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Abstract: Oxaliplatin is a platinum analog that can interfere with DNA replication and transcription.
Continuous exposure to oxaliplatin results in chemoresistance; however, this mechanism is not well
known. In this study, oxaliplatin-resistant (OR) colorectal cancer (CRC) cells of HCT116, HT29,
SW480 and SW620 were established by gradually increasing the drug concentration to 2.5 µM. The
inhibitory concentrations of cell growth by 50% (IC50) of oxaliplatin were 4.40–12.7-fold significantly
higher in OR CRC cells as compared to their respective parental (PT) CRC cells. Phospho-Akt
and phospho-mammalian target of rapamycin (mTOR) decreased in PT CRC cells but was overex-
pressed in OR CRC cells in response to oxaliplatin. In addition, an oxaliplatin-mediated decrease in
phospho-AMP-activated protein kinase (AMPK) in PT CRC cells induced autophagy. Contrastingly,
an increased phospho-AMPK in OR CRC cells was accompanied by a decrease in LC3B, further
inducing the activity of glycolytic enzymes, such as glucose transporter 1 (GLUT1), 6-phosphofructo-
2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) and phosphofructokinase 1 (PFK1), to mediate
cell survival. Inhibition of AMPK in OR CRC cells induced autophagy through inactivation of
Akt/mTOR pathway and a decrease in GLUT1, PFKFB3, and PFK1. Collectively, targeting AMPK
may provide solutions to overcome chemoresistance in OR CRC cells and restore chemosensitivity to
anticancer drugs.
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1. Introduction

According to 2020 statistics, colorectal cancer (CRC) accounts for 10% of all cancer
incidences and 9.4% of mortality worldwide and is common in both men and women [1].
As with other cancer types, the cause of CRC remains unclear. Based on several studies,
multiple stages and numerous factors are known to be involved in the pathogenesis
of CRC [2]. The primary treatments for CRC include surgery, radiation therapy and
chemotherapy [1,3]. However, repeated administration of chemotherapeutics has been
associated with drug resistance and poor prognosis. Therefore, various attempts, such as
targeted molecular therapy have been recently made to overcome drug resistance in CRC
patients [4].

The current paradigm states that combination therapy should be the best treatment
option because it should prevent the development of drug resistance and be more effective
than any one drug on its own [5]. One of the mechanisms of chemoresistance is the
increased expression of P-glycoprotein (P-gp), a drug efflux pump [6]. Overexpression of
P-gp lowers the cellular concentration of the anticancer drugs, reduces their effects and
induces chemoresistance [7]. Another mechanism of chemoresistance in cancer cells is the
activation of the Akt-mammalian target of the rapamycin (mTOR) signaling pathway [8–10].
Akt regulates growth factors responsible for cell survival and delivers signals to mTOR.
Activated mTOR plays a pivotal role in cell growth and proliferation [11–13]. Inhibition of
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activated Akt and its downstream effector, mTOR has been reported to induce autophagy, a
form of apoptosis [14]. Autophagy is a survival system that maintains cellular homeostasis
by degrading aged proteins and damaged intracellular organs and is thus involved in
diseases and biological progression [15–17]. Autophagy is also regulated by AMP-activated
protein kinase (AMPK) [18], which is evident through its induction in response to 5-
aminoimidazole-4-carboxamide ribonucleotide or metformin, an AMPK activator and
inhibition by compound C, an AMPK inhibitor [19]. The regulators of autophagy may,
therefore, be attractive targets for CRC treatment. However, it is unclear whether the
responsiveness of resistant cancer cells to anticancer drugs can be increased by regulating
autophagy through the AMPK and Akt/mTOR pathways [20]. Furthermore, various
investigators have suggested that fast-growing or resistant cancer cells have increased
glycolysis for rapid energy supply [21]. Overexpression of hexokinase 2 (HK2) and glucose
transporter 1 (GLUT1) is associated with chemoresistance in cancer [22–24].

Oxaliplatin, a platinum agent used for the treatment of CRC, forms a DNA-intra-
strand crosslink that causes DNA deformation and eventually inhibits the synthesis of
DNA and proteins in the cells, resulting in cytotoxic effects [25–27]. Oxaliplatin has been
widely used for its anticancer effects against CRC and ovarian cancer, but its effectiveness
is limited owing to the development of drug resistance [28–30].

In this study, we evaluated the effects of oxaliplatin resistance on autophagy in CRC.
Changes in AMPK and Akt/mTOR signaling pathways, as a mechanism of oxaliplatin
resistance, were examined in oxaliplatin-resistant (OR) CRC cells, extending the investiga-
tion of their effects on enzymes involved in glycolysis during the acquisition of oxaliplatin
resistance in CRC cells.

2. Materials and Methods
2.1. Chemicals

Oxaliplatin, doxorubicin (DOX), 5-fluorouracil (5-FU), trichostatin A (TSA),
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium-bromide (MTT), dimethyl sulfoxide
(DMSO), 4,6-diamidino-2-phenylindole (DAPI), metformin, compound C, cell lysis buffer
and protease inhibitor cocktail were purchased from Sigma-Aldrich (St. Louis, MO, USA).
Fetal bovine serum (FBS), Dulbecco’s modified Eagle’s medium (DMEM), Dulbecco’s
phosphate-buffered saline (DPBS) and penicillin–streptomycin were purchased from Invit-
rogen (Carlsbad, CA, USA). Antibodies against breast cancer resistance protein (BCRP), mul-
tidrug resistance protein 2 (MRP2), p53 and glyceraldehyde 3-phosphate dehydrogenase
(GAPDH) were obtained from Santa Cruz Biotechnology (Santa Cruz, CA, USA). Primary
monoclonal antibodies against P-gp, Bax, cyclin D1, cyclin-dependent kinase 4 (CDK4),
Bcl-xL, poly ADP ribose polymerase (PARP), Bad, phospho-Akt (Ser473), phospho-mTOR
(Ser2448), phospho-S6RP, phospho-p70S6K (Ser424/Thr421), phospho-p70S6K (Thr389),
AMPK, phospho-AMPK (Thr172), GLUT1, HK2, phosphofructokinase 1 (PFK1), pyruvate
kinase M2 (PKM2), lactate dehydrogenase A (LDHA), 6-phosphofructo-2-kinase/fructose-
2,6-biphosphatase 3 (PFKFB3) and LC3B were purchased from Cell Signaling Biotechnology
(Danvers, MA, USA). Propidium iodide and RNase A were obtained from Abcam (Cam-
bridge, UK). All other chemicals and reagents were of analytical or HPLC grade and were
used as received without further purification.

2.2. Cell Culture and Establishment of Oxaliplatin Resistance in CRC Cells

Human CRC cell lines, HCT116, HT29 SW480 and SW620, were obtained from the
Korean Cell Line Bank (KCLB, Seoul, Korea) and cultured in DMEM supplemented with
10% FBS and 1% antibiotics (100 U/mL penicillin/10 mg/mL streptomycin). The cells were
incubated overnight in a humidified cell incubator with 5% CO2 at 37 ◦C allowed to attach.

OR CRC cells (HCT116/OR, HT29/OR, SW480/OR and SW620/OR) were established
according to a previously reported method [31]. A stock solution of oxaliplatin was pre-
pared by dissolving it in DPBS. Parental (PT) CRC cells (HCT116/PT, HT29/PT, SW480/PT
and SW620/PT) were cultured in serum-containing media supplemented with 0.2 µM
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oxaliplatin. While this initial oxaliplatin treatment induced the death of most cells, some
cells survived. However, these remaining cells proliferated slower than their respective
PT CRC cells. At an 80% confluency, the cells were re-cultured in fresh culture medium
supplemented with the same concentration of oxaliplatin. By continuously growing cells
in the presence of the same concentration of oxaliplatin until no more detectable death of
cells was observed, the concentration of oxaliplatin was increased by 0.2 µM. This step was
repeated several times with a stepwise increase of 0.2 µM in oxaliplatin concentration to a
maximum of 2.5 µM over approximately 5–6 months, OR CRC cells were established. For
comparison, single treatment (ST) of oxaliplatin at 2.5 µM was also applied to the PT CRC
cells (HCT116/ST, HT29/ST, SW480/ST and SW620/ST) for 24 h.

2.3. Cell Proliferation Assay

To determine the effect of oxaliplatin resistance on the proliferation of CRC cells,
HCT116/PT, HT29/PT, SW480/PT and SW620/PT CRC cells and their respective OR CRC
cells were seeded on 96-well plates. The cells were treated with appropriate concentrations
of oxaliplatin, DOX, 5-FU and TSA. After 72 h of incubation, the medium was removed,
diluted MTT solution (100 µL) was added, and the plate was incubated at 37 ◦C for an
additional 2 h. Subsequently, the purple formazan crystals were solubilized by adding
DMSO, the absorbance was read at 540 nm using an ELISA reader (Bio-Tek Instruments
Inc., Winooski, VT, USA), and the inhibitory drug concentrations of cell growth by 50%
(IC50) were estimated using GraphPad Prism 5 software (La Jolla, CA, USA).

To investigate the effects of AMPK on cell proliferation in ST and OR CRC cells, ST
and OR CRC cells were treated with 10 mM metformin or 10 µM compound C for 72 h. The
remaining procedures were the same as described above.

2.4. Flow Cytometry

To assess cell cycle progression, PT CRC cells and their respective OR CRC cells
were plated on 60 mm dishes. After overnight incubation, the PT and OR CRC cells were
treated with DPBS or oxaliplatin (2.5 µM) for 24 h [32,33]. Cells were then trypsinized and
centrifuged for 5 min at 500× g at 4 ◦C, fixed with 70% ethanol at 4 ◦C, suspended in 1 mL
of propidium iodide solution (final concentration, 50 µg/mL) containing 100 U/mL RNase
A and 0.1% glucose, and incubated for 30 min in the dark [34,35]. Flow cytometry was
then performed using a FACSCalibur flow cytometer (FACSDiva7.0, Becton-Dickinson, San
Jose, CA, USA) and cell populations were identified using the Cell Quest software (Becton-
Dickinson). Red fluorescence, indicative of propidium iodide uptake by damaged cells,
was measured at 585/542 nm using logarithmic amplification. Electronic compensation
was performed to account for the spectral overlap [34,35].

2.5. Immunofluorescence Analysis

PT and OR CRC cells were treated with PBS or oxaliplatin (2.5 µM) for 24 h, fixed
with 4% paraformaldehyde (pH 7.4) at room temperature for 10 min. The cells were then
permeabilized with 0.1% Triton X-100 (Sigma-Aldrich) for 10 min at room temperature.
Cells were washed thrice with DPBS and incubated overnight at 4 ◦C with LC3B antibody
diluted to 1:50. After washing thrice with DPBS, the cells were incubated with Alexa Fluor
488-conjugated secondary antibody diluted to 1:100 (Invitrogen) at room temperature for
1 h and washed thrice with DPBS. The cells were carefully mounted on a slide with a
coverslip using a mounting medium containing DAPI. The images were analyzed using a
confocal microscope (Nikon, Minato City, Japan).

To investigate the effects of AMPK on autophagy in ST and OR CRC cells, ST and OR
CRC cells were treated with PBS, 20 mM metformin or 10 µM compound C for 24 h. The
remaining procedures were the same as those described above.
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2.6. Protein Isolation and Immunoblot Analysis

To evaluate protein expression, PT, ST and OR CRC cells were washed thrice with
ice-cold DPBS and harvested with cell lysis buffer supplemented with a protease inhibitor
cocktail. Proteins were quantified using a BCA assay kit (Pierce, Rockford, IL, USA),
according to the manufacturer’s protocol. Proteins (20–40 µg) were resolved on a 7.5–15%
SDS-PAGE and transferred to nitrocellulose membranes (Pall Corp., Ann Arbor, MI, USA).
The blots were incubated with appropriate primary antibodies diluted to 1:1000 or GAPDH
diluted to 1:10,000 at 4 ◦C overnight. GAPDH was used as a loading control.

To investigate the effects of AMPK on protein expression involved in autophagy
and glycolysis in ST and OR CRC cells, ST and OR CRC cells were treated with 20 mM
metformin or 10 µM compound C for 24 h. The remaining procedures were the same as
those described above.

2.7. Statistical Analysis

Data are presented as mean ± standard deviation (SD). Significance of the differences
was analyzed using or Tukey’s post-test for comparison among three means or more
after analysis of variance (ANOVA) or Student’s t-test between two unpaired data using
GraphPad Prism 5.0 software. Statistical significance was set at p < 0.05.

3. Results
3.1. Establishment of Resistance to Oxaliplatin in CRC Cells

Resistance to oxaliplatin was induced in human CRC cells, HCT116, HT29, SW480 and
SW620 via chronic exposure to oxaliplatin with a stepwise increase in its concentration to a
maximum of 2.5 µM over approximately 5–6 months. The cell morphology was slightly
altered and the growth rates of OR CRC cells were slower than those of their respective
PT CRC cells. Cell proliferation was inhibited by oxaliplatin in a concentration-dependent
manner in both PT and OR CRC cells (Figure 1). The respective IC50 values of oxaliplatin in
HCT116/OR, HT29/OR, SW480/OR and SW620/OR were significantly increased by 4.40-,
9.19-, 4.96- and 12.7-fold of those of their respective PT CRC cells (Table 1), confirming the
successful establishment of resistance to oxaliplatin in these cells.
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Figure 1. Effects of oxaliplatin on proliferation of the colorectal cancer (CRC) cells. Cell proliferation
was estimated by MTT assay in parental (PT, •) and oxaliplatin-resistant (OR, #) CRC cells of HCT116,
HT29, SW480 and SW620. Cells were treated with various concentration of oxaliplatin for 72 h. The
data are expressed as mean ± standard deviation of triplicate experiments. The x-axis represents
log scale.

Table 1. Mean IC50 ± standard deviation values (n = 3) of oxaliplatin, DOX, 5-FU and TSA in PT and
OR human colorectal cancer cells of HCT116, HT29, SW480 and SW620.

Drugs
HCT116 HT29 SW480 SW620

PT OR PT OR PT OR PT OR

Oxaliplatin (µM) 1.04 ± 0.065 4.58 ± 0.922 *** 0.446 ± 0.036 4.14 ± 0.986 *** 7.11 ± 0.984 35.3 ± 4.42 *** 0.485 ± 0.319 6.15 ± 4.38 *
DOX (nM) 152 ± 11.8 471 ± 24.0 *** 71.6 ± 5.85 128 ± 10.4 *** 21.7 ± 6.58 125 ± 24.6 *** 31.5 ± 9.79 125 ± 18.6 ***
5-FU (µM) 3.70 ± 0.523 15.4 ± 0.170 ** 6.44 ± 0.470 9.03 ± 2.81 7.56 ± 1.25 7.94 ± 0.551 1.26 ± 0.447 20.2 ± 5.96 ***
TSA (nM) 97.3 ± 9.18 102 ± 6.09 93.1 ± 7.65 123 ± 10.8 *** 93.9 ± 10.7 105 ± 9.33 105 ± 8.60 166 ± 2.60 ***

IC50, inhibitory concentration of cell growth by 50%; DOX, doxorubicin; 5-FU, 5-fluorouracil; TSA, trichostatin A;
PT, parental; OR, oxaliplatin-resistant. * p < 0.05; ** p < 0.01; *** p < 0.001.
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To examine whether oxaliplatin resistance induced resistance to other chemother-
apeutic drugs, both PT and OR CRC cells of HCT116, HT29, SW480 and SW620 were
independently treated with DOX, 5-FU and TSA at appropriate concentrations for 72 h.
Mean IC50 values are listed in Table 1. The inhibition of cell proliferation increased in a
concentration-dependent manner in both PT and OR CRC cells, but OR CRC cells exhibited
greater chemoresistance than their respective PT CRC cells for DOX; the respective IC50
values of DOX for the HCT116/OR, HT29/OR, SW480/OR and SW620/OR CRC cells
were approximately 2.84, 1.79, 5.76 and 3.97-fold higher than those of their respective PT
CRC cells. HCT116/OR and SW620/OR cells also showed increased resistance to 5-FU by
4.19 and 16.0-fold of those of their respective PT CRC cells, whereas no such effect was
observed for HT29/OR and SW480/OR cells (Table 1). The IC50 values of TSA significantly
increased by 1.32- and 1.58-fold in HT29/OR and SW620/OR CRC cells, respectively, but
the difference was not large compared to other drugs, so the resistance to TSA did not seem
to develop in CRC cells (Table 1).

3.2. Effects of Oxaliplatin Resistance on Drug Efflux Pumps

Drug efflux pumps are associated with drug resistance in various types of cancer. In
particular, ATP-binding cassette (ABC) transporters are proteins that mediate the efflux
of absorbed drugs from CRC cells and are considered to be one of the possible drivers of
oxaliplatin resistance. Therefore, P-gp, MRP2 and BCRP protein levels were determined us-
ing immunoblotting (Figure 2). The protein expression of P-gp and MRP2 was significantly
increased in HCT116/OR, HT29/OR, SW480/OR and SW620/OR CRC cells compared
to their respective PT CRC cells (Figure 2A,B). The expression of BCRP was increased
in SW480/OR and SW620/OR CRC cells (Figure 2A,B). Therefore, ABC transporters, es-
pecially P-gp and MRP2, appear to mediate cellular resistance to oxaliplatin and other
anticancer drugs in OR CRC cells.
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intensities normalized for protein loading with GAPDH. Columns and error bars represent means 
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Figure 2. (A) Effects of oxaliplatin resistance on the expression of drug efflux pumps. Expression
of P-gp and BCRP in parental (PT) and oxaliplatin-resistant (OR) colorectal cancer cells of HCT116,
HT29, SW480 and SW620 was determined by immunoblot analysis. (B) Graphical analysis of
band intensities normalized for protein loading with GAPDH. Columns and error bars represent
means ± standards deviation of immunoblot band intensities of 3 separate protein preparations.
* p < 0.05; ** p < 0.01; *** p < 0.001. P-gp, P-glycoprotein; BCRP, breast cancer resistance protein;
MRP2, multidrug resistance-associated protein 2; GAPDH, glyceraldehyde 3-phosphate dehydrogenase.

3.3. Effects of Oxaliplatin Resistance on Cell Cycle Progression

Oxaliplatin has been reported to induce cell cycle arrest and apoptosis in cancer
cells [25,28]. Flow cytometry was performed to assess the effects of oxaliplatin resistance on
cell cycle progression in PT and OR CRC cells. As shown in Figure 3A,B, the patterns of cell
cycle progression among the four CRC cell lines were similar except for SW620 CRC cells.
G2/M phase arrest was observed in HT29/ST and SW480/ST CRC cells. However, S phase
arrest was observed in the HCT116/ST, SW480/ST and SW620/ST CRC cells (Figure 3A,B).
In addition, sub-G1 peaks were significantly increased in the HT29/ST and SW620/ST CRC
cells, indicating that oxaliplatin was able to drive apoptosis in these cells. The proportion of
cell populations at each phase in the OR CRC cells did not respond to oxaliplatin treatment
and was maintained at levels similar to those in PT CRC cells except SW620/OR CRC cells
(Figure 3A,B).
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Figure 3. Effects of oxaliplatin resistance on the cell cycle progression and induction of apoptosis in
the parental (PT), 2.5 µM oxaliplatin single treated PT for 24 h (ST) and oxaliplatin-resistant (OR)
colorectal cancer (CRC) cells of HCT116, HT29, SW480 and SW620. (A) Cellular DNA was analyzed
by flow cytometry. (B) The percentage of cells in each phase was calculated from each histogram. (C)
Protein expression involved in apoptosis and cell cycle progression was analyzed by immunoblot
analysis. (D) Graphical analysis of band intensities normalized for protein loading with GAPDH.
Columns and error bars represent means ± standards deviation of immunoblot band intensities of
3 separate protein preparations. The * statistics showed the comparison with PT and the # statistics
showed the comparison between ST and OR. * or #, p < 0.05; ** or ##, p < 0.01; *** or ###, p < 0.001.
GAPDH, glyceraldehyde 3-phosphate dehydrogenase.

The immunoblot analysis supported these results. The expression of cleaved PARP was
increased in the HCT116/ST, HT29/ST, SW480/ST and SW620/ST CRC cells compared
to their respective PT CRC cells (Figure 3C,D), which was consistent with the results
of flow cytometry (Figure 3A,B). In addition, the expression of pro-apoptotic proteins,
Bad increased in ST CRC cells but decreased in OR CRC cells except SW480/OR. The
expression of pro-apoptotic protein, Bax increased in HCT116/ST and HT29/ST CRC cells
but decreased in HCT11/OR and SW480/OR CRC cells (Figure 3C,D). The expression of
p53 was significantly increased in all ST CRC cells compared to that in their respective
PT CRC cells, and it was restored to the basal level or decreased in the OR CRC cells.
The expression of cyclin D1 was decreased in ST CRC cells; however, it returned to the
basal levels of their respective PT CRC cells in OR CRC cells, except for HCT116/OR
(Figure 3C). The expression of CDK4 was significantly increased in HCT116/ST, SW480/ST
and SW620/ST CRC cells compared to each of their PT CRC cells (Figure 3C,D)

3.4. Effects of Oxaliplatin Resistance on Autophagy

To determine the effects of oxaliplatin resistance on the induction of autophagy, the ex-
pression of LC3B, an important constituent of the autophagosomal membrane [36], was an-
alyzed using immunofluorescence staining to visualize the expression of LC3B (Figure 4A).
The expression of LC3B increased in ST CRC cells compared to that in their respective PT
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CRC cells but decreased in OR CRC cells. These results suggested that autophagy was
induced in ST CRC cells by a single exposure to oxaliplatin but gradually disappeared after
chronic exposure to oxaliplatin in OR CRC cells. The induction of autophagy was confirmed
by immunoblot analysis of LC3B (Figure 4B,C). When activated, LC3B-I forms conjugate
with phosphoethanolamine to produce LC3B-II, which is incorporated to autophagosomal
membrane and is involved in autophagosomal degradation [37,38]. The expression of
LC3B-II was increased in ST CRC cells but was restored to the basal level of PT CRC cells
in their respective OR CRC cells. However, the expression of Beclin-1, a factor involved
in the initiation phase of autophagy [36], was comparable among the PT, ST and OR CRC
cells except HCT116/OR CRC cells (Figure 4B,C).
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Figure 4. Effects of oxaliplatin resistance on the induction of autophagy in the parental (PT), 2.5 µM
oxaliplatin single treated PT for 24 h (ST) and oxaliplatin-resistant (OR) colorectal cancer (CRC)
cells of HCT116, HT29, SW480 and SW620. (A) LC3B was visualized by immunofluorescence using
confocal microscopy. LC3B protein was labeled green (Alexa 488) and the nucleus was stained with
DAPI. The size of scale bar was 20 µm. (B) Protein expression of Beclin-1 and LC3B was determined
by immunoblot analysis. (C) Graphical analysis of band intensities normalized for protein loading
with GAPDH. Columns and error bars represent means ± standards deviation of immunoblot band
intensities of 3 separate protein preparations. The * statistics showed the comparison with PT and
the # statistics showed the comparison between ST and OR. * p < 0.05; ** or ##, p < 0.01; *** or ###,
p < 0.001. GAPDH, glyceraldehyde 3-phosphate dehydrogenase.

3.5. Effect of Oxaliplatin Resistance on AMPK and Akt/mTOR Signaling Pathway

To explore whether the autophagy induced by a single exposure to oxaliplatin was
related to AMPK and/or Akt/mTOR signaling pathways, immunoblot analysis was per-
formed in PT, ST and OR CRC cells of HCT116, HT29, SW480 and SW620 (Figure 5). The
protein levels of phospho-AMPK (Thr172) and its negative regulator, phospho-Akt (Ser473),
were downregulated in ST CRC cells compared to those in their respective PT CRC cells and
increased in OR CRC cells. The levels of phospho-mTOR (Ser2448), a downstream target of
both AMPK and Akt, were decreased or comparable in ST CRC cells but increased in OR
CRC cells compared to those in their respective PT CRC cells. In addition, phospho-p70S6K
(Ser424/Thr421), phospho-p70S6K (Thr389) and phospho-S6RP were also overexpressed in
the OR CRC cells as compared to their respective PT CRC cells. These observations collec-
tively indicated that oxaliplatin resistance was regulated by the AMPK and/or Akt/mTOR
signaling pathway.
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Figure 5. Effect of oxaliplatin resistance on AMPK and Akt/mTOR signaling pathway in the parental
(PT), 2.5 µM oxaliplatin single treated PT for 24 h (ST) and oxaliplatin-resistant (OR) colorectal
cancer (CRC) cells of HCT116, HT29, SW480 and SW620. (A) Protein expression was determined
by immunoblot analysis. (B) Graphical analysis of band intensities normalized for protein loading
with GAPDH. Columns and error bars represent means ± standards deviation of immunoblot band
intensities of 3 separate protein preparations. The * statistics showed the comparison with PT and the
# statistics showed the comparison between ST and OR. * or #, p < 0.05; ** or ##, p < 0.01; *** or ###,
p < 0.001. p-, phospho-; GAPDH, glyceraldehyde 3-phosphate dehydrogenase.

3.6. Effects of Oxaliplatin Resistance on the Metabolism of Glucose

To investigate whether the decrease in phospho-AMPK in ST CRC cells and restoration
or increase in phospho-AMPK in OR CRC cells were related to glucose metabolism, the
expression of the enzymes involved in glycolysis were determined by immunoblot analyses.
The expression of the proteins involved in glycolysis, GLUT1, HK2 and PFK1 decreased
in ST CRC cells and increased in OR CRC cells relative to their respective ST CRC cells
except that GLUT1 in SW480/OR and HK2 in SW620/OR were decreased compared to
their respective PT and/or ST CRC cells (Figure 6A,B). The expression patterns of GLUT1,
PFKFB3 and PFK1 were similar to those of phospho-AMPK in the PT, ST and OR CRC
cells. The protein expression of PFKFB3, a downstream target of AMPK and regulator of
PFK1, was also activated by AMPK in OR CRC cells, followed by the activation of PFK1.
These results indicated that AMPK phosphorylation activated the enzymes involved in
glycolysis to induce the energy levels available for utilization by OR CRC cells to sustain
their proliferation and growth. The expression of PKM2 was significantly decreased in
HT29/ST but increased in SW480/OR CRC cells compared to their each PT CRC cells
(Figure 6A,B). The protein expression of LDHA remained comparable among the PT, ST
and OR CRC cells.

3.7. Effects of AMPK on Autophagy and Glucose metabolism

To confirm whether AMPK is involved in the regulation of autophagy and glucose
metabolism, ST and OR CRC cells were treated with 10 or 20 mM metformin, an AMPK
activator, and 10 µM compound C, an AMPK inhibitor, respectively. As shown in Figure 7A,
co-treatment with oxaliplatin and metformin did not show any synergistic effect on the
inhibition of PT CRC cell proliferation. In contrast, a co-treatment with oxaliplatin and
compound C showed significantly increased the inhibition of PT CRC cell proliferation
(Figure 7A). In OR CRC cells, co-treatment with metformin or compound C showed
synergistic effect on the inhibition of OR CRC cell proliferation and co-treatment with
compound C showed significantly greater inhibition of cell proliferation compared to co-
treatment with metformin in OR CRC cells (Figure 7B). In addition, the induced autophagy
in ST CRC cells (Figure 4A) was decreased by a co-treatment with metformin but was
significantly increased after co-treatment with compound C (Figure 8A). Similar results
were also obtained from OR CRC cells (Figure 8B).
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Figure 6. Effect of oxaliplatin resistance on enzymes involved in the glycolysis in the parental
(PT), 2.5 µM oxaliplatin single treated PT for 24 h (ST) and oxaliplatin-resistant (OR) colorectal
cancer (CRC) cells of HCT116, HT29, SW480 and SW620. (A) Protein expression was determined
by immunoblot analysis. (B) Graphical analysis of band intensities normalized for protein loading
with GAPDH. Columns and error bars represent means ± standards deviation of immunoblot band
intensities of 3 separate protein preparations. The * statistics showed the comparison with PT and the
# statistics showed the comparison between ST and OR. * or #, p < 0.05; ** or ##, p < 0.01; *** or ###,
p < 0.001. GLUT1, glucose transporter 1; HK2, hexokinase 2; PFK1, phosphofructokinase 1; PKM2,
pyruvate kinase M2; LDHA, lactate dehydrogenase A; PFKFB3, 6-phosphofructo-2-kinase/fructose-
2,6-biphosphatase 3; GAPDH, glyceraldehyde 3-phosphate dehydrogenase.
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Figure 7. Effects of AMPK on the proliferation of HCT116, HT29, SW480 and SW620 colorectal cancer
(CRC) cells by treating metformin as an AMPK activator or compound C as an AMPK inhibitor.
(A) Parental (PT) CRC cells were pretreated with or without 10 mM metformin and 10 µM compound
C followed by 2.5 µM oxaliplatin for 72 h. (B) Oxaliplatin resistant (OR) CRC cells were pretreated
with or without 10 mM metformin and 10 µM compound C followed by 2.5 µM oxaliplatin for 72 h.
The cell proliferation was determined by an MTT assay. The data are expressed as mean ± standard
deviation of triplicate experiments. * p < 0.05; *** or ###, p < 0.001. The * statistics showed only the
comparison with CON and the # statistics showed the comparison with OXP. CON, control; AMPK,
AMP-activated protein kinase; MFM, metformin; CC, compound C; OXP, oxaliplatin.
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Figure 8. Effects of AMPK on the induction of autophagy in HCT116, HT29, SW480 and SW620
colorectal cancer (CRC) cells by treating metformin as an AMPK activator or compound C as an
AMPK inhibitor. (A) Parental (PT) CRC cells were pretreated with or without 20 mM metformin
and 10 µM compound C followed by 2.5 µM oxaliplatin for 24 h. (B) Oxaliplatin-resistant (OR) CRC
cells were pretreated with or without 20 mM metformin and 10 µM compound C followed by 2.5 µM
oxaliplatin for 24 h. LC3B was visualized by immunofluorescence using confocal microscopy. LC3B
protein was labeled green (Alexa 488) and the nucleus was stained with DAPI. The size of scale bar
was 20 µm. This experiment was performed in three independent replicates. PBS, phosphate-buffered
saline; AMPK, AMP-activated protein kinase; MFM, metformin; CC, compound C.

Analysis of the protein expression also confirmed the above results that phospho-
AMPK was increased and LC3B-II was decreased by metformin treatment in ST CRC cells,
along with an increase in phospho-Akt (Figure 9A). Metformin also increased the protein
expression of GLUT1, PFKFB3 and PFK1 in ST CRC cells (Figure 9A). On the contrary,
phospho-AMPK was decreased and LC3B-II was increased by compound C treatment
in ST CRC cells, along with a slight decrease in phospho-Akt (Figure 9B). Compound C
also decreased the protein expression of GLUT1 and PFK1 in ST CRC cells and PFKFB3
in SW480/ST and SW620/ST cells (Figure 9B). Co-treatment with metformin increased
phospho-AMPK in HCT116/OR and HT29/OR and phospho-Akt in HCT116/OR and
SW480/OR cells and the other proteins were comparable or slightly decreased in OR
CRC cells (Figure 9C). On the contrary, phospho-AMPK was decreased by compound C
treatment, and the expression of LC3B-II was increased by a decrease in phospho-Akt
(Figure 9D). Furthermore, the protein expression levels of GLUT1, PFKFB3 and PFK1
were decreased by treatment with compound C in OR CRC cells (Figure 9D). Therefore,
inactivation of AMPK appeared to improve oxaliplatin sensitivity in both ST and OR CRC
cells through induction of autophagy.
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Figure 9. Effects of AMPK on the protein expression involved in glycolysis and autophagy in HCT116,
HT29, SW480 and SW620 colorectal cancer (CRC) cells by treating metformin as an AMPK activator
or compound C as an AMPK inhibitor. (A) Parental (PT) CRC cells were pretreated with or without
20 mM metformin followed by 2.5 µM oxaliplatin for 24 h. (B) Parental (PT) CRC cells were pretreated
with or without 10 µM compound C followed by 2.5 µM oxaliplatin for 24 h. (C) Oxaliplatin resistant
(OR) CRC cells were pretreated with or without 20 mM metformin followed by 2.5 µM oxaliplatin for
24 h. (D) Oxaliplatin resistant (OR) CRC cells were pretreated with or without 10 µM compound C
followed by 2.5 µM oxaliplatin for 24 h. Protein expression was determined by immunoblot analysis.
Graphical analysis of band intensities normalized for protein loading with GAPDH. Columns and
error bars represent means ± standards deviation of immunoblot band intensities of 3 separate
protein preparations. * p < 0.05; ** p < 0.01; *** p < 0.001. p-, phospho-; GLUT1, glucose transporter 1;
AMPK, AMP-activated protein kinase; PFK1, phosphofructokinase 1; PFKFB3, 6-phosphofructo-2-
kinase/fructose-2,6-biphosphatase 3; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; MFM,
metformin; CC, compound C.

4. Discussion

Oxaliplatin presents anticancer activity by intercalating DNA and blocking both
replication and transcription in CRC [39]. However, repeated exposure to oxaliplatin
can lead to chemotherapy failure owing to anticancer drug resistance. In this study, we
generated OR CRC cells by gradually increasing the concentration of oxaliplatin. The
significant effects on cell proliferation and G2/M phase arrest observed in ST CRC cells
gradually disappeared on chronic exposure to oxaliplatin and resulted in increased IC50
values by 4.40~12.7 fold and restoration of G2/M phase to the level of their respective
untreated PT CRC cells in the OR CRC cells, confirming the development of resistance
to oxaliplatin.

Based on oxaliplatin resistance in the OR CRC cells, we suggest the following mech-
anisms for oxaliplatin resistance in OR CRC. First, the protein expression of P-gp was
increased in the OR CRC cells of HCT116, HT29, SW480 and SW620 compared to their
respective PT CRC cells. This suggests that as a substrate of P-gp, oxaliplatin that enters
the cells is easily excreted by P-gp. This indicates that overexpression of P-gp results in a
resistance to oxaliplatin, validating the increase in the IC50 values of oxaliplatin for OR CRC
cells. This was also evident through a significant increase in the IC50 values of DOX for OR
CRC cells of HCT116, HT29, SW480 and SW620. However, the IC50 values of 5-FU and TSA,
which are not substrates of P-gp, were comparable between PT and OR CRC cells, except
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those of 5-FU in HT29/OR and SW480/OR CRC cells, indicating that P-gp may be partially
involved in oxaliplatin resistance in OR CRC cells. The induction of chemoresistance by
P-gp upregulation has been observed not only with oxaliplatin but also with DOX and
paclitaxel [40]. Butyrate resistant (BR) HCT116 CRC cells have also been reported to present
resistance to DOX and paclitaxel [41] in response to P-gp overexpression at higher butyrate
concentrations (data not shown).

Second, as shown in Figure 3C, oxaliplatin resistance in OR CRC cells might be caused
by decreased expression of apoptotic and/or tumor-suppressing proteins, such as PARP,
Bad, Bax and p53, or increased expression of tumorigenic proteins, such as cyclin D1.
This is in contrast to the observations in ST CRC cells that showed decreased expression
of tumorigenic proteins and increased expression of pro-apoptotic proteins in response
to oxaliplatin. Therefore, oxaliplatin resistance might be attributed to changes in the
expression of pro-apoptotic, tumor-suppressing and/or tumorigenic proteins, as well as
the increased expression of P-gp in OR CRC cells. Similar results have also been reported
in BR human CRC cells, where Bim and Bax levels were decreased in HCT116/BR CRC
cells [41] and the apoptotic pathway was impaired through the inactivation of Bax and
upregulation of Bcl-2 in human BCS-TC2/BR CRC cells [42]. Upregulation of cyclin D1 and
downregulation of p21 and Bax are also involved in BR human CRC cells, HCT116, HT29
and SW480 [35]. HeLa human cervical cancer cells have also been reported to develop
resistance to butyrate via upregulation of cyclin D1 [43]. Tamoxifen-resistant breast cancer
cells, MCF7 and T47D, have been reported to overexpress cyclin D1 owing to the inhibition
of cyclin D1 degradation [44].

Along with these results, autophagy was induced via upregulation of LC3B-II in ST
CRC cells. The protein expression of LC3B-II was higher in ST CRC cells than that in their
respective PT CRC cells and decreased in OR CRC cells, suggesting that the autophagy
observed in ST and OR CRC cells has a tumor suppressive role. Oxaliplatin treatment
in PT CRC cells inhibited their proliferation by decreasing phospho-Akt, followed by
decreasing phospho-mTOR and other downstream molecules, such as phospho-p70S6K
and phospho-S6RP, resulting in the induction of tumor-suppressive autophagy in ST CRC
cells. However, the Akt/mTOR signaling pathway was significantly activated to protect OR
CRC cells and resulted in a reduction of autophagy in HCT116/OR, HT29/OR, SW480/OR
and SW620/OR CRC cells. Reduced autophagy has also been observed in 5-FU resistant
human SNUC5 CRC cells [45]. However, BR CRC cells showed an increase in autophagy
mediated by the activation of Akt/mTOR signaling pathway compared to their respective
PT CRC cells, suggesting that autophagy in BR CRC cells appears to be tumor-protective
and therefore, supports BR CRC cell survival [35].

Akt is a negative regulator of AMPK [18,46]. Akt inhibits the phosphorylation of
AMPK at Thr172 and blocks AMPK activation [46,47]. Although the expression of phospho-
Akt was decreased in ST CRC cells, the level of phospho-AMPK was also significantly
reduced but autophagy was induced. In contrast, the expression of both phospho-Akt
and phospho-AMPK was restored or increased, and autophagy was inhibited in OR CRC
cells, suggesting that the autophagy observed in ST and OR CRC cells was independent
of AMPK. Several studies have reported that the association between AMPK and Akt is
bidirectional, and AMPK can induce the phosphorylation of Akt and enhance its activ-
ity [18,46]. Co-treatment with metformin activated AMPK in ST CRC cells; however, this
observation was not accompanied by the induction of autophagy due to the activation of
the Akt/mTOR pathway. Similarly, co-treatment with compound C inhibited AMPK and
induced autophagy through the induction of LC3B-II in ST CRC cells. Co-treatment with
metformin did not increase autophagy in OR CRC cells but co-treatment with compound
C inhibited AMPK and induced autophagy due to the inhibition of Akt in OR CRC cells.
Compound C has been reported to inhibit both AMPK and Akt and induce autophagy
in L929 fibrosarcoma, B16 melanoma and C3 glioma cells [48]. Therefore, autophagy is
also induced by treatment with the PI3K/Akt inhibitor, LY294002 or mTOR inhibitor, ra-
pamycin [48]. Overall, oxaliplatin-induced autophagy in CRC cells is AMPK-independent
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and principally regulated by the Akt/mTOR pathway. Similar results were reported in a
previous study showing that the inhibition of AMPK, Akt and Erk pathways induced cell
death in DOX-resistant ovarian cancer cells [49].

AMPK is activated under conditions of metabolic stress such as starvation and is
known to modulate the Warburg effect [50]. Activation of AMPK in OR CRC cells ap-
pears to be related to glucose utilization by OR CRC cells to maintain survival and is
independent of autophagy. In OR CRC cells, enzymes involved in glycolysis were restored
or increased alongside AMPK phosphorylation; especially GLUT1, PFKFB3 and PFK1
were overexpressed compared to their respective PT and/or ST CRC cells. GLUT1 levels
are upregulated in cancer cells to facilitate glucose uptake through the phosphorylation
of AMPK [51,52]. Therefore, the induction of autophagy in OR CRC cells treated with
compound C seemed to be associated with decreased phospho-AMPK and GLUT1 levels.
Similar results were also reported in p53-mutant CRC cells [53]. In addition, inhibition of
GLUT1 by silybin has been shown to counteract DOX resistance in DOX-resistant LoVo CRC
cells [54]. Similarly, GLUT1 inhibition by phloretin has been associated with sensitization
of cancer cells to daunorubicin and overcome drug resistance in SW620 CRC cells under
hypoxia [55]. Furthermore, AMPK phosphorylation appears to regulate PFK1 indirectly.
AMPK appeared to activate PFKFB3, followed by an increase in the level of fructose-
2,6-bisphosphate, which in turn activates PFK1, the rate-limiting glycolytic enzyme [56].
Another study has reported that AMPK activation increases glucose uptake, followed by
an increase in lactate production by AMPK-dependent phosphorylation of PFKFB3 during
mitotic arrest in breast cancer cells [57]. Inhibition or knockdown of AMPK or induction of
autophagy in breast cancer cells has been reported to enhance cell death during the mitotic
phase, therefore improving the antitumor efficiency [57]. In addition, knockdown of AMPK
in a xenograft model prepared from MDA-MB-231 human breast cancer cells showed a
reduction in lactate production, thus, inhibiting the cancer cell growth [51]. Taken together,
AMPK may play a pivotal role in glucose metabolism in cancer cells. Therefore, targeting
AMPK may inhibit the Warburg effect in cancer cells, allowing therapeutic resistance to be
overcome by increasing chemosensitivity.

5. Conclusions

An illustrative summary of this study is presented in Figure 10. In PT CRC cells,
a single treatment with oxaliplatin caused a decrease in both the Akt/mTOR signaling
pathway and AMPK phosphorylation, inducing tumor-suppressive autophagy and an-
ticancer effects. In contrast, the phospho-AMPK and Akt/mTOR signaling pathways
were activated in OR CRC cells, reducing tumor-suppressive autophagy, which protects
these cells by increasing the levels of enzymes involved in glycolysis, especially GLUT1,
PFKFB3 and PFK1, thereby maintaining resistance to oxaliplatin. Inhibition of AMPK in
OR CRC cells induces tumor-suppressive autophagy through inactivation of Akt/mTOR
pathway and decrease in the level of GLUT1, PFKFB3 and PFK1. Collectively, autophagy
observed in ST and OR CRC cells is AMPK-independent and principally regulated by
the Akt/mTOR pathway. Activation of AMPK plays a role in oxaliplatin resistance by
enhancing glycolysis for OR CRC cell survival. Therefore, targeting AMPK may provide
solutions to overcome chemoresistance in OR CRC cells and restore chemosensitivity to
anticancer drugs, including oxaliplatin.
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