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Abstract: Stereotactic radiosurgery (SRS) and immune checkpoint inhibitors (ICIs) are widely used
in the management of brain metastases. These therapies are commonly administered concurrently;
as SRS may enhance anti-tumor immunity and responsiveness to ICIs. However, the use of ICIs
with and without SRS in the management of primary brain tumors remains a controversial topic.
Meningiomas are the most common nonmalignant and extra-parenchymal brain tumor, which often
respond well to surgery and radiotherapy. However, higher grade meningiomas tend to be resistant
to these treatments, and the use of chemotherapy and targeted agents in this setting have yielded
disappointing results. Thus, there is heightened interest in the utilization of ICIs. Glioblastoma is
the most common malignant primary intraparenchymal brain tumor. It is associated with a grim
prognosis with a median overall survival of approximately 20 months, despite optimal therapy.
While SRS in the adjuvant setting, and ICI in the recurrent setting, have failed to demonstrate a
survival benefit, SRS in the preoperative setting has the potential to enhance anti-tumor immunity
and responsiveness to ICIs. Thus, these treatments represent an attractive option to add to the
armamentarium of meningioma and glioblastoma management. In this review, we provide a detailed
overview of the evidence supporting the use of ICIs and SRS in each of these settings.

Keywords: stereotactic radiosurgery; immunotherapy; neurosurgery; radiation oncology; glioma;
meningioma; glioblastoma

1. Introduction

Over the past decade, there have been significant advances in systemic cancer thera-
pies. One of the most notable of these advancements are immune checkpoint inhibitors
(ICIs), which have resulted in improved overall survival (OS) in multiple advanced ma-
lignancies [1–3]. Additionally, multiple studies have suggested that ablative doses of
radiotherapy (e.g., stereotactic radiosurgery [SRS]) are able to enhance the efficacy of ICIs
by augmenting anti-tumor immunity [4–11]. Thus, there has been great interest in com-
bining these two therapies across different primary tumor types. However, to date, the
most widely studied and common intracranial application is in the management of brain
metastases [4–9,12].

Meningiomas are the most common benign primary central nervous system (CNS)
tumor [13]. Stereotactic radiosurgery and conventionally fractionated radiation therapy
(RT) have demonstrated excellent rates of local control (LC) and progression-free survival
(PFS) in low- and intermediate-risk meningiomas following surgical resection [14–16].
However, high-risk lesions have 3-year PFS rates as low as 30% following RT [17]. The use
of chemotherapeutic and targeted agents in this setting has had minimal success [18,19].
Thus, novel approaches are needed to increase the therapeutic ratio. Due to their location
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outside of the blood–brain barrier (BBB), which permits exposure to peripheral immune
cells, ICIs are an attractive treatment option for higher grade meningiomas that have been
refractory to traditional therapies [20–22].

Glioblastoma is the most common primary malignant brain tumor, and is associated
with a very poor prognosis, with a median OS of 15–21 months despite optimal therapy [13].
While SRS has been explored in the adjuvant setting and yielded disappointing results [23],
there has been recent interest in incorporating preoperative SRS as a dose-escalation strat-
egy [24]. Furthermore, preclinical studies and case reports have suggested that ICI therapy
may enhance anti-tumor immune responses against glioblastoma, which can potentially
lead to improved outcomes [25–30]. However, to date, clinical trials utilizing ICIs have
been disappointing [31–33].

In the forthcoming sections, we provide a detailed overview of preclinical and clinical
data, as well as ongoing trials utilizing SRS and ICIs in the management of the most
common brain tumors in adults, meningiomas and glioblastoma.

2. Meningioma

Meningiomas are the most common primary benign CNS tumor [13]. According
to the 2021 World Health Organization (WHO) criteria, meningiomas are classified into
15 distinct variants based on histologic and molecular features, with a grading system
applied regardless of subtype [34]. Grade 1 is defined as having mitoses <4 per 10 high-
power fields (hpf), grade 2 is defined as having ≥ 4–19 mitoses per 10 hpf, and grade
3 is defined as >20 mitoses per 10 hpf. Tumor grade is predictive of recurrence and
progression [14,15,17,34,35]. Patients with grade 1 meningiomas comprise the majority of
tumors, with a 10-year OS of 80–90% and PFS of 75–90% [13,35,36]. Approximately 15–18%
of meningiomas are WHO grade 2 (atypical), and have a 10-year survival of 53–79% and a
PFS of 23–78% [1,3,5]. WHO grade 3 (anaplastic/malignant) meningiomas comprise 1–3%
of all tumors, and have a 10-year OS of 14–34% and a PFS of 0–10% [35,36].

There have been efforts to incorporate molecular and genomic classification into di-
agnosis in order to better identify targeted therapeutic agents [37,38]. For instance, the
TERT promoter activating mutation and CDKN2A/B deletion is found in anaplastic, CNS
WHO grade 3 tumors, and is associated with poorer survival [37,39]. The use of CDK4/6 in-
hibitors plus radiation for high grade meningiomas with CDKN2A/B homozygous gene
deletion has demonstrated encouraging results in pre-clinical murine models [40]. There are
several other genetic alterations commonly associated with meningiomas, including: NF2,
AKT1, TRAF7, SMO, PIK3CA; KLF4, SMARCE1, and BAP1 in subtypes; H3K27me3 [34]. A
recent study demonstrated higher PD-L1 levels in tumors with specific genetic mutations
(i.e., TRAF7 mutations) [41]. Tumor mutational burden has been previously demonstrated
to be associated with higher presence of neoantigens, eliciting a strong anti-tumor immune
response and, therefore, a response to ICIs [42,43]. Beyond genetic mutations, data suggest
that epigenetic changes contribute to disease development and progression in meningiomas.
A recent retrospective analysis proposed a DNA methylation based-classification system,
which was more homogenous and predictive of recurrence and prognosis when compared
to the WHO classification system [37]. Nassiri et al. proposed four molecular groups as
well as the downstream gene expression pathways (MG1: immunogenic, MG2: benign NF2
wild-type, MG3: hypermetabolic, and MG4: proliferative) that guided therapeutic options.
For instance, vorinostat selectively decreased cell survival in MG4 tumors, but not in the
other molecular groups [38]. Future studies will likely incorporate these molecular features
into diagnosis in order to help guide treatment.

3. Meningioma Treatment

The mainstay of treatment for meningiomas is maximal surgical resection, with the
extent of resection being predictive of recurrence [44]. Definitive or adjuvant RT, including
conventionally fractionated external beam radiotherapy (EBRT), SRS, and hypofraction-
ated SRS, are used to improve outcomes in select settings where tumors are not amenable
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to surgery, those that are subtotally resected, and in those that recur following resec-
tion [15–17,45]. On the Radiation Therapy Oncology Group (RTOG) 0539 trial, patients
were stratified into low, intermediate, and high-risk groups, and subsequently received
risk-adapted postoperative EBRT [14,15,17]. Adjuvant radiation was well-tolerated, and
demonstrated superior LC and PFS in intermediate (recurrent grade 1 or new WHO grade
2 with gross total resection [GTR] or subtotal resection [STR]), as well as in high risk (any
WHO grade 3, recurrent grade 2, new grade 2 with STR) cohorts, compared to historical
controls [15,17]. Stereotactic radiosurgery has also been used to treat small, low-grade
tumors (<10 cm3 in volume or <3 cm in diameter) with distinct margins that are at a
sufficient distance from important functional areas, with tumor control rates exceeding
90% [16]. For tumors that are close to critical structures (e.g., optic apparatus, brainstem),
hypofractionated SRS has been used with favorable results [45]. The role of radiosurgery
for WHO grade 2/3 and recurrent tumors is more controversial due to the suboptimal
tumor control rates in some series. and the need to treat the entire surgical bed in addition
to gross disease, which is not often feasible with SRS [46]. However, several retrospective
studies and single institution studies have demonstrated acceptable LC with margin doses
of 12–20 Gy [46–49]. Additionally, there have been efforts to identify optimal subgroups
of patients with higher grade tumors that may benefit from SRS [50]. While meningioma
is generally considered a benign disease, there are certain subsets of tumors that appear
to be more aggressive. Recurrent or incompletely resected tumors are difficult to treat,
with chemotherapy having a limited role [18]. There is emerging evidence that incor-
poration of ICIs and radiation may improve outcomes in certain aggressive subtypes of
meningioma [20].

3.1. Immune Checkpoint Inhibitors

There is evidence of decreased anti-tumor immune response in meningiomas. Several
immune cell populations have been identified in meningiomas, such as macrophages,
microglia, and lymphocytes, with most tumor-infiltrating immune cells being antigen-
experienced [21,51–53]. There is also expression of inhibitory ligands PD-L1/PD-L2 and
CTLA-4, contributing to T-cell exhaustion, and proportional to tumor grade [53]. One
study found that PD-L1 expression was an independent predictor of a worse OS [54].
Meningiomas also arise from arachnoid cap cells of the inner dura layer outside the BBB,
thus making them readily accessible to peripheral immune cells. Further, meningiomas
often involve, or are in close proximity to, venous sinuses. Given the recently discovered
intracranial lymphatic system that abuts the dural sinuses, meningiomas in close proximity
to venous sinuses may have access to a lymphatic system and, thus, may interact with
peripheral antigens [55]. Taken together, these findings suggest that ICIs may be useful in
the management of higher grade meningiomas.

The blockade of inhibitory ligands and receptors with ICIs has demonstrated durable
antitumor effects and disease control in several tumor types [56–58]. The role of sys-
temic therapy for meningiomas is controversial and limited to recurrent or progressive
disease not amenable to surgery or radiation. Several studies have examined the role of
chemotherapy, targeted agents, angiogenesis inhibitors, and hormone therapy with no or
minimal improvement in outcomes [18]. In contrast, ICIs have demonstrated favorable
outcomes in early studies. Preliminary results from the single-arm open-label phase II trial
(NCT03279692), evaluating the efficacy of pembrolizumab in 25 patients with recurrent and
progressive grade 2/3 meningiomas, met the primary endpoint, achieving a PFS-6 rate of
0.48 and median PFS of 7.6 months [59]. In another retrospective analysis of eight patients
with recurrent meningioma that received anti-PD-1 therapy, there was an increased PFS
and OS in patients with WHO grade 3 and expression of PD-1/PD-L1 [60]. Several other
ongoing trials (NCT02648997, NCT03173950) will evaluate the role of ICIs for surgery and
radiation-refractory meningiomas.
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3.2. Combining Stereotactic Radiosurgery and Immune Checkpoint Inhibitors

The addition of SRS to ICIs has been used synergistically for other primary and
metastatic CNS tumors [4–9,12,24]. Preclinical data suggest that radiation-induced im-
munogenic cell death increases antigen presentation and activation of immune cells and, in
combination with ICIs, subverts the immunosuppressive tumor microenvironment [61,62].
Based on previous evidence of enhanced anti-tumor immune response with this combi-
nation therapy in CNS tumors, the use of radiation and ICIs for meningiomas is actively
being investigated in several ongoing trials, as listed in Table 1.

Table 1. Ongoing clinical trials combining radiation with ICIsin meningioma.

Study Title Study Site Trial Registration
Number Treatment Arms Treatment Details Status

A Phase II Study of
Stereotactic Radiosurgery
in Conjunction With the

PD-1 Inhibitor,
Pembrolizumab for the
Treatment of Recurrent

Meningioma

UCSF NCT04659811 SRS +/−
Pembrolizumab

SRS: Dose/fractionation
based on size

</=8cc: Margin dose of
15–20Gy

>8cc-20cc: Total dose
25–30Gy/5 fx

Pembrolizumab: 200mg
give IV on day 1 (to -1)

then every 3 weeks

Recruiting

A Phase I/II Study of
Nivolumab Plus or Minus

Ipilimumab in
Combination with

Multi-Fraction Stereotactic
Radiosurgery for

Recurrent High-Grade
Radiation-Relapsed

Meningioma

Multi-
institution NCT03604978 SRT + Nivolumab

+/− Ipilimumab

Nivolumab: 480 mg IV
every 4 weeks for 6

months or 3mg/kg IV
every 2 weeks

Ipilimumab 1mg/kg IV
every 6 weeks x 4

Multi-fraction SRS:
8Gy/3fx QOD

Recruiting

A Phase Ib Study of
Neoadjuvant Avelumab
and Hypofractionated

Proton Radiation Therapy
Followed by Surgery for

Recurrent
Radiation-refractory

Meningioma

Washington
University
School of
Medicine

NCT03267836

Neoadjuvant
Avelumab and

Hypofractionated
proton therapy

followed by
surgery

Avelumab: 10mg/kg
every 2 weeks for 3

months
Proton RT: 20CGE/5

fractions

Active,
not

recruiting

Abbreviations: IV: Intravenous, QOD: every other day, Gy: gray, fx: fraction, CGE: cobalt gray equivalent, 3D-CRT:
three-dimensional conformal radiation therapy, ICIs: immune checkpoint inhibitors, IMRT: intensity modulated
radiation therapy, EBRT: external beam radiation therapy, RT: radiation therapy.

4. Glioblastoma

Glioblastoma is the most common malignant primary brain tumor [13,63]. These
tumors are extremely aggressive and are highly resistant to treatment, with the median OS
ranging from 15 to 21 months [64–70]. The classification of glioblastoma has recently been
updated. In the 2021 WHO update, isocitrate dehydrogenase (IDH)-mutant glioblastoma
are now classified as IDH-mutant astrocytomas [34]. Additionally, the 2021 update further
incorporates molecular markers and is no longer fully histological, as the presence of
a CDKN2A/B homozygous deletion automatically results in a WHO grade 4 diagnosis.
Finally, in the setting of IDH-wildtype diffuse astrocytic gliomas, the presence of any of the fol-
lowing: TERT promotor mutation, EGFR gene amplification, and a combined chromosomal
+7/-10 alternation, is sufficient to assign the diagnosis of glioblastoma, IDH-wildtype. While
it does not factor into tumor classification, methylation of the O6-methylguanine-DNA
methyltransferase (MGMT) gene promotor is a favorable prognostic factor in patients with
glioblastoma [71]. MGMT is a DNA repair enzyme that antagonizes the effects of alkylating
agents, such as temozolomide (TMZ) and carmustine (BCNU). The presence of MGMT
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promotor methylation has demonstrated a roughly 6-month OS benefit in modern studies,
where patients were treated with optimal therapy [66,67,71].

5. Glioblastoma Treatment

The mainstay of treatment for glioblastoma involves a multimodality approach consist-
ing of maximal surgical resection, followed by adjuvant RT with concurrent TMZ, and then
adjuvant TMZ and tumor-treating fields (TTF) [65–69]. While this multimodality regimen
is associated with the best outcomes, multiple factors must be taken into account when
selecting an ideal treatment regimen, such as patient performance status, prognosis, and
age. Thus, de-intensified strategies are commonly employed in the elderly and in patients
with poor performance status [72–75].

Maximal tumor resection is the fundamental component of glioblastoma treatment, as
the extent of resection has been shown to be a strong predictor of OS [76–80]. In 2005, Stupp
et al. published the results of a phase 3 trial, where patients with glioblastoma following
resection were randomized to: (1) RT alone to 60 Gy in 30 fractions, or (2) RT to 60 Gy in
30 fractions delivered with concurrent TMZ, followed by adjuvant TMZ [67]. A significant
improvement in median OS was observed, favoring the TMZ arm (12.1 months versus
14.6 months). Thus, this treatment paradigm is now considered to be the standard of care
in appropriately selected patients with glioblastoma. Additionally, the incorporation of
TTF into the treatment paradigm for glioblastoma has demonstrated an improvement in
OS from 16 months to 20.9 months [68,69]. However, the use of TTF is a controversial
topic in the neuro-oncology community, and its incorporation into treatment plans varies
widely [81].

5.1. Immune Checkpoint Inhibitors

Several preclinical studies have explored the role of ICIs in experimental glioma
models with promising results [25–29,82]. In 2007, Fecci et al. published a study uti-
lizing a mouse glioma model, where anti-CTLA-4 therapy conferred an 80% long-term
survival in mice and reduced the population of infiltrating immunosuppressive regulatory
T-cells [28,29]. Another preclinical study utilized a glioblastoma stem cell mouse model,
where an IL-12 expressing oncolytic virus, anti-PD-1, and anti-CTLA-4 therapy were ad-
ministered [30]. A cure rate of 89% was observed, and 100% of those cured remained alive
at 96 days following tumor re-challenge, suggesting both a survival advantage with this
therapy and immunological memory.

Unfortunately, clinical trials utilizing ICIs in glioblastoma have yielded disappoint-
ing results. Checkmate 143 was a phase 3 trial that randomized patients with recurrent
glioblastoma who received standard treatment with RT and TMZ to (1) nivolumab or
(2) bevacizumab [32]. With a median follow-up of 9.5 months, the median OS was 9.8 ver-
sus 10.0 months for the nivolumab and bevacizumab groups, respectively. Additionally,
treatment-related adverse events were similar between the study arms. Another random-
ized study comparing pembrolizumab alone to pembrolizumab plus bevacizumab in the
setting of recurrent glioblastoma was published in 2021 [33]. No significant differences in
median OS were observed, suggesting that pembrolizumab monotherapy or in addition to
bevacizumab was ineffective in the setting of recurrent glioblastoma. In 2021, the recurrent
glioblastoma subgroup analysis of the KEYNOTE-028 trial was published [83]. Twenty-six
patients were enrolled and received pembrolizumab 10 mg/kg every two weeks for up to
two years. An overall response rate of 8% was observed, with a median PFS of 2.8 months
and a median OS of 13.1 months. These findings suggest that pembrolizumab monotherapy
exhibited anti-tumor activity in a small subset of patients with recurrent glioblastoma.

There are multiple reasons for the ineffectiveness of ICI therapy in the setting of
glioblastoma. First, glioblastomas have few T-cells and contain large populations of im-
munosuppressive tumor-associated macrophages, which are characteristic of IDH-wildtype
tumors [84,85]. Second, high concentrations of immunosuppressive myeloid cells are char-
acteristic of glioblastoma [86]. Third, high tumor mutational load is rarely present in
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glioblastoma. Taken together, these characteristics provide insight into the immunologi-
cally “cold” nature of glioblastoma [42,43,87].

In a 2019 study by Cloughesy et al., 35 patients with recurrent surgically resectable
glioblastoma were randomized to neoadjuvant pembrolizumab with continued adjuvant
therapy or adjuvant pembrolizumab alone [88]. The median OS was 228.5 versus. 417 days,
favoring the neoadjuvant arm, p = 0.04. Additionally, neoadjuvant pembrolizumab was
associated with upregulation of local and systemic antitumor immune responses when com-
pared to adjuvant treatment alone. Thus, this may represent a novel treatment paradigm in
the management of recurrent GBM. Neoadjuvant ICI therapy is presently being explored in
the upfront setting in a phase 2 clinical trial at the Mayo Clinic (NCT03197506). Patients will
either receive a single cycle of neoadjuvant pembrolizumab, followed by concurrent and
adjuvant pembrolizumab in combination with TMZ and RT, or concurrent and adjuvant
pembrolizumab in combination with TMZ and RT.

5.2. Adjuvant Stereotactic Radiosurgery

Given the poor prognosis of glioblastoma and its tendency to recur within two cen-
timeters of the surgical resection cavity, there has been increased interest in recent years in
radiation dose escalation, an attribute that, theoretically, could be offered by SRS [89–91].
However, evidence for such an approach is currently lacking [24,64]. RTOG 9305 ran-
domized 203 patients with supratentorial glioblastoma measuring 4 cm or less to receive
postoperative SRS (with the dosing based on RTOG 9005) versus observation, after receiving
conventionally fractionated RT to a dose of 60 Gy in 30 fractions as well as BCNU. This study
found that the median OS between the two groups did not differ (13.5 versus 13.6 months
in the SRS group and observation groups, respectively) [23,92]. However, caution is war-
ranted in extrapolating these results to the modern setting, as the trial did not utilize
TMZ [67]. Additionally, it should be noted that the impact of SRS sequencing in patients
with glioblastoma is unclear [65].

5.3. Preoperative Stereotactic Radiosurgery and Synergy with Immune Checkpoint Inhibitors

Preoperative SRS, which has been studied in the setting of brain metastases, has been
largely unexplored in the management of glioblastoma. This treatment paradigm may offer
several advantages over postoperative SRS. First, preoperative SRS permits smaller target
volumes than postoperative SRS, allowing for greater sparing of surrounding healthy tis-
sues and a lower risk of treatment-related toxicities, such as radiation necrosis [24]. Second,
the concentration of oxygen is higher in intact tissues, thus allowing for more efficient
cell kill via radiation-induced double-stranded DNA breaks [93]. Third, preoperative SRS
allows for analysis of irradiated tissue, potentially allowing for the examination of the post-
SRS tumor microenvironment and identification of repair pathways, thereby facilitating
the development of novel treatments. Lastly, preoperative SRS may entail a lower risk of
leptomeningeal dissemination [94].

While preoperative SRS is an exciting treatment paradigm, there are multiple scenarios
which can make this intervention difficult to administer. First, patients with glioblastoma
may present with significant mass effect, requiring urgent surgical intervention and de-
compression. Second, glioblastoma can be several centimeters in diameter, which can
make SRS challenging to administer while obeying nearby healthy tissue dose tolerances.
Additionally, in patients who are receiving ICIs, the use of corticosteroids needs to be
carefully considered, as their immunosuppressive nature can limit the efficacy of ICIs.
Finally, performing SRS without histologic confirmation remains a controversial subject.
Thus, careful patient selection is essential.

Another potential benefit of preoperative SRS in patients with glioblastoma and
high-grade gliomas is a potential increase in anti-tumor immunity, which may be fur-
ther enhanced by ICIs [24]. Preclinical studies have demonstrated that RT can induce
immunogenic effects. Specifically, RT can act as an anti-tumor vaccine by increasing the
release of tumor-related antigens, thereby allowing for the priming of CD8+ T-cells and
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facilitating the development of an adaptive immune response [95]. In a 1994 study by
Klein et al., where escalating radiation doses were delivered to glioblastoma specimens,
exposure to RT was linked to an increase in major histocompatibility complex class I antigen
expression, suggesting an increase in cytotoxic T-cell activity against glioblastoma [96].
Additionally, a recent study by Soltani et al. suggested that glioblastomas and low grade
meningiomas share similarities in their tumor microenvironments which are associated
with immunosuppression [97].

Ablative doses of RT have also been shown to increase antigen presentation and activa-
tion of CD8+ T-cells through various mechanisms [4,5,95,98–101]. Additionally, synergies
may be unlocked with the addition of ICIs. A 2012 study by Zeng et al., for example, in
which mouse models of glioblastoma were treated with anti-PD-1 therapy ± SRS to a dose
of 10 Gy, found that mice that received both therapies experienced a near doubling of
median overall survival as compared to those that received no therapy, anti-PD-1 therapy
alone, or SRS alone. These findings suggest that the anti-tumor immunity induced by SRS
may be further amplified with ICIs [28]. Thus, combining SRS, particularly in the preop-
erative setting, with ICIs in the treatment of patients with glioblastoma and high-grade
gliomas may prove to be an attractive therapeutic combination, with the potential to im-
prove patient outcomes. The NeoGlioma trial (NCT05030298) is a phase I/IIA study, taking
place at Mayo Clinic Florida, which is presently investigating the role of preoperative SRS
in the management of glioblastoma and high-grade glioma.

6. Conclusions

Higher grade meningiomas and glioblastomas remain difficult to treat, and are often
refractory to existing standard of care therapies. The incorporation of ICIs into the treatment
paradigm of meningiomas and glioblastoma, and preoperative SRS in glioblastoma have
demonstrated promising results in largely preclinical settings, and remain an ongoing area
of clinical investigation.
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