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Abstract: Significant inter-individual variation in terms of susceptibility to several stress-related
disorders, such as myocardial infarction and Alzheimer’s disease, and therapeutic response has been
observed among healthy subjects. The molecular features responsible for this phenomenon have not
been fully elucidated. Proteomics, in association with bioinformatics analysis, offer a comprehensive
description of molecular phenotypes with clear links to human disease pathophysiology. The aim of
this study was to conduct a comparative plasma proteomics analysis of glucocorticoid resistant and
glucocorticoid sensitive healthy subjects and provide clues of the underlying physiological differences.
For this purpose, 101 healthy volunteers were given a very low dose (0.25 mg) of dexamethasone at
midnight, and were stratified into the 10% most glucocorticoid sensitive (S) (n = 11) and 10% most
glucocorticoid resistant (R) (n = 11) according to the 08:00 h serum cortisol concentrations determined
the following morning. One month following the very-low dose dexamethasone suppression test,
DNA and plasma samples were collected from the 22 selected individuals. Sequencing analysis did
not reveal any genetic defects in the human glucocorticoid receptor (NR3C1) gene. To investigate
the proteomic profile of plasma samples, we used Liquid Chromatography–Mass Spectrometry
(LC-MS/MS) and found 110 up-regulated and 66 down-regulated proteins in the S compared to
the R group. The majority of the up-regulated proteins in the S group were implicated in platelet
activation. To predict response to cortisol prior to administration, a random forest classifier was
developed by using the proteomics data in order to distinguish S from R individuals. Apolipoprotein
A4 (APOA4) and gelsolin (GSN) were the most important variables in the classification, and warrant
further investigation. Our results indicate that a proteomics signature may differentiate the S from
the R healthy subjects, and may be useful in clinical practice. In addition, it may provide clues of
the underlying molecular mechanisms of the chronic stress-related diseases, including myocardial
infarction and Alzheimer’s disease.
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1. Introduction

Glucocorticoids exert numerous actions in target tissues through binding to their
cognate receptor, the glucocorticoid receptor (GR), which functions as a ligand-activated
transcription factor influencing the transcription rate of a large number of glucocorticoid
responsive genes [1–3]. Moreover, the ligand-bound GR may influence gene expression in
a positive or negative fashion through protein–protein interactions with other transcription
factors, including the nuclear factor-κB (NF-κB) [4], signal transducers and activators of
transcription (STATs) [5], and the activator protein-1 (AP-1) [4,6]. In addition to their
genomic actions, glucocorticoids may exert rapid nongenomic actions mediated by a
membrane-anchored GR, which triggers the activation of the mitogen-activated protein
kinases (MAPK) [7,8] or the phosphatidylinositol 3-kinase (PI3K) [8,9]. Finally, accumulat-
ing evidence suggests that glucocorticoids may signal through mitochondrial GRs, thereby
regulating fundamental cellular function, including apoptosis, energy production, and
stress response [10].

In humans, tissue glucocorticoid sensitivity is complex and multifactorial, depending
on polymorphisms [11] or genetic defects in the NR3C1 gene that encodes the human
GR (hGR) [12], several tissue-specific hGR protein isoforms [13,14], or the hGR “inter-
actome” influenced by an ever-increasing number of interacting proteins, miRNAs [15]
and non-coding RNAs [15,16]. All these regulatory factors influence substantially tissue
responsiveness to glucocorticoids in clinical practice. Indeed, a large number of patients
with inflammatory, allergic, hematologic, and lymphoproliferative diseases are treated
with synthetic glucocorticoids due to their anti-inflammatory and immunosuppressive ef-
fects [17]. However, the therapeutic outcome might be compromised by the adverse effects
of hypercortisolism [18]. Therefore, the identification of novel protein biomarkers that could
stratify healthy adults as most glucocorticoid-sensitive or most glucocorticoid-resistant is
currently an unmet clinical need.

Proteomics approaches allow the identification and quantification of proteins from
biological samples and could lead to the identification of biomarkers associated with
the pathogenesis, diagnosis, and treatment of many diseases [19]. Of note, untargeted
proteomics has not yet been used to investigate differences among healthy individuals
with variations in tissue glucocorticoid sensitivity. The aim of our study was to study any
differences at the proteomics level among healthy participants with increased or decreased
sensitivity to glucocorticoids, and to identify a proteomic signature that could be used to
distinguish most glucocorticoid-sensitive (S) from most glucocorticoid-resistant (R) healthy
adult subjects, who do not harbor any genetic defects in the human glucocorticoid receptor
(NR3C1) gene, using untargeted plasma proteomics.

2. Materials and Methods
2.1. Selection of the Healthy Subject Cohort

Fifty males and fifty-one females (n = 101) of a mean age of (±SD) 26.5 (±5.0) years,
were recruited to participate in our study prospectively. The participants had unremarkable
medical history and were not receiving any medications, including oral contraceptives
for females. To study the inter-individual variation in tissue glucocorticoid sensitivity
among the participants, the very low dose dexamethasone suppression test was applied, as
previously described in studies with healthy subjects [20,21]. According to this protocol, all
participants were given per os 0.25 mg of dexamethasone at midnight and were advised to
wake up at 07.00 h. The following morning (08.00 h), serum cortisol (261.8 ± 206.9 nmol/L)
and plasma ACTH (16.1 ± 12.2 pg/mL) were measured. Depending on their serum cor-
tisol concentrations, all participants were rank ordered. The 11 subjects who had the
lowest serum cortisol concentrations were classified as the most glucocorticoid sensi-
tive (S) group, while the 11 subjects with the highest serum cortisol concentrations were
classified as the most glucocorticoid-resistant (R) group ((mean serum cortisol concen-
trations ± SD: 34.4 ± 15.0 nmol/L in the S participants, mean serum cortisol concentra-
tions ± SD: 622.4 ± 93.7 nmol/L in the R participants, p < 0.001); (mean plasma ACTH
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concentrations ± SD: 2.8 ± 2.4 pg/mL in the S participants, mean plasma ACTH concen-
trations ± SD: 31.6 ± 10.6 pg/mL in the R participants, p < 0.001)) (Table 1). Thirty days
following the very low dose dexamethasone suppression test, plasma, DNA and RNA
samples were collected from the 22 individuals for further analyses.

Table 1. Clinical characteristics, and serum cortisol and plasma ACTH concentrations of the most
glucocorticoid sensitive (S) and most glucocorticoid resistant (R) healthy subjects at the time of the
very-low dexamethasone suppression test.

G
ro

up

Sample Code Sex Weight (kg) Height (m) BMI (kg/m2)
Cortisol
(nmol/L)

ACTH
(pg/mL)

G
lu

co
co

rt
ic

oi
d

Se
ns

it
iv

e
(S

) 1 F 58 1.64 21.6 18.6 <1.0
2 F 62 1.75 20.2 22.2 1.4
3 M 70 1.77 22.3 23.1 6.2
4 F 45 1.50 20,0 24.5 <1.0
5 M 70 1.85 20.5 26.2 2.9
6 F 55 1.64 20.4 32.3 <1.0
7 F 48 1.57 19.5 34.2 5.1
8 M 80 1.78 25.2 36.1 <1.0
9 M 70 1.82 21.1 39.7 2.0
10 M 52 1.71 17.8 51.3 <1.0
11 M 81 1.87 23.2 69.5 7.6

G
lu

co
co

rt
ic

oi
d

R
es

is
ta

nt
(R

) 1 F 52 1.59 20.6 834.0 35.3
2 F 56 1.68 19.8 720.9 38.1
3 F 59 1.55 24.6 690.8 46.0
4 M 93 1.86 26.9 644.2 42.2
5 M 53 1.68 18.8 599.0 32.8
6 F 47 1.54 19.8 597.9 23.7
7 F 59 1.70 20.4 579.4 39.9
8 F 58 1.65 21.3 565.3 16.1
9 F 58 1.7 20.1 556.2 29.9
10 M 70 1.72 23.7 537.4 30.9
11 M 77 1.88 21.8 520.6 12.4

BMI: Body Mass Index; ACTH: Adrenocorticotropic Hormone.

2.2. Approval of the Study

The study was approved by the Aghia Sophia Children’s Hospital Committee on the
Ethics of Human Research EB-PASCH-MoM: 13/02/2013, Re: 1490-21/01/2013). Written
informed consent was obtained by all subjects prior to their participation in the study.

2.3. Sample Collection

Whole blood samples (total volume: 5 mL) were obtained from the study participants
at 08:00 h in EDTA-containing tubes, centrifuged immediately following collection, and
stored at −80 ◦C until further analysis. Two aliquots of 150 µL per blood sample were
shipped in dry ice to the proteomics laboratory.

2.4. Assays

The standard hematological, biochemical, and endocrinological investigations were
determined, as previously described [22]. Taking into account the reproductive cycle of the
females, gonadotropin and sex steroid concentrations were determined between the 3rd
and 5th day of the menstrual cycle.

2.5. Sequencing of the NR3C1 Gene

Genomic DNA was isolated from whole blood samples from the 22 selected partici-
pants using the Maxwell 16 instrument for automated DNA extraction (Promega Corp.,
Madison, WI, USA). The protein-coding sequences of the NR3C1 gene, including the
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junctions of introns and exons, were PCR-amplified and sequenced using the Big Dye
Terminator cycle sequencing kit (Applied Biosystems, Carlsbad, CA, USA) on an ABI
3100 sequencer (ABI 3100, Applied Biosystems, Carlsbad, CA, USA), as previously de-
scribed [22,23].

2.6. Sample Preparation for Proteomics Analysis

Plasma samples (200 µg total protein per sample) were processed with the filter aided
sample preparation (FASP) method as described previously [24], with minor modifica-
tions [25]. Briefly, proteins were reduced with DTE (0.1 M), alkylated with iodoacetamide
(0.05 M), and digested overnight by trypsin in 50 mM NH4HCO3 pH 8.5. The peptides
were lyophilized and kept at −80 ◦C.

2.7. LC-MS/MS Analysis

Samples were resuspended in 200 µL mobile phase A (0.1% FA). A 5 µL volume
was injected into a Dionex Ultimate 3000 RSLS nano flow system (Dionex, Camberly,
UK) configured with a Dionex 0.1 × 20 mm, 5 µm, 100 Å C18 nano trap column with a
flow rate of 5 µL/min. The analytical column was an Acclaim PepMap C18 nano column
75 µm × 50 cm, 2 µm 100 Å with a flow rate of 300 nL/min. The trap and analytical column
were maintained at 35 ◦C. The chromatography method used had a duration of 4 h and
peptide elution was achieved by the following gradient: 2% to 33% mobile phase B (ACN
100%, Formic acid 0.1%). MS/MS analysis was performed with a Q Exactive operated with
Data Dependent Acquisition mode.

2.8. MS Data Processing

Proteome Discoverer 1.4 was used for processing the raw mass spectrometry data with
the Sequest search algorithm and the Uniprot FASTA file for Homo sapiens (20,243 entries
downloaded on 15 December 2017). Cysteine cabamidomethylation was considered as a
fixed modification, whereas methionine oxidation was considered as variable modification.
The mass tolerance for precursors was set to 10 ppm, whereas for fragment ions it was
0.05 Da. The False discovery rate (FDR) was set to 0.01.

2.9. Data Processing (Methods)

Data processing, visualizations, and statistical analysis were conducted in the R environ-
ment (version 3.6) for Windows. Raw spectral areas per sample were merged with an in-house
script and were subjected for sample normalization according to X′ = [X/sum(Xi)] × 106, with
X being the raw area of a given protein ID for a given sample, sum(Xi) the sum of all raw
protein areas for the same sample and X′ the normalized protein area. To increase the
power of the downstream analysis, proteins showing null abundance in more than 65%
of samples in both biological groups (“hypersensitive” and “resistant”; described in the
results section) were excluded. The non-parametric Mann–Whitney test was utilized for
assessing statistical significance of the continuous variables. Heatmap was constructed
after row z-normalization with the package ComplexHeatmap and the volcano plot with
the package EnhancedVolcano. Pathway analysis was conducted in the Cytoscape plug-in
ClueGO+CluePedia [26] and significantly enriched pathways were defined with a two-
sided hypergeometric test corrected with Benjamini–Hochberg (p < 0.05). Grouping of the
enriched terms was based on 50% gene similarity. A random forest-based classifier was
trained to distinguish between the two biological groups using the package randomForest.
The complete study population was utilized for training and feature selection involved
proteins with no missing values across samples and specifically the union of statistically
significant proteins (defined by Mann–Whitney p < 0.05; n = 11) and of proteins with fold
change >1.5 (n = 3 extra proteins). Tuning of classifier parameters was conducted iteratively
and was based on minimizing the out of bag error [27], which is an estimate of the correct
classification rate of random partitions of the training set. For optimal tuning, number of
trees and variables used at each split was set to 48 and 3, respectively, with a stepfactor of
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0.5 and improve of 0.05. Variable importance was assessed in terms of the increase in the
misclassification rate after permutation and comparison of the accuracy to the standard
model (Mean Decrease in Accuracy and Mean Decrease in Gini index; [28]) and also in
terms of the mean minimal depth achieved over all trees, which indicates the impact of a
variable in the classification of observations (the lower the minimal depth of a variable the
highest the number of observations that were classified on the basis of that variable), with
the packages caret and randomForestExplainer.

Summaries and detailed data on protein intensities and statistics can be found in the
Supplementary Tables.

3. Results
3.1. Clinical Characteristics, Hematological, Biochemical, and Endocrinological Parameters in the
Most Glucocorticoid Sensitive (S) and Most Glucocorticoid Resistant (R) Healthy Subjects

The clinical characteristics (sex, weight, height, and body mass index (BMI)), serum
cortisol and plasma ACTH concentrations at the time following the very low dose dexam-
ethasone suppression test are presented in Table 1. All the hematological, biochemical and
endocrinological parameters of the S and R healthy subjects measured one month after
the very-low dexamethasone suppression test are presented in Table 2. No statistically
significant differences were found between the S and R groups (p-value > 0.05).

Table 2. Hematological, biochemical, and endocrinological parameters of the S and R healthy subjects
determined one month after the very-low dexamethasone suppression test.

Parameter
Glucocorticoid

Sensitive
(n = 11)

Glucocorticoid
Resistant
(n = 11)

* p

Age (year) 25.27 ± 1.17 27.55 ± 2.03 0.478
Weight (kg) 62.82 ± 3.72 62.00 ± 3.98 0.847
Height (cm) 1.72 ± 0.04 1.69 ± 0.03 0.519

BMI (kg/m2) 21.07 ± 0.60 21.62 ± 0.74 0.797
ACTH (pg/mL) 33.16 ± 5.67 27.64 ± 4.65 0.519
CORT (µg/dL) 23.13 ± 1.70 18.98 ± 3.06 0.270
IGF-I (ng/mL) 259.18 ± 23.97 251.36 ± 20.15 0.699

IGFBP-3 (µg/mL) 5.30 ± 0.31 5.17 ± 0.37 0.562
TSH (µUI/mL) 2.79 ± 0.28 2.05 ± 0.33 0.101

T3 (ng/dL) 102.26 ± 8.33 102.02 ± 7.19 0.982
FT4 (ng/dL) 1.12 ± 0.04 1.06 ± 0.03 0.261

Anti-TPO (IU/mL) 10.43 ± 0.21 11.11 ± 0.78 0.652
Anti-TG (IU/mL) 20.00 ± 0.00 20.00 ± 0.00 0.999

LH (mUI/mL) 10.11 ± 4.50 6.44 ± 0.69 0.699
FSH (mUI/mL) 5.22 ± 0.83 4.05 ± 0.70 0.300

DHEAS (µg/dL) 238.62 ± 44.03 248.58 ± 34.68 0.562
Androstenedione (ng/mL) 2.89 ± 0.28 3.20 ± 0.35 0.502

PRL (ng/mL) 24.94 ± 2.65 21.55 ± 2.75 0.193
SHBG (nmol/L) 65.12 ± 8.42 46.17 ± 5.09 0.175
PTH (pg/mL) 34.15 ± 4.59 38.51 ± 5.40 0.562

25-Hydroxy-Vitamin D (ng/mL) 16.06 ± 2.38 14.02 ± 2.56 0.652
Insulin (µUI/mL) 6.71 ± 0.81 13.72 ± 4.22 0.116
Glucose (mg/dL) 73.20 ± 1.99 74.75 ± 4.80 0.965

Urea (mg/dL) 27.70 ± 2.06 32.50 ± 2.90 0.203
Cholesterol (mg/dL) 157.40 ± 5.34 156.75 ± 5.30 0.965

HDL (mg/dL) 49.50 ± 2.21 52.88 ± 2.86 0.315
LDL (mg/dL) 90.70 ± 5.63 87.63 ± 4.78 0.762

Triglycerides (mg/dL) 69.40 ± 9.48 74.25 ± 5.66 0.315
ApoA1 (mg/dL) 158.40 ± 2.54 167.63 ± 5.32 0.237
ApoB (mg/dL) 75.50 ± 4.55 71.38 ± 2.73 0.515
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Table 2. Hematological, biochemical, and endocrinological parameters of the S and R healthy subjects
determined one month after the very-low dexamethasone suppression test.

Parameter
Glucocorticoid

Sensitive
(n = 11)

Glucocorticoid
Resistant
(n = 11)

* p

Lpa (mg/dL) 21.84 ± 11.82 25.79 ± 9.66 0.460
Hct (%) 43.09 ± 1.07 44.64 ± 2.32 0.748

WBC (×103/µL) 6.72 ± 0.49 7.09 ± 0.52 0.612
PLT (×103/µL) 236.55 ± 22.11 233.09 ± 32.56 0.847

ACTH: Adrenocorticotropic Hormone; Anti-Tg: Thyroglobulin antibodies; Anti-TPO: Thyroid Peroxidase anti-
bodies; ApoA1: Apolipoprotein A1; ApoB: Apolipoprotein B; BMI: Body Mass Index; CORT: Cortisol; DHEAS:
Dehydroepiandrosterone Sulfate; FSH: Follicle Stimulating Hormone; FT4: Free Thyroxine; Hct: Hematocrit; HDL:
High-Density Lipoprotein; IGF1: Insulin Like Growth Factor 1; IGF-BP3: Insulin Like Growth Factor-Binding
Protein 3; INS: Insulin; LDL: Low-Density Lipoprotein; LH: Luteinizing Hormone; Lpa: lipoprotein a; PLT: Platelet
count; PRL: Prolactin; PTH: Parathormone; SHBG: Sex Hormone-Binding Globulin; T3: Triiodothyronine; TSH:
Thyroid Stimulating Hormone; WBC: White Blood Cell Count. Data are presented as mean ± standard error of
the mean (SEM); * p > 0.05 for all.

3.2. The S and R Healthy Participants Did Not Harbor Any Genetic Defects in the NR3C1 Gene

To study whether the observed variation in tissue glucocorticoid sensitivity among
the S and R healthy participants might be caused by genetic defects in the NR3C1 gene,
the protein-coding exons and the intron–exon junctions were first PCR amplified and
then sequenced. We have not identified any point mutations, deletions, insertions, or
polymorphisms in the NR3C1 gene of the S and R participants.

3.3. Proteomics Data Analysis

In total, there were 2737 proteins identified and quantified in at least one of the an-
alyzed samples (listed in the Supplementary Tables). Based on their response to cortisol,
samples were labeled either as “most sensitive” (mean serum cortisol concentrations ± SD:
30 ± 20 nmol/L; n = 11 samples) or “most resistant” (mean serum cortisol concentra-
tions ± SD: 620 ± 90 nmol/L; n = 11 samples), and statistical analysis was conducted for
the comparison of resistant vs sensitive. After selecting those proteins with presence in at
least 35% of the samples in one of the two groups (n = 466 features), differentially expressed
proteins were defined as the subset of statistically significant changes (Mann–Whitney
p-value < 0.05) with a fold change greater than 1.5 (or less than 0.67). This counted for
66 proteins with higher abundance in the resistant and 110 proteins with higher abundance
in the sensitive group (Figure 1). Among them, there were 21 proteins being present
exclusively in only one of the two groups (Table 3). Over-representation test (ClueGO
plug-in) for proteins being overexpressed in the sensitive group (FC < 0.67; n = 110 proteins)
yielded some significantly enriched Reactome pathways (Table 4), including erythrocyte
gas exchange and platelet activation and aggregation. However, there were no signifi-
cant pathway enrichments for proteins being at higher abundance in the resistant group
(FC > 1.5; n = 66 proteins). Detailed protein data for this analysis can be found in the “35%
threshold” spreadsheet of the Supplementary Tables.

In order to predict the response to cortisol prior to administration, a random forest
classifier was developed out of the proteomics data, to distinguish between sensitive and
resistant samples. As a training set, we used the complete set of samples (n = 22) aiming to
validate the classifier in new independent cohorts. For optimal training, feature selection
involved proteins with no missing values across samples and specifically those passing
Mann–Whitney p < 0.05, as well as those with a fold change >1.5 (and <0.67; n = 14). After
tuning for optimal parameters, the classifier showed promising results in correctly assigning
random partitions of the training data to the studied groups, achieving an overall accuracy
score of 0.86. In detail, there were only three misclassified cases, one for the sensitive and
two for the resistant groups. The individual importance of each protein in the model was
evaluated in terms of the Mean Decrease in Accuracy, the Mean Decrease in Gini index
and the mean minimal depth. Out of the 14 proteins utilized for training, apolipoprotein
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A4 (APOA4) and gelsolin (GSN) were the most important variables in the classification
(Figure 2), and warrant further investigation to determine their prognostic capacity.
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Figure 1. Heatmap (left) and Volcano plot (right) of proteins quantified in patients with complete
(hypersensitive) or not complete (resistant) response to cortisol. Heatmap shows the abundance of
proteins passing the ±0.585 log2 fold change threshold, in the two groups. Volcano plot includes
proteins with presence in at least 35% of the analyzed samples (in one of the two groups) and
illustrates the log2 fold change (x axis) as a function of the Mann–Whitney p value (y axis). Red color
marks proteins passing the 1.5 (or 0.67)-fold change (equivalent to ±0.585 in the logarithmic scale).

Table 3. Proteins being exclusively present in one of the two groups.

Protein Description p Value Present

KIF28P Kinesin-like protein KIF28P 0.015762 Only in resistant
MRPS34 28S ribosomal protein S34, mitochondrial 0.015762 Only in resistant
PRPF8 Pre-mRNA-processing-splicing factor 8 0.015762 Only in resistant

MYH11 Myosin-11 0.03591 Only in resistant
MLH1 DNA mismatch repair protein Mlh1 0.03591 Only in resistant

ARHGAP21 Rho GTPase-activating protein 21 0.03591 Only in resistant
EMC10 ER membrane protein complex subunit 10 0.03591 Only in resistant

ZSWIM9 Uncharacterized protein ZSWIM9 0.03591 Only in resistant
FANCB Fanconi anemia group B protein 0.03591 Only in resistant

CDADC1 Cytidine and dCMP deaminase domain-containing protein 1 0.03591 Only in resistant
ACSS3 Acyl-CoA synthetase short-chain family member 3, mitochondrial 0.03591 Only in resistant

IGHV3-66 Immunoglobulin heavy variable 3-66 0.03591 Only in sensitive
IGLV5-39 Immunoglobulin lambda variable 5-39 0.03591 Only in sensitive

LCP1 Plastin-2 0.03591 Only in sensitive
DOCK4 Dedicator of cytokinesis protein 4 0.03591 Only in sensitive

SLC38A3 Sodium-coupled neutral amino acid transporter 3 0.03591 Only in sensitive
RTN4 Reticulon-4 0.03591 Only in sensitive

CFAP97 Cilia- and flagella-associated protein 97 0.03591 Only in sensitive
POLK DNA polymerase kappa 0.03591 Only in sensitive

ANKRD50 Ankyrin repeat domain-containing protein 50 0.03591 Only in sensitive
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Table 4. Pathway enrichments for the sensitive group. Significance was defined with a two-sided
hypergeometric test in ClueGo. P value corresponds to the Benjamini–Hochberg correction.

Reactome Pathway p Value % Associated Genes Associated Genes Found

Erythrocytes take up oxygen and release
carbon dioxide 7.07 × 10−5 33.3 (CA1, CA2, HBA1)

G-protein mediated events 0.004559 5.5 (CAMKK2, ITPR1, ITPR2)
PLC beta mediated events 0.004452 5.6 (CAMKK2, ITPR1, ITPR2)

DAG and IP3 signaling 0.002614 7.1 (CAMKK2, ITPR1, ITPR2)
Signaling by VEGF 0.000892 4.7 (CDH5, CRK, ITGB3, ITPR1, ITPR2)

VEGFA-VEGFR2 Pathway 0.0007 5.1 (CDH5, CRK, ITGB3, ITPR1, ITPR2)

Platelet activation, signaling and aggregation 1.5 × 10−6 4.6
(CRK, F8, FLNA, ITGB3, ITPR1, ITPR2,

PFN1, PPBP, QSOX1, RARRES2,
TUBA4A, VCL)

Fcgamma receptor (FCGR) dependent phagocytosis 0.002295 4.7 (CRK, FCGR3A, ITPR1, ITPR2)

Platelet degranulation 1.18 × 10−6 7.0 (F8, FLNA, ITGB3, PFN1, PPBP, QSOX1,
RARRES2, TUBA4A, VCL)

Response to elevated platelet cytosolic Ca2+ 1.1 × 10−6 6.7 (F8, FLNA, ITGB3, PFN1, PPBP, QSOX1,
RARRES2, TUBA4A, VCL)

Role of phospholipids in phagocytosis 0.000858 12.0 (FCGR3A, ITPR1, ITPR2)

Biomedicines 2021, 9, x FOR PEER REVIEW 9 of 13 
 

 

Figure 2. Variable importance for the 14 proteins used to train the random forest classifier so as to 

distinguish between responders (hypersensitive) and non-responders (resistant) to cortisol: (A) 

Multiway importance plots depicting the mean decrease in accuracy as a function of the mean 

minimal depth (left) and of the mean decrease in the Gini index (right); (B) Plot showing structure 

of the forest with respect to the distribution of the mean minimal depth across trees for each variable; 

(C) Predictive value of the top two important variables (APOA4 and GSN) in detecting non-

responders, based on their normalized protein intensity areas across samples. 

4. Discussion and Conclusions 

In this study, 22 individuals were selected as the most glucocorticoid sensitive (S) (n 

= 11) and most glucocorticoid resistant (R) (n = 11) from a large sample of 101 healthy 

adults, according to their 08.00 h serum cortisol concentrations following the very low 

dose dexamethasone suppression test. This test has been widely used in studies aimed to 

identify mild differences in tissue glucocorticoid sensitivity due to interindividual 

variation among healthy adults [20,21]. Since serum cortisol concentrations are within 

normal range in these studies, the application of a cortisol cut-off was out of context; 

therefore, the 101 participants were rank-ordered according to their cortisol 

concentrations and the two normal “extreme” groups were selected for further analyses. 

Sequencing analysis of the NR3C1 gene did not identify any genetic defect in the 22 

participants, indicating that the above-mentioned differences at the proteomics level 

could not be attributed to increased or decreased expression or activity of the human 

glucocorticoid receptor. 

Untargeted plasma proteomics analysis revealed 110 up-regulated and 66 down-

regulated proteins in the S compared to the R group. Importantly, the majority of the up-

regulated proteins in the S group were implicated in erythrocyte gas exchange (take up 

carbon dioxide and release oxygen), suggesting a state of the organism that is more 

capable to respond to stressful stimuli. This result is in line with the basic concepts of 

physiology of the stress system [22–25]. Upon exposure to external or internal stressors, a 

highly conserved neuroendocrine system, the stress system, is activated to restore the 

Figure 2. Variable importance for the 14 proteins used to train the random forest classifier so as to
distinguish between responders (hypersensitive) and non-responders (resistant) to cortisol: (A) Mul-
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with respect to the distribution of the mean minimal depth across trees for each variable; (C) Predic-
tive value of the top two important variables (APOA4 and GSN) in detecting non-responders, based
on their normalized protein intensity areas across samples.
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4. Discussion and Conclusions

In this study, 22 individuals were selected as the most glucocorticoid sensitive (S)
(n = 11) and most glucocorticoid resistant (R) (n = 11) from a large sample of 101 healthy
adults, according to their 08.00 h serum cortisol concentrations following the very low
dose dexamethasone suppression test. This test has been widely used in studies aimed to
identify mild differences in tissue glucocorticoid sensitivity due to interindividual variation
among healthy adults [20,21]. Since serum cortisol concentrations are within normal range
in these studies, the application of a cortisol cut-off was out of context; therefore, the
101 participants were rank-ordered according to their cortisol concentrations and the two
normal “extreme” groups were selected for further analyses. Sequencing analysis of the
NR3C1 gene did not identify any genetic defect in the 22 participants, indicating that the
above-mentioned differences at the proteomics level could not be attributed to increased or
decreased expression or activity of the human glucocorticoid receptor.

Untargeted plasma proteomics analysis revealed 110 up-regulated and 66 down-
regulated proteins in the S compared to the R group. Importantly, the majority of the
up-regulated proteins in the S group were implicated in erythrocyte gas exchange (take up
carbon dioxide and release oxygen), suggesting a state of the organism that is more capable
to respond to stressful stimuli. This result is in line with the basic concepts of physiology
of the stress system [29–32]. Upon exposure to external or internal stressors, a highly
conserved neuroendocrine system, the stress system, is activated to restore the threatened
or perceived as threatened internal balance or homeostasis. To achieve homeostasis, the
stress system, through concurrent activation of the hypothalamic-pituitary–adrenal (HPA)
axis and the locus caeruleus–autonomic nervous system, leads to behavioral and physical
adaptation changes, thereby increasing the chances for survival [29–32]. Thus, both oxygen
and nutrients are redirected to the central nervous system and the stressed body site(s)
through increased respiratory rate, elevated cardiovascular tone and catabolism [29,30].
The S group had most of the up-regulated proteins involved in erythrocyte take up of
carbon dioxide and release of oxygen, probably as part of the physical adaptation changes
observed in stress-related homeostasis.

In addition to the increased gas exchange of erythrocytes, the S group was character-
ized by increased expression of proteins involved in platelet activation, aggregation, and
degranulation. Of note, there were not any statistically significant differences between the
number of platelets of the S participants compared to that of the R participants, indicat-
ing that the S group displayed a cellular “predisposition” for increased coagulation. A
growing body of evidence suggests that natural and synthetic glucocorticoids contribute
substantially to platelet activation and aggregation [33]. Indeed, the serum/glucocorticoid
regulated kinase 1 (SGK1), which is a regulator of ORAI1 protein that mediates the store-
operated Ca2+ entry in platelets, has been shown to be influenced by several hormones,
including glucocorticoids [34]. Furthermore, endogenous hypercortisolism has been found
to increase thromboxane A2 (TXA2) biosynthesis, leading to enhanced platelet aggrega-
tion [35]. The increased platelet activity and aggregation underlies the increased coag-
ulation causing blood vessel infarctions, including myocardial and/or brain infarctions,
often observed in chronically stressed individuals. Although the S participants did not
have endogenous or exogenous hypercortisolism, we speculate that their increased stress
response might predispose them to develop blood vessel infarction upon exposure to
chronic stress.

Our study also succeeded in identifying a protein signature that could distinguish the
S from the R participants. Out of the 14 proteins utilized for training in the random forest
classifier, APOA4 and gelsolin GSN were the most important variables in the classifica-
tion. The expression of ApoA4 was significantly higher in obese and overweight children
compared with their normal counterparts. ApoA4 has an antiatherogenic function [36], is
increased in obese subjects and declines with weight reduction [37]. Indeed, fasting plasma
ApoA4 concentrations are significantly elevated in obesity and decrease to almost half of
baseline concentrations during weight reduction [37]. In addition to APOA4, GSN was also
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found as one of the most important variables in the classification. GSN is one of the most
abundant actin-binding proteins and plays a crucial role in cellular mechanisms and inter-
actions [38]. Since GSN participates in several immunologic functions, and interacts with
different types of immune cells, this protein has been identified as a potential therapeutic
target. More specifically, previous studies have identified the anti-amyloidogenic role of
GSN in Alzheimer’s disease (AD) [39–41]. GSN can reduce amyloid burden by acting as
an inhibitor of amyloid beta-protein (Aβ) fibrillization, and as an antioxidant and anti-
apoptotic protein. When GSN was administered or overexpressed in AD transgenic mice,
the amyloid load was significantly reduced and the Aβ level was decreased, suggesting
that GSN might be implicated in the treatment of AD [39]. The anti-amyloidogenic activity
in the S participants is in line with the results of our previous published study, in which
we used transcriptomics in these 22 participants, and found that the S participants had
decreased expression of genes involved in Alzheimer’s disease [23].

To the best of our knowledge, this is the first pilot study that identified differences at
the proteomics level among healthy adults with variations in tissue glucocorticoid sensitiv-
ity. However, the study has some limitations. The sample of participants was relatively
small to extract concrete conclusions. Undoubtedly, the proteomics analysis must be re-
peated in a larger cohort in order to confirm the differences reported between S and R
individuals. In the future, it is planned to validate the differential expression of selected
proteins and the deregulation of key pathways (erythrocyte gas exchange, and platelet
activation) by independent analytical approaches (ELISA, flow cytometry, etc.). Another
limitation of our study was the use of IMMULITE instead of HPLC for measuring serum
cortisol concentrations. The use of IMMULITE is the standard procedure that we normally
follow in our every-day clinical practice. Finally, the dexamethasone concentrations of the
101 participants were not measured following the very-low dexamethasone suppression
test because we carried out the protocol performed by Donn and collaborators, who found
a new glucocorticoid sensitivity-determining gene using gene expression profiling [21].
It is worth mentioning that in most published studies that use the very-low dose dexam-
ethasone suppression test, the investigators have not routinely determined dexamethasone
concentrations in their participants.

In conclusion, untargeted proteomics analysis revealed differences among healthy
subjects with differences in glucocorticoid sensitivity. The S individuals displayed higher
erythrocyte gas exchange and increased platelet activation and aggregation that might lead
to increased risk of stress-related disorders, including myocardial and brain infarctions.
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