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Abstract: Gas sensor drift is an important issue of electronic nose (E-nose) systems. This study
follows this concern under the condition that requires an instant drift compensation with massive
online E-nose responses. Recently, an active learning paradigm has been introduced to such condition.
However, it does not consider the “noisy label” problem caused by the unreliability of its labeling
process in real applications. Thus, we have proposed a class-label appraisal methodology and associ-
ated active learning framework to assess and correct the noisy labels. To evaluate the performance
of the proposed methodologies, we used the datasets from two E-nose systems. The experimental
results show that the proposed methodology helps the E-noses achieve higher accuracy with lower
computation than the reference methods do. Finally, we can conclude that the proposed class-label
appraisal mechanism is an effective means of enhancing the robustness of active learning-based
E-nose drift compensation.

Keywords: electronic nose; drift compensation; active learning; noisy label problem; mixed Gaussian
model; expected entropy

1. Introduction

An electronic nose (E-nose) is a kind of odor-sensing device containing a gas sensor
array and proper recognition algorithms [1,2]. The gas sensor is a fundamental part of an E-
nose, and the issue of gas sensor drift heavily impedes the performance stability of E-noses.
To address this problem, users are often demanded to perform a series of drift calibration
experiments to retrain the recognition algorithms, which leads to compulsory pauses during
routine works. It is apparently unsuitable for online tasks requiring continuous gas sensing,
such as toxic gas alarm [3,4], air pollution monitoring [5,6], gas source tracking [7,8], and
intensity measurement of gas mixtures [9–11].

Regarding studies on E-noses, drift compensation is still appealing to researchers
focusing on two points: signal preprocessing approach [12–18] and machine learning
model [19–25]. For signal preprocessing, classical signal decomposition approaches
(e.g., principal component analysis (PCA), orthogonal signal correction, independent com-
ponent analysis, and wavelet analysis) have been used to filter out driftlike signals. On the
other hand, machine learning methods have tried to obtain proper data space projection
for drift data via a multiobjective model and associated solution process. Generally, both
types more or less require a number of drift calibration samples with class labels provided
from extra drift calibration experiments or algorithmic inferences. However, it seems to be
unrealistic in online odor monitoring for extensive and successive E-nose responses, and
weak in robustness due to uncertain class labels.

To gain valuable drift calibration samples and associated class labels without any time-
consuming experiments, an active learning (AL) paradigm has been introduced in the latest
academic publication [26]. As Figure 1 shows, AL allows drift compensation (classification
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model updating) without any time pauses during odor recognition. It selects the most
informative drift calibration samples in a small number from incoming massive drift gas
sensor array responses. Meanwhile, selected samples are labeled by a human expert (odor
discriminator) immediately. Then, both selected samples and provided labels are added
into a drift calibration set to update classification models of E-noses. However, the AL
paradigm highly trusts the expert’s annotation, which may deteriorate the recognition
performance when the expert is affected by a series of considerable factors (e.g., inattentive
errors, lack of experience, and environmental disturbance). Here, we name this matter as
“noisy label” problem.
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In this study, we aim to detect the suspect class labels of drift calibration samples
and ask the expert to relabel. The proposed methodology, named mislabel probability
estimation method based on a Gaussian mixture model (MPEGMM), performs class-label
appraisal by indicating the potential mislabel probability of each drift calibration sample.
In the proposed methodology, under the assumption that drift responses vary slowly with
time, the mislabel probability is calculated according to the label disagreement degree
between a Gaussian model and the human expert. Then, the labeled samples with high
mislabel probability should be relabeled and achieve correct class labels from the human
expert. Finally, the renewed drift calibration set can be used for classification model
updating. Two E-nose drift datasets, one a public benchmark and the other collected from
an E-nose we designed, were generated and collected for the compensation performance
assessment. The experimental results show that the proposed method can satisfactorily
identify the mislabeled drift calibration samples on presented data. In the meantime, the
recognition results after the relabeling of the proposed methodology reach higher accuracy
than those of the reference methods. Finally, the novelty behind MPEGMM is reflected
threefold: (1) supporting online drift calibration under suspect class labels, (2) adopting a
Gaussian mixture model to endure slow data distortion caused by gas sensor drift, and
(3) relabeling budget to be adaptively determined to avoid unnecessary computation.

The rest of the paper is organized as follows: Section 2 describes the related works on
noisy-label detection of AL. In Section 3, we illustrate the proposed method and associated
steps. Then, the experimental results and discussions are presented in Section 4. Finally,
Section 5 concludes this paper.

2. Related Works

The class label queried from an expert is conventionally assumed as an oracle in AL
methods. That is to say, common AL methods do not contain an appraisal mechanism for
obtained class labels. Thus, typical active learning methods are incapable of resisting the
negative effect caused by incorrect class labels. These incorrect class labels are seen as noisy
labels in the drift calibration set for E-nose drift compensation.

As far as we know, the “noisy label” problem of AL can be treated by class-label
appraisal methods in two manners. The first manner is to generate a reliable label from
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multiple experts [27–29]. Although this manner can quickly provide the denoising label,
the cost of using multiple experts may become a serious concern in practical usage. Thus,
the second strategy depends on a single expert instead of multiple experts to save labor
costs: a mislabeled instance would be decided based on the label information of tested
instances [30]. Considering that a k-NN classifier is sensitive to label noise, Wilson et al.
adopted 3-NN to remove the instance whose label was different from the classifier out-
put [31]. Further, Bouguelia et al. measured the disagreement level of classifier outputs
from one expert, judging the incorrect labels on the likelihood [32,33]. Additionally, a
novel bidirectional AL method picked up the mislabeled sample with minimum expected
entropy under different label assumptions [34]. However, the above solutions were de-
signed for data in a unique distribution, which was unsuitable for drifted data with gradual
distribution movement. Thus, it is necessary to propose a one-expert methodology for a
noisy-label problem on slow-varying data. As shown in Table 1, we compare our proposed
MPEGMM with the other methods mentioned in three aspects (accuracy, adaptation, cost).
It can be seen that our method not only obtains higher accuracy and adaptation but also
consumes less cost.

Table 1. Comparison between mislabel probability estimation method based on a Gaussian mixture
model (MPEGMM) and other methods.

Method Accuracy Adaptation Cost

Multiple experts [27–29] High High High
k-NN [31] Mid Mid Mid

Disagreement measure [32,33] Mid Low Low
Bidirectional AL [34] Mid Mid Mid

MPEGMM High High Low

3. Methodology
3.1. Improved Active Learning Framework for E-Nose Drift Compensation

AL attempts to select a limited number drift calibration samples from historical
instances for classifier updating. The common steps of AL-based drift calibration are
summarized in Algorithm 1.

Algorithm 1. Traditional AL-based drift calibration method.

Input: Drift calibration set L, unlabeled historical sample set U.
N: number of selected samples (budget).
F(x): an instance selection strategy.

Output: updated classifier h.
1: Initialize: copy set L’ = L, current selected-sample set S = ∅.
2: for n = 1, 2, . . . , N do
3: Select the most valuable instance x* by F(x).
4: Label x* as y by a single expert.
5: Update L’: S← S ∪ {x*,y}, L’← L ∪ S, U← U/{x*}.
6: Update current classifier h by L’.
7: end for
8: Return classifier h.

Especially, we adopted “uncertainty sampling (US)” as the sample selection strategy
F(x) in following sections due to its popularity. Among various measuring metrics of US,
we chose “posterior probability margin” (marginu) [35] to represent the uncertainty of an
instance xu as follows:

marginu = f h(ŷc1 |xu)− f h(ŷc2 |xu) (1)

x∗ = argmin
xu∈U

marginu (2)

where f h(·) represents the posterior probability computed by a single classifier h, and
ŷc1 and ŷc2 represent the categories predicted by the maximum and second maximum
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posterior probability, respectively. Therefore, smaller marginu means greater uncertainty.
As Formula (2) describes, the selected sample x* should be the one with the minimum
marginu in the unlabeled historical sample set U.

Considering that the expert might provide noisy (error) labels, it is necessary to detect
the mislabeled instances and deliver them to the expert for relabeling. Hence, we modified
the traditional framework by injecting a “class-label appraisal” mechanism (as shown in
Figure 2). After the classifier is updated by first-round labeling, the added part detects
mislabeled instances, queries the class labels of mislabeled instances from the expert again,
and reupdates the drift calibration set with refreshed labels. As a result, a corrected
drift calibration set can be formed for classifier updating without any interruption to
online recognition.
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3.2. Class-Label Appraisal

The goal of class-label appraisal is to evaluate the correctness of the expert-given class
labels depending on historical drift calibration samples. Considering that drift data are
slow-varying samples, we suppose that most of the drift calibration samples are approxi-
mately accorded with the same data distribution. Accordingly, we adopted the Gaussian
distribution as the assumed distribution for each class of drift calibration samples, because
it can be suited for newly drifted data distribution, even with an existing small number of
previous data. Thus, we named our proposed class-label appraisal methodology mislabel
probability estimation based on a Gaussian mixture model (MPEGMM). In addition, the
MPEGMM can automatically determine the optimal relabeling budget (number of drift
calibration samples to be relabeled) to avoid over-relabeling.

Considering that a sample of E-noses is always a multidimensional vector, we compute
the category possibility of a sample x according to multivariable Gaussian distribution
as follows:

p(x|ui, Σi) =
1

(2π)D/2|Σi|1/2 exp
{
−1

2
(x− ui)

T
Σi
−1(x− ui)

}
(3)

where ui and Σi denote the mean vector and covariance matrix, respectively, of the drift
calibration samples belonging to category ci, and D represents the dimension of the sample
x. As a result, the whole drift calibration set L can be summarized by a Gaussian mixture
model (GMM) with K components.

pM(x) =
K
∑

i=1
αi · p(x|ui, Σi)

s.t.
K
∑

i=1
αi = 1, αi > 0

(4)
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where K represents the total number of categories, and αi is the mixture coefficient of ci.
To measure the reliabilities of the expert’s labeling, we calculate the posterior probability of
each given label y by the Bayes theorem:

pM(y = ci|x) =
p(y=ci)·pM(x|y=ci)

pM(x)

= αi ·p(x|ui ,Σi)
K
∑

l=1
αl ·p(x|ul ,Σl)

(5)

where pM(y = ci|x) is the posterior probability that sample x is on the i-th distribution
component of a GMM. For sample x, we define the maximum posterior probability as label
reliability (LR):

LR = argmax
i∈{1,2...,K}

pM(y = ci|x) (6)

Higher LR implies that the current label y = ci is more reliable. In other words, ci is
more likely the true category of x than other categories. Thus, we estimate the mislabel
probability of each instance as follows:

perr(x) =
LR− pM(y = yg|x), ymp 6= yg

f (LR), ymp = yg
(7)

where ymp and yg denote the labels obtained from Formula (6) and the expert, respectively.
f (·) is a decreasing function measuring the mislabel probability. In this study, we select a
typical nonlinear decreasing function as follows:

f (x) =
1

1 + ew·x , w > 0 (8)

If ymp 6= yg, perr(x) depends on the difference between LR and pM(y = yg|x). It is reason-
able that the expert may annotate a label correctly when the possibility of an annotated
label is similar to the maximum output of a GMM. Then, a small perr(x) is gained and vice
versa. If ymp = yg, f (·) makes perr(x) inverse to LR. Larger LR means lower probability
of sample x being labeled incorrectly. We calculate the expected entropy increment over
sample set G:

IG = − ∑
xj∈G

K

∑
i=1

pM(yj= ci|xj)· log(pM(yj= ci|xj)) (9)

∆Ix = IG=U − IG=(U/x) (10)

where IG=(U/x) and IG=U represent the expected entropy of unlabeled historical sample set
U excepting and containing x, respectively. Larger ∆Ix means sample x is more significant
for reducing the uncertainty of the drift calibration set L. Further, we have

δx = perr(x) · ∆Ix (11)

Greater δx denotes that sample x is the one with both higher error labeling probability
and greater uncertainty. Accordingly, the sample with the greatest δx is the one needing
relabeling the most.

In order to control the relabeling budget, we estimate the number of right-labeled
samples as follows:

Q =
1
N
· ∑

x∈S
(1− perr(x)) (12)

where N represents the capacity of the current selected sample set S. After that, we can
determine the relabeling budget θ as follows:

θ = [N · (1−Q)] (13)
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where [.] is a rounding function.
Details of the MPEGMM methodology are summarized in Algorithm 2.

Algorithm 2. Mislabel probability estimation method based on a Gaussian mixture model.

Input: drift calibration set L, unlabeled sample set U, selected sample set S.
Output: updated drift calibration set L.
1: Initialize L’ = L ∪ S, αi = 1/K, i = 1, 2, · · · , K.
2: for each instance x in S do
3: Calculate ui and Σi for each class instances in L’, generate GMM as Formulas (3) and (4).
4: Calculate the mislabel probability perr(x) as Formula (7).
5: Calculate the expected entropy increment ∆Ix of x as Formulas (9) and (10).
6: Calculate the indicator δx as Formula (11).
7: end for
8: Estimate the budget of relabeling θ as Formulas (12) and (13).
9: Sort all selected instances in descending order of δx.
10: Relabel θ instances with higher δx, denote the corrected S as S’.
11: Update the calibration set L: L← L ∪ S’.
12: Return updated drift calibration set L.

4. Experiments and Results
4.1. Datasets

We use two datasets to evaluate the performance of the proposed method. One
(dataset A) is a public benchmark from the UC Irvine Machine Learning Repository [22],
while the other (dataset B) is collected from an E-nose system designed by us.

4.1.1. Dataset A

Dataset A was collected by an E-nose with 16 gas sensor arrays (four commercial
series: TGS2600, TGS2602, TGS2610, and TGS2620) over 36 months. Considering that
eight features were abstracted from each gas sensor response, one experiment can be
denoted as a vector with 128 (16 × 8) dimensions. The acquisition time of an intact
experiment took at least 300 s to complete, divided into 100 s for the gas injection phase
and at least 200 s for the cleaning phase. Meanwhile, the experimental environment is
controlled at a stable level (10% R.H., 25 ± 1 ◦C). Finally, a total of 13,910 samples were
collected through the detection of six kinds of pure gaseous substances in the concentration
range of 10–1000 ppmv (acetone, ammonia, acetaldehyde, ethylene, ethanol, and toluene).
Especially, dataset A was divided into 10 batches by the authors according to the acquisition
time-series. To accommodate E-nose drift compensation scenarios based on active learning,
we integrated the small-size batches (batches 4 and 5) into a bigger-size one: batch 4&5.
Figure 3 provides the sample distribution of the integrated nine batches. We can observe
an obvious difference between two adjacent batches caused by gas sensor drift effects.

4.1.2. Dataset B

Dataset B was generated from our E-nose system over 4 months. As Figure 4 shows,
the designed E-nose system consists of three parts: a gas sensor array, sample injection
system, and control module. In an intact experiment, both the baseline and test stages
lasted 3 min., maintaining the flow rate at 100 mL/min. Additionally, the cleaning stage
lasted 6 min., maintaining the flow rate at 200 mL/min. For feature extraction, we used H0
and H to represent the steady-state voltage values of baseline and test stages, respectively.
Thus, the abstracted feature of each gas sensor response can be expressed as follows:

∆H = (H − H0)/H0 (14)

Considering the 32 gas sensors (listed in Table 2) in our E-nose system, each experiment
can be represented as a 32-dimensional sample vector. We performed 441 experiments (30%
R.H., 20 ± 1 ◦C) in 4 months on seven objects, including beer, wine, liquor, black tea, green
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tea, pu’er tea, and oolong tea. First, we mixed the original solution and distilled water
at a volume ratio of 1:4. Especially, the original solution of tea samples was obtained by
steeping 2 g of solid tea leaves and 200 mL of distilled water for 5 min. Then the mixed
liquid was injected into a closed container and sealed for 10 min. Finally, the upper gases
were used as experimental samples. Then, we collected these 441 samples as dataset B
and divided them into three batches (63, 189, and 189 samples) in time order. Regarding
dataset A, we plotted the PCA scatter points in Figure 5 to show the sample distribution of
dataset B. We noticed that the distributions of batches 2 and 3 were similar owing to close
acquisition time, while batch 1 showed significant variation on data distribution. Therefore,
we can infer that drift calibration is needed for recognizing samples on varied distributions.
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4.2. Experimental Setup

In order to simulate online drift scenarios of an E-nose, two experimental settings
described in [22] were used as follows:

Setting 1 (long-term drift): Batch 1 was regarded as a training set, while the other
batches were assumed to be drift data for successive testing.

Setting 2 (short-term drift): Batch K was regarded as a training set, while batch (K + 1)
was assumed to be drift data for successive testing.

To validate the effectiveness of resisting the noisy-label problem, we compared
the MPEGMM with other methods, including k-NN (k = 3, 3-NN) [31], classifiers vote
(Vote) [32], disagreement measure (Disagree) [33], and bidirectional AL (BDAL) [34]. We
assumed that the class labels from the expert were not completely correct during the AL
process. Thus, we defined label-noise ratio (LNR) as follows:

LNR =
Nerr

N
(15)

where Nerr and N denote the numbers of mislabeled instances and drift calibration samples,
respectively. We set three different LNRs (10%, 20%, and 30%) for both datasets A and B.
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Additionally, we selected about 5% samples from each testing batch (seen as unlabeled
sample set) for labeling, while the remaining 95% samples were used for odor recognition.
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Table 2. Gas sensor details of our E-nose system.

Model Type Test Objects Model Type Test Objects

TGS800

Metal oxide

Smog MQ-7B

Metal oxide

Carbon monoxide
TGS813 Methane, ethane, propane MQ131 Ozone
TGS816 Inflammable gas MQ135 Ammonia, sulfide, benzene
TGS822 Ethanol MQ136 Sulfuretted hydrogen
TGS2600 Hydrogen, methane MP-3B Ethanol
TGS2602 Methylbenzene, ammonia MP-4 Methane
TGS2610 Inflammable gas MP-5 Propane
TGS2612 Methane MP-135 Air pollutant
TGS2620 Ethanol MP-901 Cigarettes, ethanol

TGS2201A Gasoline exhaust WSP2110 Formaldehyde, benzene
TGS2201B Carbon monoxide WSP5110 Freon
GSBT11 Formaldehyde, benzene SP3-AQ2-01 Organic compounds
MQ-2 Ammonia, sulfide ME2-CO

Electrochemical
Carbon monoxide

MQ-3B Ethanol ME2-CH2O Formaldehyde
MQ-4 Methane ME2-O2 Oxygen
MQ-6 Liquefied petroleum gas TGS4161 Solid electrolyte Carbon monoxide

In terms of classifier, we adopted a support vector machine (SVM), a popular and
excellent classifier, for E-nose drift data classification. We chose the linear function as
the kernel function of SVM due to the trade-off between higher performance and lower
computational load. The penalty factor C was adjusted in the range of 10−3–103 with a
two-phase grid optimization. In the first phase, we tested the C value at the points 10−3,
10−2, 10−1, 1, 10, 102, and 103 and chose two candidate intervals around the best point.
Then, the decimus length of the chosen interval was used as the step length to explore the
optimized C. After this two-phase optimization, we set C = 0.6 and 2 for datasets A and B,
respectively. In addition, the parameter w of f (·) was determined through the Monte Carlo
method, and the optimized values of w are presented in Table 3.
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Table 3. Parameter values of the MPEGMM.

Parameter Dataset A Dataset B

label-noise ratio
(LNR) 10% 20% 30% 10% 20% 30%

w 100 5 5 5 1 0.1

4.3. Recognition Comparison

In this subsection, we aim to (1) demonstrate the superiority of the improved AL
framework and (2) illustrate the effectiveness on mislabeled-instance selection of the pro-
posed MPEGMM. Since the error-annotated labels were randomly set, we used the average
value and standard deviation (Mean ± STD) by 10 repetitions to show the recognition
performance of a certain method.

Figure 6 presents the accuracies of different methods under setting 1. We adopted
the blue bars and red line with an asterisk to represent the mean and standard deviation,
respectively. It is clear that no matter which LNR and dataset were adopted, the pro-
posed MPEGMM would achieve the highest accuracy among all the tested methodologies.
In Figure 6a–c, the accuracies of the MPEGMM are obviously higher than those of other
reference methods on dataset A. The accuracy of the MPEGMM is always around 90% in
all cases, while the accuracies of other paradigms are mostly less than 80%. In Figure 6d–f,
we drew the accuracies on dataset B. The proposed MPEGMM was still the one with
the highest accuracy among all the adopted methods. Furthermore, compared with the
“NoProcess” strategy, the other methods demonstrated their effectiveness on recognition
performance in most cases. Thus, we can discover that dealing with noisy labels in an AL
procedure has a great impact on drift compensation.

As Tables 4 and 5 show, we reported all recognition accuracies on datasets A and B
under setting 2. The best one in each case is marked in bold. Obviously, the proposed
MPEGMM is more efficient and robust than the other methodologies on both datasets A
and B. In Table 4, the MPEGMM achieves the highest recognition accuracy of 97.90% in
batch 6→7 with LNR = 10%. In Table 5, the MPEGMM still reaches the highest accuracy
of 86.84% in batch 2→3 with LNR = 20%, which is 8.55% higher than the second-best one,
3-NN. As a result, we believe that the MPEGMM is an effective strategy for E-nose drift
compensation in the AL-based calibration framework.

From the above results, the accuracy difference between the MPEGMM and other
reference methods under setting 1 is significantly greater than the one under setting 2.
This is because the number of mislabeled instances is gradually increased in the long-term
scenario, which results in a slower decreasing of the classifier’s performance. In order to
explain the reason why the MPEGMM achieves excellent recognition rates, we listed the
noisy-label detection accuracies under setting 1. We drew the average accuracy calculated
from batches 2–10 of dataset A in Figure 7a. The accuracies of the MPEGMM are apparently
higher than those of other reference methods, except the point LNR = 20%. Although the
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Disagree strategy achieves the highest detection accuracy of around 83% at this point, the
MPEGMM performs more stably under various LNRs. Meanwhile, in Figure 7b, we present
the average detection accuracy of batches 2–3 from dataset B. The bars of the MPEGMM are
on top compared with all other methods. Thus, we conclude that the proposed MPEGMM
method can successfully identify more mislabeled instances. It is the key reason for making
the updated classifier well performed under long-term drift.
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Table 4. Accuracy on dataset A under setting 2 (%).

LNR Method 1→2 2→3 3→4&5 4&5→6 6→7 7→8 8→9 9→10

10%

NoProcess 87.98 ± 9.40 92.14 ± 9.32 85.44 ± 6.70 93.49 ± 2.37 94.17 ± 3.33 86.57 ± 5.59 90.16 ± 4.66 89.48 ± 4.35
Vote 93.01 ± 7.89 90.98 ± 8.28 85.82 ± 7.01 92.90 ± 3.02 97.48 ± 1.32 86.57 ± 5.59 90.25 ± 4.76 89.09 ± 4.57
3-NN 87.98 ± 9.40 91.47 ± 8.35 85.44 ± 6.70 93.61 ± 2.13 96.13 ± 2.57 87.04 ± 6.04 90.16 ± 4.62 88.63 ± 4.83

Disagree 89.45 ± 9.66 95.54 ± 1.76 85.47 ± 6.73 93.39 ± 3.00 93.83 ± 3.11 91.24 ± 1.75 90.75 ± 4.82 89.89 ± 5.25
BDAL 88.22 ± 9.80 92.72 ± 8.55 85.88 ± 6.77 93.03 ± 2.27 96.13 ± 2.39 86.57 ± 5.59 90.16 ± 4.66 89.48 ± 3.80

MPEGMM 94.25 ± 4.53 97.40 ± 1.77 90.19 ± 5.24 95.28 ± 1.95 97.90 ± 2.23 90.62 ± 3.05 90.34 ± 5.05 90.20 ± 4.43

20%

NoProcess 85.21 ± 10.85 82.46 ± 7.56 92.70 ± 6.96 76.54 ± 2.47 91.91 ± 6.43 84.54 ± 2.29 89.16 ± 12.45 56.21 ± 6.61
Vote 90.82 ± 12.74 94.43 ± 5.36 91.89 ± 6.08 94.72 ± 3.98 95.24 ± 1.29 86.95 ± 4.75 91.84 ± 11.90 79.93 ± 6.87
3-NN 89.86 ± 14.27 94.55 ± 6.77 91.82 ± 6.67 96.51 ± 1.02 95.82 ± 2.59 85.69 ± 3.80 91.53 ± 12.00 80.38 ± 6.67

Disagree 91.44 ± 6.51 97.37 ± 3.75 95.22 ± 2.68 94.18 ± 1.83 95.32 ± 1.92 84.54 ± 4.53 91.16 ± 11.91 79.01 ± 7.42
BDAL 91.64 ± 7.50 85.66 ± 6.74 90.75 ± 6.82 94.87 ± 3.39 96.31 ± 1.49 85.84 ± 5.00 91.74 ± 11.90 79.84 ± 7.81

MPEGMM 91.38 ± 13.25 97.62 ± 2.45 93.58 ± 4.39 96.27 ± 1.28 97.89 ± 0.41 88.48 ± 3.93 91.56 ± 12.12 82.18 ± 4.65

30%

NoProcess 67.55 ± 13.99 77.11 ± 3.01 85.60 ± 6.36 91.85 ± 2.97 91.73 ± 5.53 75.66 ± 4.94 85.29 ± 12.87 80.84 ± 7.87
Vote 87.27 ± 13.23 92.22 ± 7.67 93.08 ± 3.36 95.06 ± 2.04 92.33 ± 4.52 84.34 ± 7.03 91.40 ± 4.87 80.75 ± 7.96
3-NN 89.60 ± 11.27 95.07 ± 4.11 92.42 ± 3.91 95.84 ± 1.86 94.54 ± 4.96 84.34 ± 6.66 91.95 ± 7.68 83.48 ± 6.48

Disagree 85.82 ± 6.19 90.82 ± 8.16 84.94 ± 7.61 91.64 ± 3.51 93.22 ± 4.37 75.95 ± 4.73 85.29 ± 12.87 83.12 ± 7.11
BDAL 91.74 ± 4.35 91.27 ± 7.17 87.01 ± 7.30 92.69 ± 2.42 91.38 ± 5.28 80.58 ± 6.91 92.51 ± 4.87 80.88 ± 8.30

MPEGMM 91.89 ± 4.93 94.77 ± 4.12 89.78 ± 7.85 96.59 ± 2.31 94.32 ± 3.36 85.88 ± 3.60 93.03 ± 7.73 83.59 ± 8.68

Table 5. Accuracy on dataset B under setting 2 (%).

LNR 10% 20% 30%

Batch ID 1→2 2→3 1→2 2→3 1→2 2→3
NoProcess 70.19 ± 4.80 74.34 ± 10.23 69.55 ± 8.63 77.63 ± 13.03 63.57 ± 9.33 64.74 ± 4.84

Vote 70.19 ± 4.80 79.61 ± 2.79 70.06 ± 7.90 77.63 ± 16.75 69.74 ± 7.30 71.71 ± 5.34
3-NN 73.57 ± 3.23 74.34 ± 10.23 71.36 ± 6.50 78.29 ± 15.82 71.43 ± 7.98 70.66 ± 6.30

Disagree 71.56 ± 3.65 74.34 ± 10.23 72.14 ± 6.42 77.63 ± 13.03 68.31 ± 9.03 64.74 ± 4.84
BDAL 70.19 ± 4.80 74.34 ± 10.23 69.94 ± 8.62 76.97 ± 13.96 66.10 ± 10.16 67.50 ± 6.60

MPEGMM 74.16 ± 4.78 82.24 ± 4.65 73.18 ± 8.21 86.84 ± 11.16 72.92 ± 5.79 75.79 ± 5.96
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4.4. Parameter Sensitivity

The purpose of the MPEGMM is to detect the mislabeled instances and deliver them
to the expert for relabeling. Compared with other reference methods, the MPEGMM not
only measures the mislabel probability of each selected instance but also estimates the total
number of noisy labels in a drift calibration set. Especially, the estimated result is used in all
tested methodologies to control the number of relabeled instances. If the estimated result is
greater than the actual one, additional labeling costs will be considered. On the contrary, if
the estimated number is smaller, some error labels will stay in the drift calibration set. It is
necessary to observe the variation of parameter w controlling the estimated θ. Thus, we
adjust w according to the set ω =

{
10λ, λ = −3,−2,−1, 0, 1, 2, 3, 4

}
.

Figures 8 and 9 show the parameter adjustment results of datasets A and B under
setting 2. We use red, magenta, and blue to indicate LNRs of 10%, 20%, and 30%, respec-
tively. For each color, a solid line and a dashed line represent the numbers of estimated
and actual noisy labels, respectively. Then, the intersection of the solid line and dashed
line corresponds to the range of optimal values. In Figure 8a–h, we can observe that the
intersection points are mostly located in the range of 1–10 when LNR equals 20% and 30%.
While LNR = 10%, the estimated quantity is slightly larger than the actual number, so we
choose the closest interval (102, 104) as an optimized range. Accordingly, in Figure 9a,b, we
can observe that 1–10 is the optimal parameter range when LNR equals 10% and 20%. For
LNR = 30%. Basically, it is clear that the proposed MPEGMM can accurately estimate the
total number of noisy labels at a proper interval of parameter w.
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4.5. Computational Complexity

As Table 6 shows, we reported the average execution time of all tested methodologies
by 10 repetitions on dataset A under setting 2. We can observe that Vote and Disagree
have a similar execution time to identify one possible mislabeled instance, because they all
need to train an SVM classifier on the same dataset. 3-NN takes a longer time since the
size of the drift calibration set is larger and it needs to calculate the distance between the
test instance and each drift calibration instance. For BDAL, we find that it consumes the
longest time. It is reasonable that each time the label of a selected instance is changed, the
training and testing process of the classifier must be redone by BDAL. On the contrary, the
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MPEGMM takes the least time among all the tested methodologies because the MPEGMM
only calculates the increment of the expected entropy by the probability model instead
of a complicated classifier training. In summary, we conclude that the computational
complexity of the MPEGMM is superior to those of other reference methods.
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Figure 9. Estimated number of noisy labels with w (dataset B). (a) Noisy number of batch 2; (b) noisy
number of batch 3.

Table 6. Average time of identifying one instance (second).

Method 1→2 2→3 3→4&5 4&5→6 6→7 7→8 8→9 9→10 Average

Vote 0.313 0.862 0.661 0.159 0.510 3.783 0.161 0.251 0.838
3-NN 1.205 1.111 1.161 1.178 2.644 1.726 0.927 0.952 1.363

Disagree 0.381 0.934 0.912 0.249 2.182 3.872 0.179 0.467 1.147
BDAL 1.377 3.069 2.647 1.088 8.305 10.814 0.510 1.725 3.692

MPEGMM 0.296 0.319 0.307 0.286 0.396 0.197 0.153 0.437 0.299

5. Conclusions

In this paper, we proposed a class-label appraisal methodology, MPEGMM, for im-
proving the active learning-based drift compensation framework under massive online
data. The main idea of the MPEGMM is to measure the mislabel probability of each selected
instance by a Gaussian mixture model. Furthermore, the MPEGMM estimates the labeling
budget of noisy labels in a dataset and delivers the most valuable instances to the expert
for relabeling. In the experiments, we simulated two representative scenarios, including
long-term and short-term drift with two datasets. The MPEGMM achieves the highest
recognition accuracy in most cases. The percentages 97.90% and 86.84% are, respectively,
two best recognition scores on datasets A and B, which are 0.42% and 8.55% ahead of the
best reference method. The key reason is that the MPEGMM can detect most of mislabeled
instances correctly, thereby improving the recognition performance of the classifier. More-
over, the accuracy of the relabeling budget estimation is mainly affected by the parameter
w, and the results show that 1–10 is a favorable range for relabeling times in common.
Considering that the MPEGMM uses a probability model instead of a complicated classifier
to estimate expected entropy increment, the computational time of the MPEGMM has been
dramatically reduced compared with those of the other reference methods. Accordingly,
the shortest average execution time of 0.299 s (on dataset A) is obtained by the MPEGMM
for one-instance identification. Generally, it is a suitable choice to handle a noisy-label
problem occurring in an online drift compensation of E-noses.

Reliable class label is an important issue in gas sensor drift compensation under
massive online data. Besides our concern, multigas mixture, unknown interference, temper-
ature, and humidity effects are some other challenging points in E-nose studies. A compre-
hensive method framework should be established to deal with these problems in the future.
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