.93 1.0 0.91 1.2 −0.07 3.33 0.93 1.1

WD 15 0.96 0.8 0.94 0.9 0.01 4.17 0.96 0.8
2nd DER 5 0.92 1.1 0.88 1.4 −0.01 2.90 0.92 1.1
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coefficient, RMSE: root mean squared error.

It is interesting to note that for TF and TSS a bimodal effect could be observed. That
phenomenon is due to the white varieties in the case of TF, since they had the lowest TF
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values (as expected) compared to the other varieties. Nevertheless, the prediction of low
values of TF could be considered uncertain since the concentration of TF below 500 mg/kg
seemed not to follow a linear trend even if they positively contribute to the model (data
not shown). For TSS, that effect was due to the rosé grapes since they presented the highest
TSS values.

The predictions of these quality parameters were good since the determination coeffi-
cients obtained ranged between 0.92 and 0.98 for the pre-treatments selected above. The
RMSEP was in the same order of magnitude than those of the validation and calibration
sets, and even a bit better, i.e., the RMSEP were of 33 mg/kg for TA and of 0.9 for TSS,
whereas the RMSEV were of 47 mg/kg for TA and 1.1 for TSS. This result shows that the
method used for the validation was good. Thus, these results showed also that all grape
varieties could be gathered in a single model.

3.4. Modelization of Table Grape Composition from Optimal Wavelengths Obtained by
β-Coefficients

Hyperspectral data with hundreds of contiguous wavelengths for each pixel of image
are a great issue for data processing. Therefore, the selection of optimal wavelengths is very
important to reduce the computation time, to simplify the potential prediction model and
further to satisfy the real-time inspection [52]. In this section, regression coefficients (RC)
resulting from full-spectrum PLS models, were employed to select the key wavelengths
aiming to establish the Multiple Linear Regression (MLR) models. Figure 4 shows the
values of β-coefficients for the quality attributes Total Flavonoids, Total Anthocyanins, and
TSS from the HIS data. The optimal wavelengths are those having the highest absolute
values of β-coefficients (framed in the figure). Thus 17 specific wavelengths were selected
for TF: 434.3, 485.5, 501.9, 543.4, 608.2, 631.4, 648.3, 675.9, 688.7, 707.9, 779, 792, 805, 807.2,
829, 905, and 945.9 nm; 8 for TA: 434.3, 543.4, 604, 616.6, 669.5, 796.3, 943.6, and 952.5 nm;
and 23 for TSS: 418, 434.3, 485, 501.9, 539.2, 543.4, 585.1, 646.2, 661, 678, 697.2, 716.5, 792,
802, 805, 807.2, 829, 833, 905.9, 910.3, 939.2, 945.9, and 952.5 nm. Table 3 presents the
accuracy and robustness of RC-MLR models built using the selected wavelengths. The
model for TF showed R2 = 0.94 and 0.95 for the calibration and validation set respec-
tively and RMSEV = 128 mg/kg. For TA, the model had R2

cal of 0.93, R2
val of 0.95 with

RMSEV = 48 mg/kg, and the model for TSS presented a value of R2
cal = 0.95, R2

val = 0.93,
and RMSEV = 1.0 g/100 g. To visualize these models, measured data vs. validated data
were plotted (Figure 5). The correlation between the spectra data and the Total Flavonoid
content (R2

val = 0.95, Figure 5A) that of Total Anthocyanin content (R2
val = 0.95, Figure 5B)

and that of TSS (R2
val = 0.93, Figure 5C) was good with points concentrated on the line

y = x and relatively narrow scattering of data showing the low error of the model. As
for Figure 3, the bimodal effect for TF and TSS was observed in Figure 5. These results
seem obvious since the reduction in wavelengths for the model should not lead to a loss
of information.



Chemosensors 2021, 9, 71 11 of 21Chemosensors 2021, 9, x FOR PEER REVIEW 12 of 21 
 

 

 

Figure 4. Values of -coefficients for all wavelengths for predicting quality attributes in table 

grape for the quality attributes, Total Flavonoids (A), Total Anthocyanins (B), and Total Soluble 

Solids (TSS) (C). 

Figure 4. Values of β-coefficients for all wavelengths for predicting quality attributes in table grape
for the quality attributes, Total Flavonoids (A), Total Anthocyanins (B), and Total Soluble Solids
(TSS) (C).



Chemosensors 2021, 9, 71 12 of 21

Table 3. Multiple Linear Regression (MLR) model performance for Total Flavonoids (TF), Total Anthocyanins (TA) and
Total Soluble Solids (TSS) from optimal wavelengths selection based on β-coefficient of the best PLS full spectra analysis.

Variable Optimal Wavelengths (nm) Calibration Set Validation Set Prediction Set
R2

c RMSEC R2
val RMSEV Bias RPD R2

pr RMSEP

TF

434.3, 485.5, 501.9, 543.4,
608.2, 631.4, 648.3, 675.9,

688.7, 707.9, 779, 792, 805,
807.2, 829, 905, 945.9

0.94 136 0.95 128 0.9 4.27 0.93 149

TA 434.3, 543.4, 604, 616.6, 669.5,
796.3, 943.6, 952.5 0.93 55 0.95 48 4.5 4.51 0.97 39

TSS

418, 434.3, 485, 501.9, 539.2,
543.4, 585.1, 646.2, 661, 678,
697.2, 716.5, 792, 802, 805,

807.2, 829, 833, 905.9, 910.3,
939.2, 945.9, 952.5

0.95 0.9 0.93 1.0 −0.06 3.82 0.97 0.7
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Thus, our models for TF, TA, and TSS showed good quantification and good prediction
potential due to their RPD values (Table 3) [49–51]. However, the values of Bias are rather
important for TA but that could be improved.

The prediction of the data from the test set showed also good results with R2 over 0.93.
The RMSEP obtained were in the range of RMSEC and RMSEV, with values slightly higher
for TF but lower with TA and TSS.
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Although the elimination of variables was approximately 92.0%, the MLR models had
good performances. Compared to the full spectra, the MLR models were better for generat-
ing the model and for the prediction for TA, lower for TSS, and similar for TF. The fact that
an improvement of the model is observed in some cases using MLR could be attributed
to the use the optimal wavelengths neglecting unnecessary wavelengths, mitigating the
problems of collinearity and overfitting [53]. Therefore, it could be demonstrated that
regression coefficient algorithm is useful and effective for the selection of key wavelengths
in predicting TF, TA, and TSS content in table grape.

3.5. Modelization of Table Grape Composition from Optimal Wavelengths Obtained by VIPs Score

The VIP scores resulting from the best preprocessing PLS regression model were used
to develop a robust model by selection of feature-related wavelengths for TF, TA, and TSS
of table grapes. The performance of the developed model by MLR depended largely on the
cut-off value of the VIP scores. Generally, the “greater-than-one” rule is used to identify
optimal wavelengths [54]. Only the wavelengths with highest value of VIP scores, above
the threshold of 1.0, were selected to establish MLR models, whereas the wavelengths
with VIP scores above 1 (spectral windows) were selected to perform a new PLS model.
As shown in Figure 6, the optimal wavebands selected from all 283 wavebands were 10
(434.3, 543.4, 610.3, 633.5, 697.2, 781.1, 785.5, 805, 905.9, and 910.3 nm), 3 (710, 785.5, and
943.6 nm), and 8 (434.3, 501.9, 543.4, 610.3, 656.8, 686.5, 802.8, and 809.4 nm) for TF, TA,
and TSS, respectively. Table 4 presents the accuracy and robustness of MLR models for
TF, TA, and TSS based on VIP score. The model for the quality attribute TF led to R2 of
0.90 for both calibration and validation sets and with RMSEV = 178 mg/kg. The model
for TA content showed R2 of 0.93 for the calibration set and 0.95 for the validation set with
RMSEV = 37 mg/kg. For the sugar content (TSS), the VIPs-MLR model had R2

cal equal to
0.86 and R2

val of 0.83 with RMSEV = 1.6 g/100 g.

Table 4. Performance of MLR models for predicting Total Flavonoids (TF), Total Anthocyanins (TA), and the Total Soluble
Solids (TSS) using the optimal wavelengths extracted from VIPs of the best PLS full spectra analysis.

Variable Optimal Wavelengths (nm) Calibration Set Validation Set Prediction Set
R2

c RMSEC R2
val RMSEV Bias RPD R2

pr RMSEP

TF 434.3, 543.4, 610.3, 633.5, 697.2,
781.1, 785.5, 805, 905.9, 910.3 0.90 178 0.90 178 −11.3 3.09 0.93 155

TA 710, 785.5, 943.6 0.93 44 0.95 37 5.6 5.90 0.98 33

TSS 434.3, 501.9, 543.4, 610.3, 656.8,
686.5, 802.8, 809.4 0.86 1.5 0.83 1.6 −0.06 2.46 0.86 1.4

The MLR models based on the VIPs wavelengths selection showed values of RPD close
or higher to 2.5, which indicated that these models were good enough to have a high utility
value model [52] and was over 4 for TA showing a good prediction potential. However,
these results showed a declined validation accuracy of TF and TSS models comparing to
the ability of full-spectrum PLS and RC-MLR models. On the contrary, the VIPs-MLR
model for TA was much better than the other with a RMSEV only of 37 mg/kg instead of
47 mg/kg in the case of the full spectra. Once more, to check the quality of the models,
the measured data vs. validated data were plotted (Figure 7). All graphs showed that
validated data fitted with measured data. The model is particularly good for TA with more
narrow spread of the data. Again, the bimodal effect can be observed for TF and TSS. In
addition, as for Figure 3, the data show that information was not lost with the reduction
in wavelengths.
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The prediction was good for all quality parameters (R2 > 0.86) (Table 4). The prediction
errors were, however, higher for TF and TSS compared to those obtained with the full
spectra and the MLR models, whereas the prediction was improved for TA.

The last trial was to select all the wavelengths with VIP score above 1 (spectral win-
dows). New VIPs-PLS models were then build (Table 5). The VIPs-PLS model to predict TF
(spectral windows: 434.3, 539.2–543.4, 608.2–610.3, 620.8–639.8, 690.8–796.3, 829, and 835.5–
943.6 nm) generated a R2

cal = 0.96, R2
val = 0.95, and RMSEV = 122 mg/kg, using 14 LVs.

The model for predicting TA content (spectral windows: 697.2–802.8 and 842.1–957 nm)
was fed by 8 LVs, and generated R2

cal = 0.95, R2
val = 0.96, and RMSEV = 33 mg/kg. For TSS

(spectral windows: 420.1, 424.1, 428.2–432.3, 436.3, 479.3–481.4, 535.1–541.3, 545.4, 555.9,
560, 564.2, 585.1–639.8, 673.8–688.7, 716.5–720.8, 864, 881.6, 890.5–892.7, 899.3, 912.5–914.8,
921.4–934.7, 939.2, and 954.8–957 nm), the VIPs-PLR model led to R2

cal = 0.94, R2
val = 0.89,

and RMSEV = 1.3 g/100 g, using 14 LVs. RPD values suggested that all three models
were good enough to quantify and predict the corresponding TF, TA, and TSS values [55].
Figure 8 shows the curves measured data vs. validated data for these best models. Again,
the models fitted well with the measured data since the data spread is rather narrow for all
three parameters, suggesting good validation models from specific windows HIS data. The
simplified VIPs-PLS model performed with slight increase in the validation accuracy of TF
and TA compared to the ability of full-spectrum PLS models, in terms of determination
coefficient, RMSE, and RPD values. However, the best validation model for TSS was built
using the whole spectral data.
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Table 5. Performance of Variable Importance in Projections (VIPs)-PLS models for predicting Total Flavonoids (TF), Total
Anthocyanins (TA), and the Total Soluble Solids (TSS) using only the optimal wavelengths windows extracted from VIPs of
PLS full spectra analysis.

Variable Spectral Windows (nm) LVs
Calibration Set Validation Set Prediction Set

R2
cal RMSEC R2

val RMSEV Bias RPD R2
pr RMSEP

TF
434.3, 539.2–543.4,

608.2–610.3, 620.8–639.8,
690.8–796.3, 829, 835.5–943.6

14 0.96 120 0.95 122 12.0 4.50 0.95 128

TA 697.2–802.8 and 842.1–957 8 0.95 38 0.96 33 1.5 6.50 0.99 27

TSS

420.1, 424.1, 428.2–432.3,
436.3, 479.3–481.4,

535.1–541.3, 545.4, 555.9, 560,
564.2, 585.1–639.8,

673.8–688.7, 716.5–720.8, 864,
881.6, 890.5–892.7, 899.3,
912.5–914.8, 921.4–934.7,

939.2, 954.8–957

14 0.94 1.0 0.89 1.3 −0.01 3.00 0.94 1.0
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Concerning the prediction ability of VIPs-PLS models, Table 5 showed that again the
determination coefficients were over 0.94, with errors in the same range than the calibration
and the validation sets. The prediction models were even better with this method using
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spectral windows than with the full spectra, considering both R2 and RMSEP for all three
quality parameters TF, TA, and TSS.

4. Discussion

The possibility to use the full spectra from HIS to generate a relevant PLS-model to
predict the sugar content was indeed reported by Baiano et al. [47] using the same device.
These authors developed a calibration models able to predict TSS of white and red table
grape with R2

val of 0.94 and 0.93, respectively. Our method was, however, valid for all
grape varieties, with all reds, rosés, and whites, which would be easier to manage from
an industrial point of view. In addition, the results of the present study were comparable
to those of another work carried out by Gomes et al. [56], in which the prediction of TSS
in wine grape was performed using two different model development techniques, i.e.,
PLS regression and Neural Networks. The obtained values of R2 of prediction were 0.92
for both PLS regression and Neural Networks with RMSEP of 0.94◦Brix and 0.96◦Brix,
respectively. Hence, a good capacity of correlation was achieved in numerous other works
on prediction of TSS for table and wine grapes [24,38,57,58].

Other authors have also reported good performance of linear models to predict the
total anthocyanin content, with R2

CV > 0.94 using spectral data in Vis-NIR [59] and NIR
ranges [60] or total phenols content, with R2

CV = 0.89 using the spectral data in Vis-NIR
range [57,61]. Moreover, several studies also reported very good performance of nonlinear
models to predict the TA content in whole Port and Cabernet sauvignon wine grape using
the hyperspectral imaging device in Vis–NIR range [38,56,62]. Thus, our results were at
least as good as those of other works but for the first time showed the relevance of HIS on
red and white table grapes.

Our results highlighted that not only hyperspectral imaging is a relevant method to
assess TA, TF, and TSS content but also the reduction in data is possible using MLR method
with β-coefficients (RC method) or variable importance in the projection VIP. RC methods
were already reported to be relevant to predict sugar content in the case of lychee fruit [55]
and the total polyphenols concentration in cocoa beans [60,63]. Sen and co-workers [64]
have also applied VIP selection to build OPLS models for the prediction of chemical
parameters of wine by combined use of visible and mid-infrared (MIR) spectroscopies.
These authors have built models able to predict anthocyanin compounds, total phenol
content, and TSS of red wine with R2

val ranging between 0.77 and 0.96.
The use of VIP in a PLR model (specific windows) was applied by Sen and co-

workers [64] to build OPLS models for the prediction of chemical parameters of wine
by combined use of visible and mid-infrared (MIR) spectroscopies. These authors have
built models able to predict anthocyanin compounds, total phenol content, and TSS of
red wine with R2

val ranging between 0.77 and 0.96. Our work is thus in adequation with
the previous studies and showed for the first time that reducing data, thanks to VIP or
β-coefficients from HIS, is suitable for table grapes. No similar results have been found
in table grapes for the control of Total Flavonoids and the Total Anthocyanins, although
they have been found in wine grapes and other matrices with errors of the same order of
magnitude [24,59,60,65].

Looking now at the other quality factor of a calibration model, the measurement of
TSS by refractometry led to a standard deviation ≤ 1.8 (Table 1) in which was included
the incertitude due to the refractometer and to the heterogeneity of the berries. Using
full spectra, the PLS model only led to a RMSEP of 0.9. The reduction in the number of
wavelengths reduced it to 0.7◦Brix for β-coefficients wavelength selection. For TA, the
lowest RMSEP was obtained thanks to VIPs-PLS (27 mg/kg), followed by both full spectra
and VIPs-MLR from optimal wavelengths (33 mg/kg). For TF, the prediction models
are much better for high level of flavonoid content. RMSEP decreased from 374 mg/kg
(reference method, Table 1) to 128 mg/kg with VIPs score with specific windows or
149 mg/kg with β-coefficients. However, for very low concentration of flavonoids, like the
Victoria variety, the models induced higher RMSEP.
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Hyperspectral imaging is a tool, which could provide relevant on-line information
about Total Flavonoid, Total Anthocyanins, and Total Soluble Solids through the use of
consistent validation models. The models from the full spectra generated by SNV pre-
treatment and the fact that the models were built using grape berries of seven different
cultivar contributed to the robustness of our models. The possibility to use the same pre-
treatment for all parameters and all varieties is interesting and could limit the complexity
of the method and avoid mistakes in a professional use.

The reduction in data using only the wavelength with highest β-coefficient (absolute
values) from one side, and spectral windows obtained from all the wavelengths with
VIPs > 1 on another side, would allow an industrial use needing less computer data
memory and quicker answers. That method could be used also as quality control. Database
has first to be expanded not only to strength our current models but also to test new
non-linear models. Another step would be to implement hyperspectral imaging on an
industrial conveyor belt to take into account not only elements such as vibration on the
conveyor but also analytical speed to provide real-time information. Moreover, in an on-line
perspective, the localized information could be added for separating berries from a batch
in order to get two or several final batches for different transformations or different quality
array, depending on berry average spectrum, thus, on their composition. Nonetheless,
that tool could anyway be used for a rapid table grape characterization in producer or
industry places.
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