
����������
�������

Citation: Diomede, F.; Fonticoli, L.;

Marconi, G.D.; Della Rocca, Y.; Rajan,

T.S.; Trubiani, O.; Murmura, G.;

Pizzicannella, J. Decellularized

Dental Pulp, Extracellular Vesicles,

and 5-Azacytidine: A New Tool for

Endodontic Regeneration.

Biomedicines 2022, 10, 403.

https://doi.org/10.3390/

biomedicines10020403

Academic Editors: Simona Delle

Monache and Vincenzo Mattei

Received: 28 December 2021

Accepted: 5 February 2022

Published: 8 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomedicines

Article

Decellularized Dental Pulp, Extracellular Vesicles, and
5-Azacytidine: A New Tool for Endodontic Regeneration
Francesca Diomede 1 , Luigia Fonticoli 1, Guya Diletta Marconi 2 , Ylenia Della Rocca 1,
Thangavelu Soundara Rajan 3, Oriana Trubiani 1,* , Giovanna Murmura 1,* and Jacopo Pizzicannella 4

1 Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara,
Via dei Vestini, 31, 66100 Chieti, Italy; francesca.diomede@unich.it (F.D.); luigia.fonticoli@unich.it (L.F.);
ylenia.dellarocca@unich.it (Y.D.R.)

2 Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara,
Via dei Vestini, 31, 66100 Chieti, Italy; guya.marconi@unich.it

3 Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore 641021, India;
drsoundararajan.t@kahedu.edu.in

4 Ss. Annunziata” Hospital, ASL 02 Lanciano-Vasto-Chieti, 66100 Chieti, Italy; jacopo.pizzicannella@unich.it
* Correspondence: oriana.trubiani@unich.it (O.T.); giovanna.murmura@unich.it (G.M.)

Abstract: Dental pulp is a major component of the dental body that serves to maintain the tooth
life and function. The aim of the present work was to develop a system that functions as a growth-
permissive microenvironment for dental pulp regeneration using a decellularized dental pulp (DDP)
matrix, 5-Aza-2′-deoxycytidine (5-Aza), and Extracellular Vesicles (EVs) derived from human Dental
Pulp Stem Cells (hDPSCs). Human dental pulps extracted from healthy teeth, scheduled to be
removed for orthodontic purpose, were decellularized and then recellularized with hDPSCs. The
hDPSCs were seeded on DDP and maintained under different culture conditions: basal medium
(CTRL), EVs, 5-Aza, and EVs+-5-Aza. Immunofluorescence staining and Western blot analyses were
performed to evaluate the proteins’ expression related to dentinogenesis, such as ALP, RUNX2,
COL1A1, Vinculin, DMP1, and DSPP. Protein contents found in the DDP recellularized with hDPSCs
were highly expressed in samples co-treated with EVs and 5-Aza compared to other culture conditions.
This study developed a DDP matrix loaded by hDPSCs in co-treatment with EVs, which might
enhance the dentinogenic differentiation with a high potentiality for endodontic regeneration.

Keywords: decellularized dental pulp; extracellular vesicles; 5-azacytidine; endodontic regeneration;
extracellular matrix scaffold

1. Introduction

Teeth life and homeostasis are maintained by dental pulp, which can be damaged
by caries, pulpitis, injury, and pulp necrosis. Often when dental pulp is affected, pulpal
necrosis is an obvious consequence [1,2]. To ameliorate the quality of life, dental pulp
damage must be restored in order to maintain the functionality of the pulp-dentin complex.

When dental pulp is affected by trauma or caries, the most used treatment is root canal
therapy, which leads to the loss of pulp tissue functions. After this type of treatment, teeth
no longer survive. Tissue engineering could represent a valid alternative strategy to ‘save’
the teeth and enable dental pulp regeneration.

Several biomaterials have been used to provide a three-dimensional (3D) scaffold
platform to promote tissue regeneration, including polylactic acid, collagen, hyaluronic acid,
and chitosan [3,4]. However, to date there is no viable scaffold available that reproduces
the dental pulp microenviroment by inducing the direct differentiation of stem cells.

In recent literature, it has been reported that decellularized extracellular matrices
(dECMs) could be the gold standard scaffold material for tissue regeneration in heart,
liver, nerves, and tendons [5,6]. In dentistry, the use of dECMs, in particular those derived
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from dental pulp tissue, was described for the stimulation of odontoblastic differentiation
without exogenous growth or differentiation factors [7].

5-Aza-2′-deoxycytidine (5-Aza) acts as a reductor of DNA methylation through the
inhibition of DNA methyltransferases (DNMTs) activity [8]. DNMT enzymes play a key
role in cell proliferation and differentiation by regulating epigenetic modifications. 5-Aza is
able to induce the odontogenic differentiation of hDPSCs without the use of odontogenic
medium, as previously demonstrated [9]. The treatment with 5-Aza improved hDPSCs
odontogenic differentiation, inhibited cell proliferation, and enhanced the expression
of odontogenic related markers, such as DSPP and DMP1, RUNX2, DLX5, OSX, and
ALP activity.

The odontogenic-related genes showed a reduction of DNA methylation that upregu-
lated their expression in differentiated hDPSCs. The role of DNA demethylation during
the odontogenic differentiation process of hDPCs may open new strategies for dental pulp
repair, regeneration, and therapy [10].

In recent years, Extracellular Vesicles (EVs) have been represented as a new biosignal-
ing paradigm. They are divided into two different categories: exosomes and microvesicles.
They are responsible for cell communication via cargo transport of carrying the signaling
proteins, RNA species, DNA, and lipids. Once released, EVs act as paracrine factors, as
their content is selectively taken by near or distant target cells, which influences their
behavior [11,12]. They also represent a safe alternative to stem cell therapy with the admin-
istration of whole cells. Stem-cell-based therapies have been shown to obtain promising
results in tissue regeneration [13,14]; however, stem-cell transplantation might be associated
with some clinical complications and ethical concerns [15].

EVs isolated from oral-cavity-derived Mesenchymal Stem Cells (MSCs) have been
demonstrated to vehicle pro-angiogenic and anti-inflammatory factors [16]. The role of EVs
has been studied in the enhancement of bone tissue regeneration via the induction of MSC
differentiation towards osteogenic precursor cells. The exploration of the possibility to use
the EVs isolated from hDPSCs as biomimetic tools to lead the odontogenic differentiation
lineage is necessary to better comprehend the role of lineage for specific EVs to initiate the
differentiation process.

In the present study adn for the first time to our knowledge, we developed a system
constituted by human decellularized dental pulp (DDP) and used it as an ECM 3D scaffold
enriched with hDPSCs, EVs, and 5-Aza that lead to a progressive cellular differentiation in
cells with an odontoblastic phenotype in order to promote dental pulp tissue regeneration.

2. Materials and Methods
2.1. Cell Culture Establishment

The primary human DPSCs used in this study were isolated in the Dental Clinics of
the Medical School of University “G. d’Annunzio” Chieti-Pescara. Human DPSCs were col-
lected from a third molar scheduled to be extracted for orthodontic treatment as previously
reported [17]. Tissue fragments were cultured for one week in a humidified and controlled
atmosphere of 37 ◦C and 5% CO2 with MSCGM-CD medium (mesenchymal stem-cell
growth medium chemically defined) (Lonza, Basel, Switzerland). Cells spontaneously
migrated from tissue fragments were subcultured until P2. The medium was refreshed
every two days. The cells used in all the experiments were at passage 2. All experiments
were performed in triplicate.

2.2. EVs Isolation

Human DPSCs were seeded at confluence in 150 mm cell culture dishes. EVs were
isolated from the culture medium of cells cultured for 48 h. EVs were isolated as per
the previously published protocol [18]. Briefly, the EVs from the supernatant (starting
volume 10 mL) were isolated using the ExoQuick-TC (System Biosciences, Euroclone SpA,
Milan, Italy) following the manufacturer’s protocol. 2 mL of ExoQuick TC solution were
added to 10 mL of conditioned medium, recovered as mentioned earlier. The mix was
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incubated overnight at 4 ◦C without rotation; one centrifugation step was performed at
1500× g for 30 min to sediment the EVs and the pellets were resuspended in 200 µL PBS.
The detection of EV whole homogenate protein was used as a confirmation for the release
of EVs from hDPSCs.

2.3. Samples Preparation
2.3.1. Decellularization

Dental pulp tissues were obtained from extracted third molars for orthodontic pur-
pose. Dental pulps (DP) were washed with a cleaning solution comprising Dulbecco’s
phosphate-buffered saline (DPBS, Lonza, Basel, Switzerland) and antibiotics (1% peni-
cillin/streptomycin, Lonza). To decellularize DP to obtain a decellularized dental pulp
(DDP), 1% sodium dodecyl sulfate and 1% Triton X–100 (Sigma-Aldrich, Milan, Italy) in
DPBS was used [19]. The solution was changed every 9 h during the procedure (total
time procedure 48 h) and during the procedure tissues were kept in a continuous flutter.
A post-decellularization cleaning procedure (DPBS + 1% penicillin/streptomycin) was
performed for the following 48 h (solution were changed every 9 h).

To evaluate the morphological difference between DP and DDP by light microscopy,
tissues were fixed in 10% (w/v) PBS-buffered formaldehyde followed by embedded in
paraffin and sectioned into 7-mm thin slices. After processing into xylene deparaffinization
and subsequent rehydration steps, sections were stained with toluidine blue and visualized
under a light microscope (Leica Microsystem, Milan, Italy) connected to a high-resolution
digital camera DFC425B Leica (Leica Microsystem).

To evaluate the morphological difference between DP and DDP by confocal mi-
croscopy, samples were fixed in 4% paraformaldehyde (PFA) (BioOptica, Milan, Italy)
for 1 h at RT. Then, samples were permeabilized with 1% Triton X-100 (BioOptica) for 5 min
and treated with blocking buffer made of 2% BSA in PBS for 1 h. Later, samples were
incubated with TOPRO (1:200; ThermoFisher) for 1 h at 37 ◦C. Samples were observed
with Zeiss LSM800 META confocal system (Zeiss, Jena, Germany) connected to an inverted
Zeiss Axiovert 200 microscope equipped with a Plan Neofluar oil-immersion objectives.

2.3.2. Recellularization

DDPs were recellularized for 15 days by hDPSCs and maintained in incubator at 37 ◦C
and 5% CO2 in air; cells were seeded at the concentration of 1 × 106 cells/mL. The culture
medium was changed every 48 h. At the end of the recellularization period, morphological
analyses were performed by microscopy analyses.

2.4. Study Design

The present research study was organized in the following experimental groups:

− Human DPSCs (CTRL)
− Human DPSCs treated with 5-Aza (5-Aza)
− Human DPSCs treated with EVs (EVs)
− Human DPSCs treated with EVs+5-Aza (5-Aza+EVs)
− DDP + Human DPSCs (DDP-CTRL)
− DDP + Human DPSCs treated with 5-Aza (DDP-5-Aza)
− DDP + Human DPSCs treated with EVs (DDP-EVs)
− DDP + Human DPSCs treated with EVs+5-Aza (DDP-5-Aza+EVs)

Treatment with 5-Azacytidine (5-Aza): Human DPSCS and hDPSCs cultured on DDP
were treated with 5-Aza (5 mM) for 14 days in a humidified atmosphere 5% CO2 at 37 ◦C.
Treatment with Extracellular Vescicles (EVs): Human DPSCS and hDPSCs cultured on DDP
were treated with collected EVs for 14 days in a humidified atmosphere 5% CO2 at 37 ◦C.
Treatment with EVs and 5-Aza: Human DPSCS and hDPSCs cultured on DDP were treated
with EVs and 5-Aza for 14 days in a humidified atmosphere 5% CO2 at 37 ◦C.

5-Aza was purchased from Sigma-Aldrich (Merck, Milan, Italy) and was used at a
concentration of 1 µmol/L. EVs were used at a final concentration of 24 µg.
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2.5. Haematoxylin-Eosin and Himmunoistochemical Staining

All samples were fixed in 10% phosphate-buffered formalin for 2.5 h. Sections were
de-waxed (Bioclear and alcohol in progressively lower concentrations), rehydrated, and
processed for haematoxylin-eosin staining [20].

Paraffin-embedded tissue slices were deparaffinized with xylene, rehydrated with
alcohol series, and incubated in 0.01 M citrate buffer (pH 6) for 4 min to retrieve antigen.
Slices were then incubated with 0.3% (v/v) hydrogen peroxide in 60% (v/v) methanol for
30 min to quench endogenous peroxidase and were blocked with normal goat serum in
PBS [2% (v/v)] for 20 min. Next, slices were incubated with selective primary antibodies
overnight at 4 ◦C. The primary antibody applied for immunohistochemical analysis anti-
DSPP (1:100 in PBS (v/v); SantaCruz Biotechnology, Santa Cruz, CA, USA)) was used.
Slices were then washed with PBS and incubated with avidin/biotin blocking reagent
(DBA, Milan, Italy) to block endogenous avidin and biotin binding sites. Next, slices were
incubated with universal biotinylated secondary Ab followed by avidin horseradish perox-
idase (HRP)–conjugated solution (Vectastain ABC Kit; Vector Laboratories, Burlingame,
CA, USA) according to manufacturer’s instructions. Slices were then incubated with a
hydrogen peroxide/DAB kit (Vector Laboratories, DBA, Milan, Italy) according to the
manufacturer’s instructions. Counterstaining was performed with haematoxylin staining.
Negative controls have been performed by removing the primary antibody [21]. To ver-
ify nonspecific background immunostaining, slices were incubated with either primary
or secondary Ab alone. No staining was observed in these controls, which proved that
the immunoreactions were positive in all experiments performed. Immunohistochemi-
cal images were acquired by using light microscopy (Leica Microsystem) connected to a
high-resolution digital camera DFC425B Leica (Leica Microsystem).

2.6. Immunofluorescence Analysis

The hDPSCs alone or hDPSCs cultured on DDP of all experimental groups were pro-
cessed for immunofluorescence experiments. Primary monoclonal antibodies anti-human
ALP (1:200, rabbit) (Santa Cruz Biotechnology, Dallas, TX, USA), anti-human RUNX2 (1:200,
rabbit) (Santa Cruz Biotechnology), anti-human COL1A1 (1:100, rabbit) (Santa Cruz Biotech-
nology), anti-human Vinculin (1:200, rabbit) (Santa Cruz Biotechnology), anti-human DMP1
(1:200, rabbit) (Santa Cruz Biotechnology) and anti-human DSPP (1:200, rabbit) (Santa Cruz
Biotechnology) were used followed by incubation with Alexa Fluor 568 conjugated goat
anti rabbit secondary antibodies (1:200; ThermoFisher, Life Technologies, Monza, Italy)
for 1 h at 37 ◦C. Subsequently, cells were incubated with AlexaFluor 488 phalloidin green
fluorescence conjugate (1:200; ThermoFisher, Life Technologies) to evidence cytoskeleton
actin. Cell nuclei were stained with TOPRO (1:200; ThermoFisher, Life Technologies) for
1 h at 37 ◦C. Glass coverslips were placed face down on glass slides and mounted with
Prolong antifade (ThermoFisher, Life Technologies). Samples were observed by means of
a Zeiss LSM800 confocal system connected to an inverted Zeiss Axiovert 200 microscope
equipped with a Plan Neofluar oil-immersion objective.

2.7. Western Blot Analysis

Proteins extracted from all experimental groups were processed as previously de-
scribed [22]. Briefly, 30 µg of proteins were resolved on SDS–PAGE gel and subsequently
transferred to nitrocellulose sheets using a semidry blotting apparatus. Sheets were satu-
rated for 120 min at room temperature in blocking buffer (1xTBS, 5% milk, 0.1% Tween-20)
and incubated overnight at 4 ◦C in blocking buffer containing primary antibodies ALP
(1:500, rabbit) (Santa Cruz Biotechnology), RUNX2 (1:500, rabbit) (Santa Cruz Biotechnol-
ogy), COL1A1 (1:500, rabbit) (Santa Cruz Biotechnology), Vinculin (1:500, rabbit) (Santa
Cruz Biotechnology), DMP1 (1:500, rabbit) (Santa Cruz Biotechnology), and DSPP (1:50,
rabbit) (Santa Cruz Biotechnology). β-Actin (1:750, mouse) (Santa Cruz Biotechnology) was
used as a loading control. After four washes in TBS containing 0.1% Tween-20, samples
were incubated for 60 min at room temperature with peroxidase-conjugated secondary
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antibody diluted as 1:1000 in 1 × TBS that contained 2.5% milk and 0.1% Tween-20. Bands
were visualized and quantified by the ECL method with Alliance 2.7 (UVItec Limited,
Cambridge, UK).

2.8. Statistical Analysis

All experiments were performed in triplicate. All data are expressed as mean ± standard
deviation. Statistical analyses were performed using the Student’s unpaired t-test for compar-
isons of two groups and one-way ANOVA followed by the Bonferroni method for comparisons
of three or more groups. Values of p < 0.05 were considered statistically significant.

3. Results
3.1. Characterization of DDP and DP

The fresh dental pulp was extracted from human wisdom teeth as previously described.
The histologic toluidine blue analysis (Figure 1A,B) revealed that the cellular components of
the dental pulp were completely removed after the decellularization process. The absence
of nuclear contents was demonstrated by immunofluorescence staining against TOPRO
(Figure 1C,D).
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Figure 1. Morphological and cell distribution analyses in DDP and DP. (A,B) Images of toluidine
blue staining of (A) DDP and (B) DP. Cell nuclei are clearly visible in DP sample when compared to
DDP. Representative images are shown. (C,D) Images obtained at confocal laser scanning microscopy
showed the presence of nuclei stained in blue in the DP sample, while in DDP the staining for cell
nuclei was negative. Scale bar = 20 µm.
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3.2. Morphological Analysis of Recellularized DDP

Cells were cultured under different culture conditions: with basal medium (CTRL),
5-Aza, EVs, and EVs+5-Aza in the presence or absence of DDP. Morphological analyses
performed under light microscopy showed a fibroblast-like morphology growth in the
monolayer for cells cultured without DDP for all considered conditions (Figure 2A1–A4).
Cells cultured with DDP showed a high cellular density (Figure 2B1–B4). To demonstrate
DDP recellularization, a histologic analysis was performed on DDP cultures with hDPSCs
(Figure 2C1–C4). In particular, hDPSCs were visible at the periphery of DDP in samples
maintained with 5-Aza+EVs, when compared to samples treated only with EVs or 5-
Aza. SEM analyses were used to confirm the recellularization process of DDP by hDPSCs
(Figure 2D1–D4).

1 

 

 

Figure 2. Morphological evaluation of hDPSCs cultured with and without DDP. (A1–A4) Human DP-
SCs cultured without DDP observed under light microscopy in all conditions considered in the study.
(A1) Cells cultured with basal medium (CTRL), (A2) cells cultured with 5-Aza (5-Aza), (A3) cells
cultured with EVs (EVs), and (A4) cells cultured with EVs+5-Aza (EVs+5-Aza). (B1–B4) Human
DPSCs cultured on DDP observed under light microscopy in all conditions considered in the study.
(B1) Cells cultured on DDP with basal medium (DDP-CTRL), (B2) cells cultured on DDP with 5-Aza
(DDP-5-Aza), (B3) cells cultured on DDP and treated with EVs (DDP-EVs), and (B4) cells cultured on
DDP with EVs+5-Aza (DDP-EVs+5-Aza). (C1–C4) Haematoxylin-eosin staining of hDPSCs cultured
on DDP in all conditions considered in the study. (C1) Cells cultured on DDP with basal medium
(DDP-CTRL), (C2) cells cultured on DDP with 5-Aza (DDP-5-Aza), and (C3) cells cultured on DDP
and treated with EVs (DDP-EVs), (C4) Cells cultured on DDP with EVs+5-Aza (DDP-EVs+5-Aza).
(D1–D4) Human DPSCs cultured on DDP observed via scanning electron microscopy in all conditions
considered in the study. (D1) Cells cultured on DDP with basal medium (DDP-CTRL), (D2) cells cul-
tured on DDP with 5-Aza (DDP-5-Aza), (D3) cells cultured on DDP and treated with EVs (DDP-EVs),
and (D4) cells cultured on DDP with EVs+5-Aza (DDP-EVs+5-Aza). Scale bar: 100 µm.
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3.3. Expression of ALP, RUNX2, COL1A1, Vinculin, DMP1, and DSPP

ALP, RUNX2, COL1A1, Vinculin, DMP1, and DSPP positive cells were detected by
means of immunofluorescence analysis using confocal laser scanning microscopy. However,
the positivity varied for intensity and distribution patterns depending on the target proteins.
Human DPSCs cultured without DDP in basal medium for ALP, RUNX2, COL1A1, Vinculin,
DMP1, and DSPP showed a negative expression (Figures 3–8), while the treatment with
EVs or 5-Aza showed an increased positivity of red fluorescence at the cytoplasmic level;
only RUNX2 showed a nuclear localization (Figure 4). The co-treatment with EVs and
5-Aza showed a marked positivity for all markers in all considered conditions (Figures 3–8).

Biomedicines 2022, 10, x FOR PEER REVIEW 8 of 17 
 

with EVs and 5-Aza showed a marked positivity for all markers in all considered condi-
tions (Figures 3–8). 

Human DPSCs cultured on DDP with basal medium (DDP-CTRL) showed a negative 
expression of ALP (Figure 3) and a weak positive reaction was observed for RUNX2, 
COL1A1, Vinculin, DMP1, and DSPP (Figures 4–8). 

The positive expression found in hDPSCS co-treated with EVs and 5-Aza was less 
than samples treated with EVs or 5-Aza alone (Figures 3–8). 

 
Figure 3. Immunofluorescence analysis of ALP expression. Left panel shows the images of hDPSCs 
(CTRL), hDPSCs+5-Aza (5-Aza), hDPSCs+EVs (EVs), and hDPSCs+5-Aza+EVs (5-Aza+EVs) cul-
tured without DDP. Right panel shows the images of hDPSCs (CTRL), hDPSCs+5-Aza (5-Aza), hDP-
SCs+EVs (EVs), and hDPSCs+5-Aza+EVs (5-Aza+EVs) cultured without DDP. Red fluorescence: 
ALP marker; green fluorescence: cytoskeleton actin; blue fluorescence: cell nuclei using TOPRO; 
merged image: overlap of all above mentioned channels. Representative images are shown. Scale 
bar: 20 μm. 

Figure 3. Immunofluorescence analysis of ALP expression. Left panel shows the images of hDPSCs
(CTRL), hDPSCs+5-Aza (5-Aza), hDPSCs+EVs (EVs), and hDPSCs+5-Aza+EVs (5-Aza+EVs) cultured
without DDP. Right panel shows the images of hDPSCs (CTRL), hDPSCs+5-Aza (5-Aza), hDPSCs+EVs
(EVs), and hDPSCs+5-Aza+EVs (5-Aza+EVs) cultured without DDP. Red fluorescence: ALP marker;
green fluorescence: cytoskeleton actin; blue fluorescence: cell nuclei using TOPRO; merged image:
overlap of all above mentioned channels. Representative images are shown. Scale bar: 20 µm.

Human DPSCs cultured on DDP with basal medium (DDP-CTRL) showed a negative
expression of ALP (Figure 3) and a weak positive reaction was observed for RUNX2,
COL1A1, Vinculin, DMP1, and DSPP (Figures 4–8).

The positive expression found in hDPSCS co-treated with EVs and 5-Aza was less
than samples treated with EVs or 5-Aza alone (Figures 3–8).
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Figure 5. Immunofluorescence analysis of COL1A1 expression. Left panel showes the images of 
hDPSCs (CTRL), hDPSCs+5-Aza (5-Aza), hDPSCs+EVs (EVs), and hDPSCs+5-Aza+EVs (5-Aza+EVs) 
cultured without DDP. Right panel shows the images of hDPSCs (CTRL), hDPSCs+5-Aza (5-Aza), 
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Figure 4. Immunofluorescence analysis of RUNX2 expression. Left panel shows the images of
hDPSCs (CTRL), hDPSCs+5-Aza (5-Aza), hDPSCs+EVs (EVs), and hDPSCs+5-Aza+EVs (5-Aza+EVs)
cultured without DDP. Right panel shows the images of hDPSCs (CTRL), hDPSCs+5-Aza (5-Aza),
hDPSCs+EVs (EVs), and hDPSCs+5-Aza+EVs (5-Aza+EVs) cultured without DDP. Red fluorescence:
ALP marker; green fluorescence: cytoskeleton actin; blue fluorescence: cell nuclei using TOPRO;
merged image: overlap of all above mentioned channels. Representative images are shown. Scale
bar: 20 µm.
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Figure 5. Immunofluorescence analysis of COL1A1 expression. Left panel showes the images of
hDPSCs (CTRL), hDPSCs+5-Aza (5-Aza), hDPSCs+EVs (EVs), and hDPSCs+5-Aza+EVs (5-Aza+EVs)
cultured without DDP. Right panel shows the images of hDPSCs (CTRL), hDPSCs+5-Aza (5-Aza),
hDPSCs+EVs (EVs), and hDPSCs+5-Aza+EVs (5-Aza+EVs) cultured without DDP. Red fluorescence:
ALP marker; green fluorescence: cytoskeleton actin; blue fluorescence: cell nuclei using TOPRO;
merged image: overlap of all above mentioned channels. Representative images are shown. Scale
bar: 20 µm.
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hDPSCs (CTRL), hDPSCs+5-Aza (5-Aza), hDPSCs+EVs (EVs), and hDPSCs+5-Aza+EVs (5-Aza+EVs)
cultured without DDP. Right panel shows the images of hDPSCs (CTRL), hDPSCs+5-Aza (5-Aza),
hDPSCs+EVs (EVs), and hDPSCs+5-Aza+EVs (5-Aza+EVs) cultured without DDP. Red fluorescence:
ALP marker; green fluorescence: cytoskeleton actin; blue fluorescence: cell nuclei using TOPRO;
merged image: overlap of all above mentioned channels. Representative images are shown. Scale
bar: 20 µm.
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Figure 7. Immunofluorescence analysis of DMP1 expression. Left panel shows the images of hDPSCs
(CTRL), hDPSCs+5-Aza (5-Aza), hDPSCs+EVs (EVs), and hDPSCs+5-Aza+EVs (5-Aza+EVs) cultured
without DDP. Right panel shows the images of hDPSCs (CTRL), hDPSCs+5-Aza (5-Aza), hDPSCs+EVs
(EVs), and hDPSCs+5-Aza+EVs (5-Aza+EVs) cultured without DDP. Red fluorescence: ALP marker;
green fluorescence: cytoskeleton actin; blue fluorescence: cell nuclei using TOPRO; merged image:
overlap of all above mentioned channels. Representative images are shown. Scale bar: 20 µm.
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Figure 8. Immunofluorescence analysis of DSPP expression. Left panel shows the images of hDPSCs
(CTRL), hDPSCs+5-Aza (5-Aza), hDPSCs+EVs (EVs), and hDPSCs+5-Aza+EVs (5-Aza+EVs) cultured
without DDP. Right panel shows the images of hDPSCs (CTRL), hDPSCs+5-Aza (5-Aza), hDPSCs+EVs
(EVs), and hDPSCs+5-Aza+EVs (5-Aza+EVs) cultured without DDP. Red fluorescence: ALP marker;
green fluorescence: cytoskeleton actin; blue fluorescence: cell nuclei using TOPRO; merged image:
overlap of all above mentioned channels. Representative images are shown. Scale bar: 20 µm.

3.4. Protein Expression of Dentinogenesis Tissue Markers in hDPSCs Cultured with and without
of DDP and Odontoblast-Like Cellular Morphology

ALP, RUNX2, COL1A1, Vinculin, DMP1, and DSPP were investigated by Western
blot analysis. Expression of these proteins was significantly increased in hDPSCs cultured
on DDP and treated with EVs. Protein expression showed a significantly high level of
RUNX2, COL1A1, and Vinculin in DDP-EVs group when compared to the DDP-5-Aza and
DDP-5-Aza+EVs groups. The same results have been obtained in the evaluation of DMP1
and DSPP protein expression, and a statistically significant difference appeared in the
DDP-EVs sample compared to the DDP-CTRL and DDP-5-Aza samples (Figure 9A,B). The
haematoxilyn-eosin staining showed cells with an odontoblast-like morphology in DDP
samples treated with EVs and 5-Aza (Figure 9C1–C4). DSPP expression was performed
by immunohistochemistry analysis. Samples showed a positive expression of DSPP in
samples treated with 5-Aza and EVs, and co-treated with 5Aza+EVs when compared to the
CTRL group. In particular the treatment of EVs alone showed a marked positivity of DSPP
when compared to the other samples (Figure 9D1–D4).
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Figure 9. Odontoblast differentiation. (A) Specific Western blot bands of ALP, RUNX2, COL1A1,
Vinculin, DMP1. and DSPP evaluated in all sample groups. (B) Densitometric analyses of ALP,
RUNX2, COL1A1, Vinculin, DMP1, and DSPP. β-actin was used as loading control. Haematoxylin-
eosin staining in all sample groups. Haematoxylin-eosin staining of (C1) hDPSCs cultured on DDP,
(C2) hDPSCs cultured on DDP with 5-Aza, (C3) hDPSCs with EVs, and (C4) hDPSCs cultured on
DDP with EVs+5-Aza. Immunoistochemical analysis of DSPP expression in (D1) hDPSCs cultured on
DDP, (D2) hDPSCs cultured on DDP with 5-Aza, (D3) hDPSCs with EVs, and (D4) hDPSCs cultured
on DDP with EVs+5-Aza. Arrows indicate the magnified inset area. Scale bar: 100 µm. Significant
statistical differences: ALP DDP-EVs vs. DDP-CTRL ** p < 0.01, DDP-EVs vs. DDP-5-Aza+EVs
* p < 0.05; RUNX2, COL1A1, Vinculin, DDP-EVs vs. DDP-CTRL *** p < 0.001, DDP-EVs vs. DDP-
5-Aza *** p < 0.001, DDP-EVs vs. DDP-5-Aza+EVs *** p < 0.001; DMP1 DDP-EVs vs. DDP-CTRL
*** p < 0.001, DDP-EVs vs. DDP-5-Aza *** p < 0.001, DDP-EVs vs. DDP-5-Aza+EVs ** p < 0.01;
DSPP DDP-EVs vs. DDP-CTRL *** p < 0.001, DDP-EVs vs. DDP-5-Aza * p < 0.05, DDP-EVs vs.
DDP-5-Aza+EVs ** p < 0.01.

4. Discussion

The decellularized matrix (DCM) has gained more popularity as a new biomaterial for
tissue regeneration. The DCM can be considered as a natural scaffold able to develop a 3D
environment with a key role in cell adhesion, migration, and differentiation, and in the reg-
ulation of tissue regeneration and homeostasis [23]. Dental pulp regeneration is a primary
challenge in the dentistry field, as it plays a key role in maintaining the dental vitality and
tooth biomechanical function. Bioengineers have tried to develop novel systems to repair
the whole tooth using the transplantation of DPSCs and Stem cells from Human Exfoliated
Deciduous Teeth (SHED) with traditional scaffolds, such as hydroxyapatite/tricalcium
phosphate, in order to overcome the difficulties during the regeneration of the dentin–pulp-
like complex [24,25]. The maintenance of the histological structure of dental pulp is the
main outcome of modern dentistry and the use of a DCM derived from dental pulp is able
to preserve the physiological pattern of core teeth. ECM represents a noncellular compo-
nent of the tissue and it can be considered as a direct modulator in regulating many cellular
functions, such as adhesion, migration, proliferation, and differentiation. Moreover, it is
able to provide the structural support for tissue development as well as regeneration [26].
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The aim of this study was to develop the DDP scaffold enriched with EVs and 5-Aza
for the regeneration of dental pulp and to evaluate the capabilities in the potentiating
odontoblastic differentiation of hDPSCs. Human dental pulps (DP)were used in this study
as a DCM for the development of the final scaffold with EVs and 5-aza treatment in order
to evaluate the in vitro response of hDPSCs. The appropriate decellularization method is
necessary to obtain a DCM scaffold [27]. The decellularization process should remove cells
and nuclear materials from the tissue and maintain the native histological 3D structure [28].
The decellularization process provides an acellular human DDP scaffold that showed the
native dental pulp structure and a reduction in the native DNA content as demonstrated by
light microscopy images and immunofluorescence evaluation. The cell homing process may
be considered a novel strategy to recruit endogenous cells stimulated by this innovative,
biocompatible scaffold that could trigger dental pulp regeneration.

To recellularize the DDP scaffold, hDPSCs were used because of their excellent role
in tissue regeneration. hDPSCs showed unique stemness properties, including rapid
proliferation, self-renewal ability, and multilineage differentiation potential [29].

During tooth embryological development, the epithelial–mesenchymal interaction in-
duced the hDPSCs to differentiate into odontoblasts to form the primary dentin tissue [30,31].
DPSCs were selected as a cell source for DDP recellularization, as these cells are known
to be an excellent candidate for dental pulp regeneration. After recellularization, process
hDPSCs are able to attach, proliferate, and migrate on the DDP scaffold, as these cells have
demonstrated their suitability for cell binding and growth. The light microscopy and SEM
images demonstrated the capacity of hDPSCs to recolonize the DDP scaffold.

Previous studies have already examined the role of hDPSCs in the dental pulp tissue
regeneration in tooth root fragments through a scaffold-free strategy using SHED-derived
cells. The major difficulty was developing the complex histological dental pulp structure
that possesses highly organized physiologic patterns [32].

EVs derived from MSCs have been studied for their beneficial effects on tissue re-
generation due to their paracrine action [33,34]. Several molecular factors are released
by EVs which promote cell recruitment with a significant potential role for endogenous
tissue repair and regeneration [35,36]. Our previous research also showed that EVs can
enhance tissue regeneration when combined with a 3D scaffold and represent a cell-free
therapy approach [37]. Moreover, EVs derived from hDPSCs could promote cellular func-
tions and thus offer an alternative therapy of a regenerative endodontic approach [38]. In
regenerative endodontic therapy, EVs are reported as an ideal biomimetic tool exhibiting
potential angiogenesis, which induces stem-cell recruitment into the root canal followed by
differentiation [39,40]. Exosomes, by carrying cell-type specific, biological molecules, such
as proteins, mRNA, and microRNA, are fundamental for intercellular communications
during tissue formation and repair [41]. In particular, microRNAs play important roles in
stem-cell differentiation and microRNAs promote the odontogenic differentiation via the
TGFβ1/smads signaling pathway by downregulating the inhibitory molecule LTBP1 in
hDPSCs [40,42]. It is a cell-free approach and an alternative to cell transplantation strategies,
avoiding the use of whole cells for implantation and their concerns.

To promote the odontogenic cell differentiation, 5-Aza was used in our experimental
approach. Deqian Zhang et al. reported that 5-Aza suppressed the cell proliferation ability
and enhanced the odontogenic differentiation potential of hDPSCs [9].

To explore the effect of EVs and 5-Aza on the odontogenic differentiation potential of
hDPSCs seeded on DDP scaffold, we examined the expression of ALP, RUNX2, COL1A1,
Vinculin, DMP1, and DSPP by means Western blot analysis. The DDP matrix enriched with
EVs showed a positive expression of all considered markers when compared to the DDP
enriched with 5-Aza alone or 5-Aza+EVs. ALP is considered as a critical factor during the
early stages of bone and dental tissue formation.

RUNX2 is a transcription factor that plays a key role in osteoblast and odontoblast
differentiation and is able to modulate the development and maintenance of bone and
teeth [43,44].
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Type I collagen is the major protein in the extracellular dentin matrix that regulates
the expression of DMP1, expressed mainly in the active odontoblasts [45].

Vinculin is a protein implicated in a transmembrane mechanism that controls odonto-
blast differentiation [46,47]. DSPP and DMP1 are considered as odontogenic markers that
promote the first step of the dentin matrix collagen mineralization process [48].

It is well known that 5-Aza had an inhibitory effect on hDPCs and suppressed the
cell growth rate from the third day onward. Previous studies reported that 5-Aza could
upregulate the expression levels of DSPP, DMP1, RUNX2, DLX5, and OSX, promote ALP
activity, and accelerate the formation of mineralized nodules [9]. 5-Aza treatment is able to
induce the odontogenic differentiation f hDPSCs without the use of odontogenic medium,
reduces the DNA methylation levels of some odontogenic differentiation-associated genes,
such as ALP or DLX5, and upregulates their expression in hDPSCs.

Our results showed that EVs and 5-Aza enrichment upregulated the expression levels
of ALP, RUNX2, COL1A1, Vinculin, DMP1, and DSPP in hDPSCs cultured on DDP as
demonstrated by the protein expression and immunofluorescence analyses.

In the present study, EVs and 5-Aza treatment on hDPSCs seeded on DDP induced a
high expression of odontogenic and osteogenic markers compared to the hDPSCs without
the decellularized scaffold. The findings of this study suggested that DDP has the potential
role to be a promising, tool-promoting strategy for dental pulp regeneration. Although
recent studies reported the development of hydrogels composed by DDP of bovine and
human origin [49,50], the present study demonstrates the benefit of using DDP in its intact
form for dental pulp regeneration via the use of mesenchymal stem cells and extracellular
vesicles. The use of a stem-cell approach for dental pulp regeneration has shown immense
potential for rebuilding the complex histological structure of the native pulp with a highly
organized pattern [51].

More studies are necessary to further elucidate the role of the DDP scaffold in cellular
recruitment and in the regulation of the odontogenic differentiation process of hDPSCs.
Our findings suggest that DDP enriched with hDPSCs and EVs showed a high poten-
tiality to provide a promising scaffold in dental pulp regeneration, promoting hDPSC
odontogenic differentiation.

The use of decellularized scaffolds to design a novel biomaterial overcome some
difficulties in the endodontic regenerative practice as the DDP may directly fill the root
canal of the teeth and have an optimized architecture to allow endogenous cell colonization
and proliferation into the intracanal space.

5. Conclusions

In conclusion, this study showed that EV treatment could improve the odontogenic
differentiation capacity of hDPSCs by increasing the expression of odontogenic markers
and transcription factors, new avenues for research in dental pulp repair and regenera-
tion open. This novel approach might hold great translational potential in dental pulp
regeneration, which could be an alternative clinical therapeutic strategy for traditional
endodontic treatment.
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Abbreviations

DDP Decellularized Dental Pulp
5-Aza 5-Aza-2′-deoxycytidine
EVs Extracellular Vesicles
hDPSCs human Dental Pulp Stem Cells
dECMs decellularized Extracellular Matrices
DCM Decellularized matrix
DNMTs DNA methyltransferases
MSCs Mesenchymal Stem Cells
SHED Human Exfoliated Deciduous Teeth
SEM Scanning Electron Microscopy
COL1A1 Collagen 1A1
DSPP Dentin Sialophosphoprotein
DMP1 Dentin Matrix Acidic Phosphoprotein 1
RUNX2 Runt-Related Transcription Factor 2
OSX Osterix
ALP Alkaline Phosphatase
MSCGM-CD Mesenchymal Stem Cell Growth Medium-Chemically Defined
DP Dental pulps
DPBS Dulbecco’s Phosphate-Buffered Saline
PFA Paraformaldehyde
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