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Abstract: Human procalcitonin (PCT) is a peptide precursor of the calcium-regulating hormone
calcitonin. Traditionally, PCT has been used as a biomarker for severe bacterial infections and sepsis.
It has also been recently identified as a potential marker for COVID-19. Normally, serum PCT
is intracellularly cleaved to calcitonin, which lowers the levels of PCT (<0.01 ng/mL). In severe
infectious diseases and sepsis, serum PCT levels increase above 100 ng/mL in response to pro-
inflammatory stimulation. Development of sensors for specific quantification of PCT has resulted in
considerable improvement in the sensitivity, linear range and rapid response. Among the various
sensing strategies, electrochemical platforms have been extensively investigated owing to their
cost-effectiveness, ease of fabrication and portability. Sandwich-type electrochemical immunoassays
based on the specific antigen–antibody interactions with an electrochemical transducer and use of
nanointerfaces has augmented the electrochemical response of the sensors towards PCT. Identification
of a superior combination of electrode material and nanointerface, and translation of the sensing
platform into flexible and disposable substrates are under active investigation towards development
of a point-of-care device for PCT detection. This review provides an overview of the existing detection
strategies and limitations of PCT electrochemical immunosensors, and the emerging directions to
address these lacunae.

Keywords: procalcitonin; electrochemical sensor; immunoassay; nanomaterials

1. Introduction

Procalcitonin (PCT) is a 116-mer hormokine peptide formed by the neuroendocrine
cells and the thyroid. It is cleaved to form the calcium-regulating hormone calcitonin.
Its normal levels in healthy individuals are well below 0.01 µg/L. However, during in-
fections, it is elevated and hence has emerged as a promising acute phase biomarker for
the diagnosis of bacterial infections [1–4]. In addition, it has also been reported to serve
as a marker for chronic obstructive pulmonary disorders, pneumonia, bronchitis, septic
arthritis and medullary thyroid carcinoma [5]. Individuals affected with solid tumors who
are more susceptible to infections could also be identified through monitoring their serum
PCT levels [6] Recently, PCT has been found to be a marker for individuals infected with
SARS-nCoV2 leading to COVID-19 [7–9]. Clinical studies have revealed that PCT levels
correlate well with the severity of the disease [9]. An independent report has also suggested
that elevated PCT levels in COVID-19 infected individuals are indicative of secondary
bacterial infections [10]. In this context, the early and sensitive detection of PCT, an acute
phase marker, may improve the prognosis for individuals affected by high-risk septicemia
by aiding the design of appropriate therapeutic intervention. As most infections and
inflammatory conditions involve high concentrations of several cytokines, highly specific
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detection of PCT becomes important. Antibody-based sensing of PCT has been exclusively
used for selective determination of PCT from samples. Such types of sensors are known as
immunosensors. The most extensively investigated transduction mechanisms for quantifi-
cation of PCT has been optical and electrochemical methods. The commonly employed
strategy for PCT detection appears to be the usage of gold-labelled immune complexes
for generating the electrochemical or optical response [4,5,11]. However, this method has
several shortcomings, such as being semi-quantitative and expensive, shortage of gold
labels, and poor sensitivity. Conventional immunoassays based on fluorescence (IFA),
chemiluminescence (CLIA), and enzyme-linked immunosorbent assay (ELISA) have been
employed for sensitive PCT detection but they are time-consuming, require larger sample
volumes and are subject to interferences [5,12]. Moreover, they cannot be employed for
real-time monitoring of individuals. Therefore, it is essential to develop a simple, rapid and
sensitive detection strategy that offers a wide quantification range for PCT. Electrochemical
immunosensors provide a versatile platform that can be tailored for desirable sensing range
and sensitivity [13,14]. Further, the electrochemical sensing element can be translated in
to disposable and point-of-care devices that enhance their utility for ‘anywhere-anytime-
anyone’ use. The electrochemical immunosensor works on the principle in which the
specific interaction between antibody and antigen is sensed by using a transducer and
an electrical signal is measured at the modified electrode. The increase in thickness of
the organic layer owing to the formation of immune complex results in an increase in the
impedance or reduction in the current flowing through the system that is used as a measure
of the amount of PCT in the sample. In particular, these specific interactions are used to
detect immunochemical reactions either by direct or indirect methodologies [13,14]. In the
indirect approach, sensing of the immune complex is achieved through labeling of either
the antibody or the antigen with signaling molecules. Several immunoassay formats, such
as sandwich type, competition, and capture, have been used (Figure 1).
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Figure 1. Schematic representation of various immunoassay formats.

In the sandwich or non-competitive assay, the antibody is immobilized on the sensor
surface that serves to capture the antigen. Then a labelled secondary antibody which has
affinity to another location of the antigen is added. The label is a fluorophore or dye in
the case of optical sensors and generally, an enzyme in the case of electrochemical sensors.
The intensity of the signal generated is correlated with the analyte in the sample. In the
competitive assay, the analyte molecules compete with the labelled molecules for binding
with the antibody. The intensity of the signal generated is indirectly proportional to the
amount of analyte present in the sample. The capture assay is a direct immunoassay where
the formation of the antibody–antigen immune complex is quantified through measuring
the change produced in the property of the sensing element. Nanomaterials have elicited
significant interest due to the considerable improvements in the analytical performance of
electrochemical immunosensors they have brought about because of their unique physical
and chemical properties, excellent conductivity and electrocatalytical activity [15,16]. The
integration of nanostructures in the electrochemical sensing element have been found to
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positively contribute to improved electron transfer and rapid response, as well as higher
sensitivity. A wide range of nanomaterials of different shapes, sizes and combinations have
been explored for electrochemical sensing [17].

Generally, the effective quantification of an analyte via electrochemical immunosen-
sors involves two approaches, direct or indirect [14,18]. Although both methods have
been explored for sensing PCT, the sandwich immunosensors have dominated the litera-
ture [19,20]. This is because the sandwich approach provides signal amplification and more
specificity by the modification of selective and competitive counterpart systems. The use
of an enzyme label like horseradish peroxidase on the secondary antibody results in the
generation of additional electrons due to the redox reaction catalyzed by the enzyme label.
In addition, electrochemiluminescence and photoelectroluminescence techniques have also
been employed for quantification of PCT but the key to the success of these techniques lie
on the development of a suitable luminophore and to overcome the complex steps involved
in the immobilization of the antibody on the photoelectrode [19].

Various immunosensor platforms have been utilized, such as nanometals (gold, plat-
inum, zinc) [21–33], metal oxides (cerium oxide, molybdenum oxide) [28–30], inorganic
complexes (cobalt phthalocyanine) [33], carbon nanomaterials (graphene, reduced graphene
oxide, multi-walled/single-walled carbon nanotubes, ordered mesoporous carbon, fullerene
C60) [21–26,33], highly branched polymers (poly(amidoamine), PAMAM) [34] with tradi-
tional redox partners (ferrocene, thionine and toluidine blue) [21–24,27,30,31] and quantum
dots (zinc-sulfide-capped cadmium selenide) [35]. Both layer-by-layer modification or
sandwich-type arrangement coupled with either labelled or label/enzyme-free immunoas-
says have been explored for detection of PCT. The present review presents an overview of
the various electrochemical PCT immunosensors and nanointerfaces reported in available
literature from past decade, i.e., 2012 to 2021. Emerging trends in detection methods
have also been highlighted. The electrode modifications and performance of the existing
electrochemical immunosensors are summarized and tabulated in Table 1.

Table 1. Comparison of the electroanalytical performances of various PCT electrochemical immunosensors available in the
literature.

Method PCT Immunoelectrode
(Signal Amplifier/Signal Tag) Technique Tag-

Analytes Linear Range Detection
Limit Ref.

Sandwich-type
GCE/Graphene

sheets/MWCNT/Chitosan/Glutaraldehyde/Ab1/Bovine
serum albumin/PCT/MCM/Thionine/AuNPs/HRP-Ab2

DPV H2O2 0.01 to 350 ng/mL 0.5 pg/mL [21]

Sandwich-type GCE/MWCNT/AuNPs/Ab1/PCT/Glucose
Oxidase@anti-PCT Ab2-PtNPs-Fc-C60

DPV H2O2 0.01 to 10 ng/mL 6 pg/mL [22]

Sandwich-type GCE/rGO–Au/Ab1/PTC/SWCNHs/HPtCs/HRP/Thionine–
Ab2

DPV H2O2 1 pg/mL to 20 ng/mL 0.43 pg/mL [23]

Label-free Au/SWCNHs–PtNPs/PAMAM/Thionine–Ab1/BSA/PCT DPV H2O2 10 pg/mL to 20 ng/mL 1.74 pg/mL [24]
Sandwich-type GCE/Graphene oxide/Chitosan-Ab1/PCT/Zn-OMCSi-Ab2 DPV Zinc 0.05 pg/mL to 80 ng/mL 0.013 pg/mL [25]
Sandwich-type GCE/rGO-AuNPs/T-HRP/Ab1/PCT/SA-HRP/Ab2 Amp i-t H2O2 0.05 to 100 ng/mL 0.1 pg/mL [26]
Sandwich-type Au/PCT-Ab1/PCT/Fc-AuNPs/PCT-Ab2 DPV – 1.5 pg/mL to 50 ng/mL 0.8 pg/mL [27]

Sandwich-type GCE/AuNP/Ab1/PCT/CuMn-CeO2/Ab2 DPV H2O2
0.1 pg/mL to
36.0 ng/mL 0.03 pg/mL [28]

Sandwich-type GCE/AuNP/Ab1/PCT/MoO3/Au@rGO-Ab2 Amp i-t H2O2 0.01 pg/mL to 10 ng/mL 0.002 pg/mL [29]
Sandwich-type GCE/CeO2-CuO-Au/Ab/PCT/Au@Ag-Thionine-Ab2 SWV – 0.5 pg/mL to 50 ng/mL 0.17 pg/mL [30]

Enzyme-free GCE/NiFe PBA nanocubes@Toluidene Blue/GA/PCT
Ab/BSA/PCT DPV – 0.001 to 25 ng/mL 3 × 10−4 ng/mL [31]

Label-free NiCo-MOF/MoS2@PdNPs/CS/PCT-Ab Amp i-t H2O2 0.001 to 50 ng/mL 0.36 pg/mL [32]

Sandwich-type GCE/AuNP/Ab1/BSA/Ag/nanoCoPC-
MWCNTs/ChOx/Ab2

DPV H2O2 0.01 to 100 ng/mL 1.23 pg/mL [33]

Enzyme-free GCE/Fc-Fc/β-CD/PAMAM−AuNP/Ab2 DPV Ascorbic
acid

1.80 pg/mL to
500 ng/mL 0.36 pg/mL [34]

Sandwich-type AS-ITO/CdSeZnS-QD/PCT-Ab CV (in
[Fe(CN)6]3− – 1 ng/mL to 10 µg/mL 0.21 ng/mL [35]

2. Sandwich-Type Electrochemical Immunoassay

Most of the sensing strategies for PCT involve use of antibodies as the capture agent.
This confers specificity to the analysis. However, immobilizing the antibody on the sensing
element without compromising on its structural and functional stability remains a chal-
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lenge. A diverse range of nanostructures have been explored as interface materials for the
electrochemical detection of PCT. These are discussed in the following sections:

2.1. Carbon-Based Nanointerfaces

Carbon nanostructures have superior electron transport properties that aid electro-
chemical sensing. Different carbon nanostructures like multi-walled carbon nanotubes
(MWCNTs), graphene, reduced graphene oxide (rGO), fullerenes have been used as inter-
face materials. Fang et al. [21] developed a sandwich-type electrochemical immunosensor
for PCT detection through layer-by-layer modification of the working electrode using a
composite of graphene, carbon nanotubes, chitosan (GS/MWCNTs/CS) that also served as
an immobilization surface for primary antibodies against PCT (Ab1) through glutaralde-
hyde (GA) cross linker. The secondary PCT antibody (Ab2), with horseradish peroxidase
(HRP) label and gold nanoparticles coated with mesoporous silica conjugated through
thionine linking (HRP-Ab2/AuNPs/Thio/MCM41), served as an efficient platform for PCT
electrochemical sensing in real human serum samples. Additionally, the HRP enzyme also
catalyzed the electro-oxidation of thionine by H2O2 which resulted in an intense reduction
peak in the presence of H2O2. The proposed GS/MWCNT/CS/GA/Ab1/BSA/PCT/MCM/
Thio/AuNPs/HRP-Ab2 immunosensor showed an impressive linear response from 0.01
to 350 ng/mL with a limit of detection 0.5 pg/mL (Figure 2). The sensor exhibited high
specificity towards PCT and was retained about 88% of its current response even after
30 days of storage at 4 ◦C. The sensor displayed good precision and its values were in good
agreement with those obtained using conventional ELISA indicating its potential to replace
conventional assays for clinical diagnosis.
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(b) PCT/Ab1/GA/CS/MWCNTs/GS/GCE, (c) HRP-Ab2/Au/TH/MCM-41/PCT/Ab1/GA/CS/GCE and (d) HRP-
Ab2/Au/TH/MCM-41/PCT/Ab1/GA/CS/MWCNTs/GS/GCE in phosphate buffered saline of pH 7.0, and (e) HRP-
Ab2/Au/TH/MCM-41/PCT/Ab1/GA/CS/MWCNTs/GS/GCE in medium containing 2 mM H2O2; (C) Calibration plot
obtained for the electrochemical immunosensor using known concentrations of PCT in PBS of pH 7.0 containing 2 mM
H2O2, n = 5 for every concentration level in the same measurement run [21].

In another sandwich-type immunosensor [22], MWCNT functionalized with gold
nanoparticles (AuNPs) served as an active immobilization surface for the primary anti-
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PCT antibody (MWCNT/AuNPs/PCT-Ab1) through spontaneous chemical interactions
between AuNPs and thiol groups present in the antibodies. Post capture of the PCT
antigen by the primary antibody, the secondary PCT antibody (Ab2) labeled with glu-
cose oxidase (GOx-labelled-PCT Ab2) was linked to ferrocene (Fc) carboxylic acid re-
dox probe conjugated to amino-functionalized fullerene C60 on platinum nanoparticles
(PtNPs-Fc-C60 nanocomposite) to form an immune-analyte complex. The efficiency of the
MWCNT/AuNPs/Ab1/PCT/GOx@anti-Ab2/PtNPs-Fc-C60 immunosensor arises due to
amplification arising out of the synergistic redox capabilities of Fc molecule, oxidation of
glucose to H2O2 by GOx enzyme and the subsequent reduction of H2O2 by Pt-containing
nanocomposite.

Recently, an ultrasensitive sandwich electrochemical immunosensor was developed
using single-walled carbon nanohorns (SWCNHs) in combination with hollow platinum
chain complex (SWCNHs/HPtCs) for PCT detection in real clinical serum samples [23,24].
The sensor device also employed a composite interface film of reduced graphene oxide
(rGO) and gold nanoparticles for immobilization of the primary antibody against PCT (rGO-
Au/PCT-Ab1). The SWCNHs/HPtCs was conjugated to the secondary antibody labeled
with HRP enzyme and the redox mediator thionine (SWCNHs/HPtC/HRP/Thio/PCT-
Ab2) to obtain an amplified current response [23]. The proposed immunosensor SWCNH/
HPtC/HRP/thi–Ab2/PTC/Ab1/rGO–Au showed good responses with linearity from
1 pg/mL to 20 ng/mL of PCT with a detection limit of 0.43 pg/mL. The HPtCs served as a
biocompatible matrix for immobilization of HRP and antibodies as well as catalyzed the
reduction of H2O2 in a display of a synergistic effect with the enzyme. In a related work, the
SWCNHs/HPtCs complex was chemically conjugated with the hyperbranched polymer
PAMAM (G4.0) and the primary antibody (PCT-Ab1). The electrochemical response was
obtained after addition of the redox probe thionine and HRP in the presence of H2O2 [24].
This study employed only the primary Ab1 as the capture element for the detection of PCT
without the secondary antibody (PCT-Ab2) unlike earlier reports in the literature [23]. The
linear response for this sensor was observed from 10 pg/mL to 20 ng/mL with a detection
limit value of 1.74 pg/mL, which was however, four times lower than a similar interface
reported earlier by the same group employing a secondary antibody.

Feng et al. [25] designed a system comprising zinc nanoparticles decorated ordered
mesoporous carbon silica nanocomposites with detection antibodies (Zn-OMCSi-Ab2)
for ultrasensitive quantification of PCT in human serum samples. A combination of
reduced graphene oxide, chitosan and glutaraldehyde was used to immobilize primary
antibody through covalent linkage of the amino groups of chitosan (rGO/CS-Ab1). The
sensing performance of the immunoelectrode (GCE/rGO/CS-Ab1/PCT/Zn-OMCSi-Ab2)
towards PCT was attributed to the direct oxidation of the entrapped zinc nanoparticles after
formation of the sandwich-type immunoreactions on the electrode surface. The oxidation
current exhibited good linear correlation for PCT concentrations from 0.05 pg/mL to
80 ng/mL, with a limit of detection 0.013 pg/mL (Figure 3).

Recently, a PCT sensor based on gold nanoparticles-tyramide-labeled biotinylated
HRP (AuNPs/T-HRP) and a nanocomposite of reduced graphene oxide nanosheets-gold
nanoparticles with primary antibodies (rGO-AuNPs/T-HRP/Ab1) was fabricated [26].
Another nanocomposite of HRP-streptavidin conjugated with the secondary antibody
(SA-HRP/Ab2) generated the electrochemical response. The high affinity interactions
between streptavidin and biotin resulted in amplified current signals. The use of gold
nanoparticles enabled immobilization of greater number of HRP on its surface that con-
tributed to the high sensitivity of the sensor. HRP in the presence of peroxide oxi-
dized tryramide to quinone, which caused a further amplification of the signal. This
GCE/rGO-AuNPs/HRP/Ab1/PCT/SA-HRP/Ab2 immunoelectrode detected PCT be-
tween 0.05 ng/mL and 100 ng/mL with an ultralow detection limit of 0.1 pg/mL (Figure 4).
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Graphitic carbon nitride interface containing homogenously dispersed nickel cobalt-
sulphide (NiCo2S4) and silver nanoparticle-entrapped MWCNTs served as a hybrid in-
terface for immobilizing anti-PCT antibodies [36]. The silver nanoparticle containing
MWCNTs facilitated electron transfer and augmented the signal from differential pulse
voltammetry (DPV) while the NiCo2S4 served as a bimetallic indicator for chronoam-
perometery. The sensor detected PCT between 0.05 to 50 ng/mL with a detection limit
of 16.7 pg/mL in the DPV mode and 1 pg/mL to 10 ng/mL with a limit of detection
0.33 pg/mL in the chronoamperometry mode. The high sensitivity and stability of this
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sensor could be explored further in a clinical setup to understand its utility for routine
clinical diagnosis. While graphitic carbon nitride served as a matrix in this strategy, it
was employed as a catalyst in another sensing device designed for PCT quantification.
Glassy carbon electrode was modified with the two-dimensional titanium carbide MXene
layer [37]. The MXene was doped with sulfur to favor incorporation of gold nanoparti-
cles and the anti-PCT antibody. The sensing strategy involved the addition of graphitic
carbon nitride linked with the secondary antibody after incubation with the analyte. The
graphitic carbon nitride served as a redox catalyst for generating the electrochemical re-
sponse from H2O2. This sandwich immunosensor exhibited a linear range of 0.01–1 pg/mL
with an ultralow detection limit of 2 fg/mL and response time of 12 s. However, the sensor
will benefit from additional optimization for extending its linear range for better clinical
translation.

One of the key challenges in immunosensors is maintenance of structural, functional
stability and accessibility to the binding site of the antibody, which influences the sen-
sitivity and sensing range. In a novel strategy to orient the antibody and improve the
sensitivity of an electrochemiluminescent sensor designed for quantification of PCT, a hep-
tameric oligopeptide with the sequence HWRGWVC was introduced over a nanocomposite
layer comprising gold nanoparticle dispersed reduced graphene oxide functionalized with
poly(aniline) nanorods. The peptide served to immobilize and orient the anti-PCT anti-
body [38]. The iron storage protein ferritin conjugated to the electrochemiluminescent
probe N-(aminobutyl)-N-(ethylisoluminol) (ABEI-Ft) and secondary antibody served to
generate the optical signal in response to the captured PCT. This approach resulted in
an astonishing detection limit and linear range of 54 fg/mL and 100 fg/mL–50 ng/mL,
respectively. This concept can be extended to a purely electrochemical platform to achieve
highly sensitive detection of PCT.

2.2. Nanometallic and Metal Oxide-Based Interfaces

Metallic nanoparticles in combination with redox probes have been extensively ex-
plored as interface materials in sandwich-type electrochemical immunosensors for the
detection of PCT. Ferrocene-modified gold nanoparticles labeled with secondary PCT anti-
body (Fc-AuNPs/PCT-Ab2) have been used for electrochemical signal amplification when
it binds to the immune complex formed between PCT and the primary antibody modified
gold disk electrode (Au/PCT-Ab1) to form a sandwich structure for the determination
of PCT in clinical samples [27]. The sensor showed good linearity between 1.5 pg/mL
and 50 ng/mL with a detection limit of 0.8 pg/mL. Apart from acting as redox-mediators,
nanometals and metal oxides have also been used as redox probes and nanocatalysts.
For instance, simultaneous doping of copper and manganese into ceria (CuMn-CeO2)
nanocomposite in combination with secondary Ab2 has been reported for the sensitive
immunoassay of PCT [28]. The double-doping introduced additional oxygen vacancies
into the CeO2 lattice thereby enhancing the redox and catalytic activities of the interface
towards H2O2 for signal amplification. In addition, it increased the immobilization of
Ab2 through chemical interactions between carboxylic groups of Ab2 and CeO2 through
formation of ester-like bridges. The constructed GCE/AuNP/Ab1/PCT/CuMn-CeO2/Ab2
immunosensor exhibited a wide linear range of 0.1 pg/mL to 36.0 ng/mL for PCT with a
low detection limit of 0.03 pg/mL.

Another study employed CeO2-CuO-Au catalytic nanointerface (Figure 5) to im-
mobilize the primary antibody against PCT while a heterojunction of gold and silver
nanoparticles containing thionine redox mediator, and the secondary antibody served as
the electrochemical probe [30]. The sensor detected PCT concentrations between 0.5 pg/mL
and 50 ng/mL in simulated samples as well as in serum. A similar strategy was explored
using Fe3S4/Pd nanocomposite as the catalytic interface over glassy carbon electrode [39].
The magnetic interface adhered well to the electrode and also served to immobilize the
anti-PCT antibody. The secondary antibody was conjugated over mesoporous bioactive
glass using glutaraldehyde cross-linking reaction between the amino groups in the meso-
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porous matrix and antibody. The sensor detected PCT with high specificity in the linear
range of 500 fg/mL to 50 ng/mL. The sensor also performed well when employed to detect
PCT in spiked serum samples. The use of the insulating mesoporous matrix was attributed
to the sharp decrease in the current resulting in high sensitivity. A similar concept of using
high surface area mesoporous matrix was reported using gold decorated mesoporous silica
matrix loaded with the redox mediator thionine that was coated over glassy carbon elec-
trode [40]. This strategy avoids the use of a labeled secondary antibody and hence could
provide a cost-effective option for quantification of PCT. The high surface area silica matrix
also served to immobilize PCT antibody. The sensor displayed good linearity between 0.001
and 100 ng/mL of PCT when probed using differential pulse voltammetry. Mesoporous
silica incorporated with silver nanoparticles and toluidine blue with covalently linked
secondary antibody was also investigated as the signal enhancer in an electrochemical
sensor where the primary antibody was immobilized on a glassy carbon electrode coated
with a nanointerface comprising PtCoIr nanowires modified with polyethylenepolyamine-
linked ferrocene [41]. A linear sensing range of 0.001–100 ng/mL of PCT was achieved
and the sensor also performed well in serum samples. In another immunosensor, hybrid
molybdenum oxide and gold nanoparticles decorated reduced graphene oxide combined
with secondary antibody (MoO3/Au@rGO-Ab2) has developed as the signal amplification
material for PCT detection [29]. The synergistic effect of this MoO3/Au@rGO hybrid
nanocomposite exhibited excellent electrocatalysis of H2O2 towards low concentration of
PCT. The fabricated GCE/AuNP/Ab1/PCT/MoO3/Au@rGO-Ab2 showed a wide working
range from 0.01 pg/mL to 10 ng/mL with detection limit value of 0.002 pg/mL.
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Another interesting combination of interface materials involved the use of photoactive
NiTiO3 nanorods decorated with ZnxBi2S3+x nanoparticles distributed homogenously over
indium tin oxide (ITO substrate) [42]. The hybrid nanointerface served as an immobi-
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lization layer for the anti-PCT antibody, and as a photoelectrocatalyst that generated the
electrochemical signal through oxidation of glucose. This versatile system exhibited a wide
linear range of 0.0001 to 50 ng/mL PCT with high reproducibility. It also performed well
in spiked serum samples, indicating its promise for clinical applications. A similar sensing
strategy was employed for quantification of PCT using CdS-Bi2Sn2O7-anti-PCT complex
as the photoelectrocatalyst and PCT capture matrix [43]. The electrochemical signal for this
immunosensor was generated by the redox reaction involving thiocholine catalyzed by
the acetylcholinesterase enzyme linked to silica nanospheres. This highly sensitive system
quantified PCT effectively between 0.0005 to 100 ng/mL.

2.3. Inorganic Metallic Interfaces and Organic Framework-Based Immunosensors

When compared to metallic and metal oxide interfaces, inorganic and metal-organic
frameworks have been less explored as interfaces in PCT sensors. However, growing
evidence of the improved sensing characteristics conferred by these structures has trig-
gered research towards harnessing the sensing characteristics of these three-dimensional
framework-based composites as label-free or enzyme-free platform in electrochemical
immunosensors [31,32]. An enzyme-free electrochemical immunosensor based on tolu-
idine blue redox probe and self-templating NiFe-prussian blue nanocubes (NiFe-PBA)
functionalized with anti-PCT antibody using glutaraldehyde cross-linker has been reported
for detection of PCT [31,32]. The synergetic effect between the redox mediators toluidine
blue and NiFe PBA nanocubes enabled excellent signal amplification without any addi-
tional biorecognition elements. The sensor displayed a wide detection range from 0.001
to 25 ng/mL for PCT with a low detection limit of 3 × 10−4 ng/mL. In another approach,
transition metal dichalcogenides in combination with cubic metal-organic framework
(MoS2/NiCo-MOF) heterostructures were fabricated for sensitive label-free determination
of PCT [32]. These heterostructures were further functionalized with in situ synthesized
palladium nanoparticles (Pd NPs) for additional catalytic activity towards the reduction of
H2O2. The Pd NPs@MoS2/NiCo-MOF matrix provided a large surface area for immobiliza-
tion of the primary antibody upon incubation with chitosan. The sensor exhibited a linear
range of 0.001–50 ng/mL with a detection limit of 0.36 pg/mL towards PCT quantification
(Figure 6).
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different electrodes at −0.1 V in PBS of 0.07 mol/L concentration and pH 7.38, for three consecutive additions of 0.015
mol/L H2O2: (a) NiCo MOFs, (b) MoS2/NiCo, (c) Pd NPs@NiCo, (d) Pd NPs@MoS2 and (e) Pd NPs@MoS2/NiCo. (C)
Chronoamperometric responses recorded for the immunosensor upon addition of different concentrations of PCT (from
a to m: 0, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100 ng/mL) in 10 mL PBS (0.07 mol/L, pH 7.38) containing
5.0 mmol/L H2O2 [32].
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In an interesting strategy, glassy carbon electrode was modified with silica matrix
doped with gold nanoparticles for improved conductivity [44]. The gold-doped silica
matrix was used to link the electrochemical signal probe ferrocene carboxylic acid and the
primary antibody against PCT. The metal organic framework (MOF) UiO-66 containing
Zr6O4(OH)4 linked using 1,4-benzenedicarboxylate was used to electrostatically retain the
anionic redox mediator toluidine blue, as well as serving to covalently immobilize the
secondary antibody. The ratio of the redox signals from the ferrocene carboxylic acid and
toluidine blue during DPV was used to quantify PCT between the wide concentration
range of 1 pg/mL and 100 ng/mL with a detection limit of 0.3 pg/mL. The sensor was
validated using spiked serum samples and can be explored for clinical applications.

2.4. Metal Complex-Based Immunosensors

Recently, label-free sensors have gained attention for improvement in the analytical
speed and reduction in complexity. Metal complexes have emerged as a promising can-
didate for label-free immunosensors. In a typical example, cobalt phthalocyanine (CoPC)
nanoparticles decorated MWCNTs immobilized with primary Ab1 against PCT on gold
nanoparticle-layered glassy carbon electrode have been developed for sensitive detection
of PCT in clinical samples [33]. The redox property of CoPC occurs via the Co(II)/Co(I)
redox couple and could enhance the electrochemical signal without addition of other redox
mediators. A cascade signal amplification system has been attempted for this system by
chemical conjugation of choline oxidase (ChOx) and a secondary Ab2 immobilized on
CoPC/MWCNT to catalyze the conversion of choline substrate to H2O2 that produces the
electrochemical response. This system exhibited linearity for PCT concentrations between
0.01 and 100 ng/mL with a low detection limit of 1.23 pg/mL towards PCT detection
(Figure 7).
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2.5. Host–Guest Interfaces in Immunosensors

In a seminal work, a novel host-guest molecular recognition approach has been suc-
cessfully employed for the development of an enzyme-free electrochemical immunosensor
using N,N-bis(ferrocenoyl)-diaminoethane/β-cyclodextrin/poly(amidoamine) dendrimer–
Au nanoparticle composite (Fc-Fc/β-CD/PAMAM-Au) immobilizing the secondary anti-
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body (PCT-Ab2) for PCT detection. The catalysis of ascorbic acid after the binding of the
secondary antibody to PCT generated the electrochemical signal [34]. The Fc-Fc facilitated
extensive linking with β-CD/PAMAM-Au through its electroactive groups to form a net-
like nanostructure. The PAMAM-Au conjugate had dual roles of serving as a nanocarrier
for increased immobilization of the Ab2 and β-cyclodextrin, and acted as nanocatalyst
for efficient electro-oxidation of ascorbic acid that served to amplify the electrochemical
response. The immunosensor exhibited a low detection limit (0.36 pg/mL) and a broad
linear range of 1.80 pg/mL to 500 ng/mL for PCT detection. However, further validation
with clinical cohorts is necessary to realize its potential for disease diagnosis.

2.6. Quantum-Dots-Based Immunosensors

Quantum dots are semi-conductor nanoparticles with a tunable band gap that has been
explored for sensing applications. Recently, water-soluble core/shell quantum dots have
been employed as a functional interface material in electrochemical sensors, biosensors
and immunosensors due to its active participation in the electron, as well as charge trans-
fer reactions. For instance, a self-assembled system comprising of amine-functionalized
and aqueous soluble zinc-sulphide-capped cadmium selenide core-shell quantum dots
(CdSeZnS-QD) was conjugated with anti-PCT antibody on aminosilane modified indium-
tin oxide (ITO)-coated glass substrate using glutaraldehyde (GA) cross-linking. This
electrochemical immunoelectrode (AS-ITO/CdSeZnS-QD/PCT-Ab) was successfully em-
ployed for the quantification of PCT for diagnosis of urinary tract infection (UTI) [35]. The
quantum dots served as charge transfer agents that increased the electroactive surface area
and improved the electron transfer kinetics of the immunoelectrode. This sensor detected
PCT in the concentration range from 1 ng/mL to 10 mg/mL with a detection limit value
of 0.21 ng/mL. The removal of the quantum dots from the electrode surface resulted in
a steep decrease in the sensitivity of the sensor which now had a linear range between
0.1 and 10 mg/mL. This study highlights the importance of the nano-interface towards
sensitive detection of PCT in the range reported for the specified infection.

2.6.1. Other Electrochemical Detection Strategies for PCT

Most of the electrochemical sensing platforms for PCT have employed anti-PCT anti-
bodies for specific detection. However, antibodies are high-molecular-weight proteins that
are susceptible to loss of functionality due to denaturation, and are expensive. Attempts
to replace the antibodies by low-molecular-weight agents without compromising on the
substrate specificity have resulted in the development of peptides identified using phage
display. A dodecapeptide sequence MSCAGHMCTRFV derived from phage display was
found to exhibit high binding affinity to PCT [45]. In a related work, four peptide sequences
derived from phage display were immobilized over gold working electrodes through thiol
linkers and their electrochemical response to PCT was monitored using electrochemical
impedance spectroscopy [46]. Electrodes modified with the peptide showing highest bind-
ing affinity to PCT displayed a linear range of 0.0125–0.25 µg/mL. This strategy opens up
newer options for development of the sensing element towards PCT. However, it requires
additional fine-tuning to improve the sensing range, especially in the lower concentrations.

Conventional sandwich assays employ an enzyme label to generate the electrochem-
ical signal in response to the analyte. In an interesting variant, the use of the enzyme
label was substituted by glucose-encapsulated liposomes that were conjugated with the
detection antibody [47]. After the PCT in the sample bound to the immobilized primary
antibody on the electrode surface, the secondary antibody was added. This was followed
by addition of the detection antibody-tagged glucose encapsulated liposome. The electro-
chemical signal was generated by oxidation of glucose released upon lysis of the liposome
by the surfactant Triton-X 100, using a conventional glucometer. This sensor reported a
detection limit of 0.15 nM for PCT, which corresponds to 0.52 ng/mL and a detection range
between 0.153–15.38 nM. Further experiments to validate the performance of the sensor
using clinical samples are required for bench-to-bed translation.
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2.6.2. Multiplexed Sensors

The accuracy of clinical diagnosis of a condition can be improved through quantifica-
tion of multiple markers. A host of inflammatory markers are deregulated during sepsis
and infections. Hence, attempts to develop a device containing an array of sensing elements
that can simultaneously detect multiple markers are actively being pursued. Several recent
reports on multiplexed sensors with PCT as one of the analytes are available in litera-
ture [48]. A lab-on-a-chip immunosensor array was reported for simultaneous detection
of the pro-inflammatory markers PCT, interleukin-6 (IL-6) and C-reactive protein (CRP)
using a cyclooctene (TCO)-tetrazine (Tz)-horse radish peroxidase (HRP) assembly [49].
The ratio of TCO-HRP and Tz-HRP was optimized to achieve adequate chemilumines-
cent response for the different markers that are present in varying levels in blood. The
linear ranges obtained for CRP, PCT and IL-6 were 0.2–100 µg/mL, 0.14–700 ng/mL and
0.025–500 ng/mL, respectively. The device was validated using spiked samples and could
be used as a diagnostic device for inflammatory conditions. In a seminal work, three key
biomarkers of sepsis, namely, PCT, CRP and immobilized Fc-mannose binding lectins
(Fc-MBL) displaying pathogen associated molecular patterns (PAMP) were simultaneously
detected from whole blood employing a gold electrode coated with a nanocomposite
interface comprising reduced graphene oxide, glutaraldehyde cross-linked bovine serum
albumin and tetramethyl benzidene [50]. The multiplexed sensor exhibited a linear range
of 1.06–48.8 ng/mL for PCT, 0.63–3.76 µg/mL for CRP and a detection limit of 6 ng/mL
for the Fc-MBL PAMPs. No cross-reactivity between the analytes was reported. A proof-of-
concept work involving a flexible polyimide substrate with interdigitated gold electrodes
coated with 100 nm thick zinc oxide film was employed for simultaneous detection of PCT
and CRP. The respective antibodies were immobilized on the electrodes through dithio-
bis (succinimidyl propionate) linker. The point-of-care device employed electrochemical
impedance spectroscopy (EIS) to quantify PCT between 0.01–10 ng/mL and CRP between
0.01–20 µg/mL with excellent specificity using 10 µL of sample. This device could serve as
a point-of-care device for diagnosis of sepsis. In another effort at detection of sepsis, a panel
of three biomarkers, namely, PCT, lipopolysaccharide (LPS) and lipoteichoic acid (LTA),
were quantified simultaneously using a fabricated microfluidic device with nanochan-
nels [51]. Gold microelectrodes printed on a substrate and PDMS layer with nanochannels
was positioned through pressure adhesion over the sensing area. A nylon membrane
interlayer modified with the antibodies against the respective analytes was placed over
the gold electrodes. The device exhibited a linear response of 0.1 ng/mL–10 µg/mL for
PCT and 1–1000 µg/mL for LPS and LTA. The total response time for the analysis was 15
min. Further studies in a disease cohort will serve to realize the clinical potential of this
device. In a recent study, a disposable screen-printed electrode platform was designed for
simultaneous detection of PCT and CRP from neonatal blood samples [52]. The sensing
strategy was based on sandwich immunoassay. The novelty was the use of magnetic beads
functionalized with the capture antibody that retained the PCT on the electrode surface in
the presence of an external magnetic field. The addition of the secondary antibody labeled
with horseradish peroxidase resulted in the generation of the electrochemical signal that
was recorded using amperometry. The sensor detected PCT between 0.25 and 100 ng/mL,
and CRP between 0.01–5 µg/mL. The sensor was used to detect PCT levels from serum
samples of healthy and infected infants with good correlation and accuracy when com-
pared with conventional method. Apart from sepsis, PCT has also been introduced in a
biomarker panel for diagnosis of cardiovascular disorders. A paper-based point-of-care
device was fabricated for detection of cardiac disease markers PCT, cardiac troponin I
(cTnI) and CRP. Antibodies were used as the capture agent for the individual analyte
and were immobilized over the stencil-printed carbon electrodes coated with graphene
oxide [53]. Square wave voltammetry measurements revealed a linear response for CRP
between 0.001 and 100 µg/mL, 0.5 pg/mL–250 ng/mL and 0.001 to 250 ng/mL for PCT and
cTnI, respectively. Apart from specificity, the device exhibited stability for about a month.
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This device could have immense utility as an early diagnostic system for cardiovascular
diseases.

2.6.3. Emerging Directions

Microfluidic chips and low-cost disposable electrochemical platforms with low sample
volume are emerging as the front-runners in clinical diagnosis. A disposable screen-printed
platform and a microfluidic chip were both explored for PCT detection using antibody
labeled magnetic beads for capture and horseradish peroxidase labeled secondary antibody
for generating the electrochemical signal. Both platforms resulted in a rapid response within
20 min over a wide range of PCT concentrations ranging from 0.5–1000 ng/mL using 25 µL
of the sample. Along similar lines, a recent study demonstrated the use of a polydimethyl
siloxane (PDMS) microfluidic chip containing gold electrodes that could simultaneously
detect PCT and IL-6 for early diagnosis of sepsis from ultra-low sample volume of 10 µL [54].
The sensing was accomplished using electrical counting at the entrance and the exit of the
flow channel. The method employed different sized microbeads linked with the capture
antibodies for PCT and IL-6. The size differences in the microbeads for each marker resulted
in different pulse frequencies and amplitudes that were used to discriminate the counts
for PCT and IL-6. The flow channels contained secondary antibodies for the respective
markers conjugated using avidin–biotin linkage. The beads were again counted at the exit
and the difference was used to quantify the amount of PCT and IL-6 in the samples. This
device exhibited a detection limit of 130 and 150 pg/mL for PCT and IL-6, respectively.
The sensor also was validated using spiked plasma samples. This platform could be
further expanded for additional markers using different sized microbeads for more precise
diagnosis. An electrochemical magneto-immunoassay platform was successfully fabricated
using gold electrode in a microfluidic chamber that employed an ultra-low volume of
25 µL. Streptavidin-conjugated magnetic beads were used to retain biotinylated anti-PCT
antibody on their surface. A neodymium magnet placed beneath the chamber kept the
magnetic beads in position. Horseradish peroxidase conjugated secondary antibody was
used to generate the electrochemical signal. The microfluidic sensor had a linear range
between 0.5 and 100 ng/mL of PCT with a detection limit of 0.02 ng/mL. The detection
of PCT from pre-term neonatal serum samples was achieved in 15 min, making this a
promising tool for rapid clinical diagnosis of sepsis [20]. Integration of machine learning
and deep learning algorithms may also be explored in tandem with the device to improve
the precision and accuracy of discrimination and quantification of the biomarker panels.
Another emerging vista in the design of sensing platforms for clinical biomarkers is the
fabrication of portable devices using 3D printing. A recent approach had employed 3D
printing to design the mechanical components of a portable sensor platform that used
optical cavity absorption for sensitive quantification of PCT, CRP and IL-6 [55]. This design
strategy could well be explored for fabricating electrochemical sensing chips in the near
future.

Aptamers represent an interesting class of short oligonucleotide sequences that display
specific binding to a specific target similar to antibodies. The use of aptamer sequences
overcomes problems such as denaturation, variations during affinity maturation and cost
that are encountered with use of antibodies. Aptamers for a specific target are identified
through high-throughput screening. Aptasensors have been explored for several clinical
markers like eosinophil cationic protein [56] but have been less explored for procalcitonin.
An attempt to fabricate an aptasensor for PCT resulted in poor sensitivity and linear
range [57]. Nevertheless, the key lies in the design of the aptamer sequence.

3. Concluding Remarks and Future Perspectives

Sensors have made a mark in all domains of life and continuous efforts to improve
the sensing performance have spurred the search for efficient materials for sensing or
transduction. The growing importance of PCT as a disease biomarker independently, as
well as in combination with other disease markers has now opened up new avenues for
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the development of effective electrochemical sensor platforms for affordable commercial
devices for clinical diagnosis. In this review, we have summarized the available electro-
chemical immunosensors for sensitive and selective recognition of PCT in clinical serum
samples. The nanointerfaced immunosensors exhibit quick responses, excellent stability,
high sensitivity and selectivity, and in most cases have been found to be comparable to the
conventional ELISA method. However, use of antibodies as the capture element makes
the technology expensive. Moreover, variations in the binding affinity of the commercially
available antibodies towards the antigen during affinity maturation reduces reproducibility.
Aptamers that exhibit specific binding to the targets may be an effective alternative for
capturing PCT. Similarly, small peptide sequences that display high affinity towards PCT
may represent the future of PCT sensors. The emerging technologies such as 3D print-
ing, microfluidics, and machine learning could further improve the clinical potential of
point-of-care devices for determination of PCT. Nevertheless, in order to fabricate supe-
rior performance PCT sensors in futuristic point-of-view, concerted efforts are needed for
identification of the ideal combination of nanointerface materials, understanding the reac-
tions occurring at the electrode-electrolyte interface and the sensing mechanisms involved.
Multiplex detection of PCT along with other disease markers such as C-reactive protein
(CRP), and pro-inflammatory cytokines such as IL-8, IL-6 and TNFα, could be coupled for
accurate and early clinical diagnosis of many inflammation-mediated disorders.
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49. Zupančič, U.; Jolly, P.; Estrela, P.; Moschou, D.; Ingber, D.E. Graphene Enabled Low-Noise Surface Chemistry for Multiplexed
Sepsis Biomarker Detection in Whole Blood. Adv. Funct. Mater. 2021, 31, 2010638. [CrossRef]

50. Xianyu, Y.; Wu, J.; Chen, Y.; Zheng, W.; Xie, M.; Jiang, X. Controllable Assembly of Enzymes for Multiplexed Lab-on-a-Chip
Bioassays with a Tunable Detection Range. Angew. Chem. Int. Ed. 2018, 57, 7503. [CrossRef] [PubMed]

51. Tanak, A.S.; Jagannath, B.; Tamrakar, Y.; Muthukumar, S.; Prasad, S. Non-faradaic electrochemical impedimetric profiling of
procalcitonin and C-reactive protein as a dual marker biosensor for early sepsis detection. Anal. Chim. Acta 2019, 3, 100029.
[CrossRef]

52. Molinero-Fernández, Á.; Moreno-Guzmán, M.; López, M.Á.; Escarpa, A. Magnetic Bead-Based Electrochemical Immunoassays
On-Drop and On-Chip for Procalcitonin Determination: Disposable Tools for Clinical Sepsis Diagnosis. Biosensors 2020, 10, 66.
[CrossRef] [PubMed]

53. Boonkaew, S.; Jang, I.; Noviana, E.; Siangproh, W.; Chailapakul, O.; Henry, C.S. Electrochemical paper-based analytical device for
multiplexed, point-of-care detection of cardiovascular disease biomarkers. Sens. Actuators B Chem. 2021, 330, 129336. [CrossRef]

54. Berger, J.; Valera, E.; Jankelow, A.; Garcia, C.; Akhand, M.; Heredia, J.; Ghonge, T.; Liu, C.; Font-Bartumeus, V.; Oshana, G.;
et al. Simultaneous electrical detection of IL-6 and PCT using a microfluidic biochip platform. Biomed. Microdevices 2020, 22, 36.
[CrossRef] [PubMed]

55. Teggert, A.; Datta, H.; McIntosh, S.; Warden, B.; Bateson, S.; Abugchem, F.; Ali, Z. Portable, low cost and sensitive cavity enhanced
absorption (CEA) detection. Analyst 2021, 146, 196. [CrossRef] [PubMed]

56. Wang, Z.; Yang, J.; Gui, L. Development of a Graphene-Based Aptamer Sensor for Electrochemical Detection of Serum ECP Levels.
Int. J. Electrochem. Sci. 2017, 12, 9502–9511. [CrossRef]

57. Demertzis, N. Development of a Multiplex Sensing Platform for the Accurate and Rapid Diagnosis of Sepsis. Ph.D. Thesis, Cardiff
University, Cardiff, UK, 2020.

http://doi.org/10.1039/D1AN00372K
http://www.ncbi.nlm.nih.gov/pubmed/33999069
http://doi.org/10.1016/j.snb.2020.128195
http://doi.org/10.1016/j.bios.2019.111562
http://www.ncbi.nlm.nih.gov/pubmed/31400728
http://doi.org/10.1016/j.snb.2020.128324
http://doi.org/10.1016/j.bioelechem.2021.107753
http://doi.org/10.1016/j.bioelechem.2021.107802
http://doi.org/10.1016/j.snb.2019.127099
http://doi.org/10.1016/j.snb.2020.128509
http://doi.org/10.1016/j.bios.2020.112713
http://www.ncbi.nlm.nih.gov/pubmed/33059166
http://doi.org/10.1039/C5RA20260D
http://doi.org/10.1039/C7RA06553A
http://doi.org/10.1002/adfm.202010638
http://doi.org/10.1002/anie.201801815
http://www.ncbi.nlm.nih.gov/pubmed/29480958
http://doi.org/10.1016/j.acax.2019.100029
http://doi.org/10.3390/bios10060066
http://www.ncbi.nlm.nih.gov/pubmed/32560303
http://doi.org/10.1016/j.snb.2020.129336
http://doi.org/10.1007/s10544-020-00492-6
http://www.ncbi.nlm.nih.gov/pubmed/32419087
http://doi.org/10.1039/D0AN01852J
http://www.ncbi.nlm.nih.gov/pubmed/33140076
http://doi.org/10.20964/2017.10.54

	Introduction 
	Sandwich-Type Electrochemical Immunoassay 
	Carbon-Based Nanointerfaces 
	Nanometallic and Metal Oxide-Based Interfaces 
	Inorganic Metallic Interfaces and Organic Framework-Based Immunosensors 
	Metal Complex-Based Immunosensors 
	Host–Guest Interfaces in Immunosensors 
	Quantum-Dots-Based Immunosensors 
	Other Electrochemical Detection Strategies for PCT 
	Multiplexed Sensors 
	Emerging Directions 


	Concluding Remarks and Future Perspectives 
	References

