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Abstract: The rise of antimicrobial resistance, particularly from extended-spectrum β-lactamase
producing Enterobacteriaceae (ESBL-E), poses a significant global health challenge as it frequently
causes the failure of empirical antibiotic therapy, leading to morbidity and mortality. The E. coli- and
K. pneumoniae-derived CTX-M genotype is one of the major types of ESBL. Mobile genetic elements
(MGEs) are involved in spreading ESBL genes among the bacterial population. Due to the rapidly
evolving nature of ESBL-E, there is a lack of specific standard examination methods. Carbapenem has
been considered the drug of first choice against ESBL-E. However, carbapenem-sparing strategies and
alternative treatment options are needed due to the emergence of carbapenem resistance. In South
Asian countries, the irrational use of antibiotics might have played a significant role in aggravating the
problem of ESBL-induced AMR. Superbugs showing resistance to last-resort antibiotics carbapenem
and colistin have been reported in South Asian regions, indicating a future bleak picture if no urgent
action is taken. To counteract the crisis, we need rapid diagnostic tools along with efficient treatment
options. Detailed studies on ESBL and the implementation of the One Health approach including
systematic surveillance across the public and animal health sectors are strongly recommended. This
review provides an overview of the background, associated risk factors, transmission, and therapy of
ESBL with a focus on the current situation and future threat in the developing countries of the South
Asian region and beyond.
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1. Introduction

Antibiotics are the first drugs of choice to treat infectious diseases. A rise in infectious
diseases, increasing rate of drug resistance, and indiscriminate use of antibiotics are the
reasons behind the high usage of antibiotics in developing countries. In recent years, the
Asia-Pacific region had a significant share of the global antibiotic market, a market that is
expected to be valued at USD 59.72 billion by the year 2028 [1].

Antimicrobial resistance (AMR) has a negative impact on achieving Sustainable De-
velopment Goals (SDG), food safety, and food security. In the antimicrobial resistance
(AMR) era, the evolving resistance caused by extended-spectrum β-lactamases (ESBLs)
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led to higher morbidity, prolonged hospital stays, and expensive treatment options [2].
ESBLs are Gram-negative bacteria of the Enterobacteriaceae family that carry ESBL genes in
their plasmids or chromosomes, produce β-lactam hydrolyzing enzymes, and are rightly
considered to be among the most challenging pathogens by the World Health Organization
(WHO). ESBL-producing Enterobacteriaceae (ESBL-E) confer resistance to penicillin—in
addition to aztreonam and first-, second-, and third-generation cephalosporins—but are
unable to hydrolyze cephamycin or carbapenems [3]. Carbapenem has been the drug of
first choice for treating ESBL-E-induced infection for a long time [4]. This is changing,
though, due to many factors including the recent emergence of carbapenemase-producing
bacteria. Thus, there is an urgent need to develop alternative approaches.

It is well known that the misuse or overuse of antibiotics in both human and animal
populations is responsible for the evolution of drug-resistant bacteria via gene mutations
or horizontal transmission of resistance genes by plasmids [5]. ESBL-E are commensal
bacteria in both humans and animals and can be a major threat to food safety and food
security. Commensal ESBL reservoirs in the environment have experienced recent dramatic
increases due to the co-transmission of ESBL-E between the human and animal populations,
which can occur through several direct and indirect routes of transmission. Pathogenic
bacteria in the environment are able to acquire ESBL genes from commensal bacteria and
can pose significant health risks to humans and animals [6].

It is estimated that over 1.5 billion people are colonized with ESBL-E, including
a majority in developing countries [7]. Moreover, reports from South Asian developing
countries, including Bangladesh, India, and Pakistan, indicated a high prevalence of ESBL-E
and other multidrug-resistant (MDR) superbugs [8]. The increased dissemination of ESBL-E
in humans and animals in different areas of the globe has led to the current resistance
situation. More studies on ESBL surveillance in humans and animals need to be conducted.
The One Health approach is a promising approach to try to tackle the escalating issue
of ESBL-E resistance. This review presents a comprehensive insight into ESBL. It covers
co-transmission routes between humans and animals as well as updated diagnostic and
treatment strategies. It covers the current status, potential future threats, and opportunities
to intervene. While recognized as a global problem, examples from developing countries in
South Asia are provided.

2. Extended-Spectrum β-Lactamases (ESBL) and ESBL Producers

ESBL are hydrolyzing enzymes secreted by several Gram-negative bacteria of the family
Enterobacteriaceae. They cause the inactivation of broad-spectrum oxyimino-cephalosporin
(third- and fourth-generation) and monobactam (aztreonam) but not cephamycin (cefoxitin)
or carbapenems (meropenem, imipenem, ertapenem, and doripenem) [9,10]. Generally, these
enzymes are neutralized by β-lactamase inhibitors (BLIs) such as clavulanic acid, sulbactam,
and tazobactam [9]. Genes that encode ESBL are mostly found on transposons or insertion
sequences of plasmids in association with other resistance genes. As a result, they can spread
rapidly, causing resistance to multiple antimicrobials such as aminoglycosides, trimethoprim,
sulphonamides, tetracyclines chloramphenicol, and fluoroquinolone [11–13].

ESBL are produced by the nosocomial pathogens E. coli, Klebsiella pneumoniae, Acine-
tobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp. [14]. Among a wide
range of Gram-negative bacterial species of different families harboring ESBL genes, E.
coli is the most common host, followed by K. pneumoniae. Among the different variants of
ESBL-producing E. coli, the ST131 clone is the most dominant [3].

The ESBL-encoding genes are highly diverse in nature and can be classified into many
families with unique characteristics such as blaTEM, blaSHV, and blaCTX-M. TEM 1, the
first plasmid and transposon-mediated β-lactamase, was isolated from the blood culture of
a named Temoniera in Greece in the early 1960s [15]. It has spread worldwide and is now
found in many species of the family Enterobacteriaceae, P. aeruginosa, Hemophilus influenzae,
and Neisseria gonorrhoeae [16]. The SHV-1 type is common in Klebsiella spp. and E. coli [16].
CTX-M-type ESBL are predominant in E. coli, K. pneumoniae, S. enterica serovar Typhimurium,
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and Shigella spp. [17]. The plasmid-mediated OXA and AmpC-type ESBL were discovered
in P. aeruginosa and K. pneumoniae isolates, respectively [16,18]. A series of Salmonella
serovars, including S. enteritidis, S. newport, and S. paratyphi, have been characterized as
ESBL producers that have been linked to serious foodborne gastroenteritis in humans [19].

3. Classification and Evolution of ESBL

ESBL are structurally and functionally mutated versions of β-lactamases. It is note-
worthy that β-lactamases can be defined and classified by the Ambler classification system
on the basis of molecular structure [20] and by the Bush–Jacoby–Medeiros classification
system on the basis of function (Figure 1). Among the four classes (A, B, C, and D) of the
Ambler classification, ESBL belong to classes A and D where serine is used as an enzyme
active center. According to the Bush–Jacoby–Medeiros system, β-lactamases are classified
into groups 1 to 3, along with several subgroups, on the basis of lysis of β-lactam substrates
and the effects of inhibitors. Ambler’s A and D classes of ESBL belong to group 2 in the
Bush–Jacoby–Medeiros system. In order to keep track of the newly evolved β-lactamases,
Bush and Jacoby later proposed an update to the original Bush–Jacoby–Medeiros functional
classification system of β-lactamases [11]. In both the original version and the updated
2009 version of the classification, ESBL belonged to group 2.

More recently, ESBL have been classified into three main groups: Ambler class
A ESBL (ESBLA), miscellaneous ESBL (ESBLM), and ESBL that degrade carbapenems
(ESBLCARBA) [9]. Most ESBL in the world belong to the ESBLA group, which includes
several types of sulfhydryl reagent variable (SHV) β-lactamases, Temoniera (TEM) β-
lactamases, and cefotaxime-M (CTX-M) β-lactamases [21]. About 90% of TEM-1 harboring
E. coli can confer resistance to ampicillin, penicillin, and first-generation cephalosporins
but not to oxyimino cephalosporin. Additionally, SHV-1 (68% similar to TEM on the basis
of amino acid sequences) can provide resistance to penicillin, tigecycline, and piperacillin
but not to oxyimino cephalosporin [22]. During the 1980s, evolution of SHV-1 and TEM-1
from non-ESBL to ESBL in K. pneumoniae and E. coli strains, respectively, via specific amino
acid substitutions, made them more capable of hydrolyzing oxyimino-cephalosporins [13].
Among the 140 TEM and 60 SHV types identified, some are capable of inactivating third-
generation cephalosporins and aztreonam [22].

More recent outbreaks involving ESBL have been mediated by the CTX-M type rather
than the TEM type or the SHV type [23]. CTX-M-type ESBL (first reported in 1989 in Mu-
nich, Germany) preferentially hydrolyze cefotaxime over ceftazidime and are inhibited by
tazobactam [24]. They are distinct from TEM-type and SHV-type ESBL. The ESBL enzyme-
encoded bla genes originated from the chromosomes of Kluyvera spp. (non-pathogenic
Enterobacteriaceae). CTX-M ESBL are grouped into six major types—CTX-M-1, CTX-M-2,
CTX-M-8, CTX-M-9, CTX-M-25, and KLUC—on the basis of ≥10% variance in amino acid
sequence identity and several minor variants within the groups [25].

More than 80 CTX-M types have been reported in both hospitals and communities
as well as in food animals, fresh vegetables, water, and the environment [22]. Mobile
genetic elements (MGEs) such as ISEcp1 and ISCR1 play an important role in transferring
blaCTX-M genes from the chromosomes of Kluyvera spp. into the plasmids of E. coli. The
gene expression of blaCTX-M is enhanced by several active promoter sequences encoded
in some MGEs, resulting in increased cephalosporin resistance in E. coli in hospital set-
tings [26]. While CTX-M-type ESBL are mainly detected in plasmid incompatibility groups,
chromosomal integration was also reported [25]. In humans, CTX-M-15 (CTX-M-1 group)
and CTX-M-14 (CTX-M-9 group) are more prevalent, whereas CTX-M-1 (CTX-M-1 group) is
more predominant in animals [27]. Other CTX-M groups were reported in specific regions,
such as the CTX-M-2 and CTX-M-8 groups in South America and the CTX-M-2 group in
Japan [25].
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ESBLM are further classified into ESBLM-C (class C, plasmid-mediated AmpC) and
ESBLM-D (class D). The AmpC group confers resistance to penicillin, third- and fourth-
generation cephalosporins, and, sometimes, to carbapenems. They are inhibited by
cloxacillin and boronic acid. Some OXA-ESBL are also classified within the ESBLM
group. Carbapenem-resistant ESBL are also divided into ESBLCARBA-A, ESBLCARBA-B,
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and ESBLCARBA-D [28]. ESBLCARBA can degrade all β-lactam antibiotics. They are inhibited
by either ethylenediaminetetraacetic acid (EDTA) or dipicolinic acid (DPA), as in the cases
of Metallo- β-lactamases (MBLs), boronic acid, or avibactam. Some OXA enzymes are also
included in the ESBLCARBA group. OXA-type β-lactamases that belong to Ambler class D
are different from TEM and SHV, have the ability to hydrolyze oxacillin and cloxacillin, and
are not inhibited by clavulanate acid. They have been mainly detected in P. aeruginosa and
a much lesser percentage (1–10%) have been detected in E. coli. Other rarely found ESBL
that are transmitted through plasmids are Pseudomonas extended resistant (PER), Viet-
nam ESBL (VEB), Guiana extended-spectrum (GES), and integron-borne cephalosporinase
(IBC) [3].

4. Mechanism of Resistance and Dissemination of Resistant Genes

Gram-negative bacteria may inactivate β-lactam antibiotics (penicillin and cephalosporin)
through several mechanisms (Figure 2). The periplasm of Gram-negative bacteria releases β-
lactamase which has a higher affinity towards β-lactam antibiotics than the affinity of β-lactam
antibiotics to their targets. The gene coding β-lactamase may be located in the immobile genetic
chromosomes (in Enterobacter species) or extra-chromosomal MGEs such as a plasmid, integrin,
or a transposon. The resistant genes evolve either gene-level mutations or acquisition of resistant
genes from other bacteria of the same or different species.
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Bacterial integrons, described at the end of the 1980s, act as a vehicle for the trans-
mission (intraspecies or interspecies) of resistant genes by the acquisition of sequences
present in transposons and/or conjugative plasmids through the process of horizontal
gene transfer [29]. This can happen through transformation, transduction, or conjugation
(Figure 2). Genes encoding TEM-type β-lactamases are mostly carried and disseminated by
Tn1, Tn2, or Tn3-like transposons. Genes encoding SHV-type β-lactamases can be mediated
by both chromosomes and plasmids. Conjugative transmission is most commonly observed
in the CTX-M type [3]. Five classes of integrons (intI1, intI2, intI3, intI4, and intI5) were
found to play major roles in the dissemination of antibiotic-resistance genes [30].
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Inhibitors used to block ESBL enzymes can help prevent the inactivation of β-lactam
antibiotics. It is important to note that some β-lactamases may not be inactivated by
some classical inhibitors such as clavulanate acid, sulbactam, and tazobactam [31,32].
Mechanisms of resistance in Gram-negative bacteria may also involve reduced membrane
permeability through genomic mutations, decreased amounts of β-lactam antibiotics that
can enter the cell, and a marked increase in antibiotic reflux from the periplasm to the
exterior of the cell [31].

5. Diagnostic Tools for Detection of ESBL

Routine screening along with rapid detection of ESBL-producing bacteria in laboratory
and hospital settings is essential in the therapeutic approach and infection control to sup-
press any outbreaks. The Clinical and Laboratory Standards Institute (CLSI) recommends
a two-step process for the detection of ESBL [33]. The second part is only undertaken if
the first step leads to a positive result. The first step involves a preliminary screening to
detect sensitivity against some commonly used antibiotics such as cefotaxime, ceftriaxone,
ceftazidime, or aztreonam. The second involves one of the available confirmatory tests
to identify ESBL-producing organisms in the presence of β-lactamase inhibitor [34]. Tests
recommended by CLSI for the screening of ESBL include Kirby–Bauer disks and Vitek
(sensitivity 92–93%). The confirmatory tests may be performed using a double-disk synergy
test (DDST), combination disk method, or E-test ESBL strips. The combination disk method
has a very high sensitivity (100%) for testing cefotaxime and cefepime, whereas the E-test
has a comparatively lower sensitivity for testing cefotaxime and ceftazidime (71–73%)
or cefepime (90%) [22]. The phenotypic confirmatory method, double-disc synergy test,
and E-test ESBL strip tests are easy to use in a laboratory setting, although none of these
methods alone can identify all types of ESBL [32]. It is worth mentioning that there are also
guidelines set by the European Committee on Antimicrobial Susceptibility Test (EUCAST)
for the detection of ESBL [35].

In addition to phenotypic confirmatory tests, genotypic confirmatory tests are per-
formed to identify certain enzymes and their variants released by ESBL producers through
methods that include polymerase chain reaction (PCR) and nucleotide sequencing [22].
Other methods that can be used include the broth dilution method (BDM) [36], isoelectric
point determination, DNA probes, the oligotyping method, PCR with restriction frag-
ment length polymorphism analysis (PCR-RFLP), PCR with single-strand conformational
polymorphism analysis (PCR-SSCP), and real-time-PCR [32]. The Cica Beta Test 1/HMRZ-
86/Chromogenic cephalosporin is a rapid kit test (generates results within 15 min) that is
used for detecting ESBL in Gram-negative rods from primary culture [37]. Matrix-assisted
laser desorption ionization-time of flight mass spectrometry (MALDI-TOF) is another di-
agnostic tool that has been successfully used to detect ESBL [38]. Recently, the NG-Test
CTX-M MULTI, a rapid immunochromatography technique (lateral flow), has proven to
be useful for the detection of CTX-M-type enzymes (groups 1, 2, 8, 9, and 25), followed by
the rapid identification of Enterobacterales in blood or urine samples using MALDI-TOF
MS and flow cytometry [39,40]. Moreover, for the detection of SHV-positive K. pneumoniae,
PCR with CRISPR-LbCas12a has demonstrated excellent sensitivity and specificity, and it
is recommended for use in a hospital setting as it provides results in about two hours [41].

The applicability of these detection methods in different situations can have limitations
due to the frequent mutations that lead to changes in patterns of ESBL subtypes. This can
make diagnosis more complex and difficult. Different types of ESBL detection methods are
summarized in Table 1.
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Table 1. Diagnostic tools for detection of extended-spectrum β-lactamases (ESBL).

Screening Tests
Confirmatory Tests

Rapid Kit TestPhenotypic Methods Genotypic
MethodsTest Name Antibiotic Sensitivity Test Name Antibiotic Sensitivity

Kirby-Bauer
disks

Cefotaxime,
ceftriaxone,
ceftazidime, or
aztreonam

92–93%

Double-disk
synergy test
(DDST)

Cefotaxime,
ceftriaxone,
ceftazidime, or
aztreonam

70–80% PCR

Cica Beta Test
1/HMRZ-
86/Chromogenic
cephalosporin

Vitek

Combination
disk method,

Cefotaxime
and cefepime 100% Nucleotide

sequencing

E-test ESBL
strip

Cefotaxime
and
ceftazidime

71–73%
Isoelectric
point
determination

Cefepime 90%

DNA probes

Oligotyping
method

PCR-RFLP

PCR-SSCP

6. Risk Factors and Mode of Transmission of ESBL-Producing Bacteria

Throughout the recent decades, ESBL-producing bacteria have been increasingly
detected in hospital and community settings and have thus emerged as a serious health
problem for humans and animals [42,43]. Reduced treatment options, complex infections,
high mortality, and costly treatments are some of the major concerns for people infected
with ESBL-producing organisms [2]. In the intensive care unit (ICU), ventilator-associated
pneumonia by ESBL-producing bacteria has been detected in hospitalized patients [44].
In the human population, risk factors for hospital-borne colonization and infection with
ESBL producers include prolonged hospital stay, use of hemodialysis, and intravascular
catheters [45,46]. Community-borne infections may be related to many factors, including
international traveling [47]. In veterinary medicine, cephalosporins are frequently used
for the treatment of bacterial infections in farm animals and pet animals [48]. In South
Asia, excessive use of over-the-counter (OTC) cephalosporins may be a major cause for
increasing ESBL-producing bacteria in the animal population, which can further cocirculate
in the human population via the food chain.

ESBL-producing enteric bacteria, such as E. coli, non-typhoidal Salmonella spp., and
Campylobacter spp., are zoonotic pathogens spread to humans through the food chain and
can transiently colonize the human gut. Resistant commensal E. coli acts as a vehicle to trans-
mit genetic resistance determinants in the gut or via milk and meat. Resistant pathogenic
E. coli may subsequently cause urinary tract infections in vulnerable patients [49]. In
food-producing animals and pet animals, cephalosporin-resistant E. coli and Salmonella
spp. cause high levels of mortality and morbidity which pose a risk of spread to humans
via improper handling and inadequate cooking of food [50]. CTX-M-14 is predominant
in Asian countries and has been detected in humans, pets, and poultry [19]. The CTX-
M-15-producing human ST15 and ST101 K. pneumoniae clones have been reported to be
widely disseminated in pets and horses [51]. The blaCTX-M-1 encoding IncI1 plasmids
were commonly identified in E. coli isolates from animals and humans along with various
sequence types (STs) of E. coli [52].

In addition to causing intestinal and urinary tract infections, ESBL-producing Gram-
negative bacteria, such as E. coli, Proteus spp., Pseudomonas aeruginosa, and Klebsiella spp.,
can also be responsible for diabetic foot ulcers in individuals with underlying health
conditions, potentially leading to amputation and death [53]. A high incidence of sternal
wound infections caused by ESBL-producing E. coli has also been reported among patients
in postoperative care after cardiac surgery [54].
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Resistance transmission routes for ESBL-producing bacteria are complex (Figure 3).
There are multiple direct and indirect transmission pathways from animal and inanimate
sources to humans and from humans to animals and the environment [55]. Extended-
spectrum β-lactamase-producing enterobacterales isolates were reported in farmers and
livestock (pig and poultry) [56,57]. Lower genomic ESBL diversity was also seen in farming
communities than in the general and clinical populations. This can indicate a higher possi-
bility of the exchange of ESBL genes between reservoirs in farming communities through
close contact. Additionally, molecular similarities between human and environmental reser-
voirs may be an indication of transmission from human wastewater to surface water [58].
Through the contaminated surface water, wild birds may get infected and act as vectors
or even reservoirs for local dissemination [59]. A high prevalence in migratory birds (17%
in Pakistan, 17.3% to 38.18% in Bangladesh) is an indication that migratory birds can be a
potential carrier for transmission in Asian countries [60–62].
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7. Possible Therapeutic Options

Resistance towards certain commonly prescribed antibiotics, such as penicillin and
cephalosporins, can make these drugs ineffective for treating infections. Carbapenems
have been considered the main therapeutic option for the treatment of ESBL-E [4]. The
intravenous administration of carbapenem antibiotics is more efficient than its oral admin-
istration. However, injudicious overuse led to the emergence of carbapenem resistance.

Carbapenem-sparing strategies include the administration of non-carbapenem β-
lactams (ceftolozane–tazobactam, ceftazidime–avibactam, temocillin, cephamycins, and
cefepime) and non-β-lactams (aminoglycosides, quinolones, tigecycline, eravacycline,
and fosfomycin).

For the non-carbapenem β-lactams, piperacillin–tazobactam (PTZ) combination is the
most suitable alternative to carbapenems in the treatment of mild urinary tract infections
(MIC ≤ 4 mg/L) [63,64]. Ceftolozane–tazobactam appears to be promising in the treatment
of complicated intra-abdominal infections and complicated urinary tract infections [65].
Tazobactam and Avibactam are β-lactamase inhibitors but tazobactam is affected by the
inoculum effect [63]. The effects of Tazobactam can be reduced by certain Gram-negative
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bacteria that are capable of releasing ESBL and AmpC beta-lactamases and can protect
themselves through activation of efflux pumps and porin mutations. Avibactam has the
ability to conserve the efficacy of ceftazidime against the highly prevalent β-lactamases,
such as ESBL, and carbapenemases including OXA-48 and K. pneumoniae carbapenemase
(KPC). Hence, the ceftazidime–avibactam combination produces better results for the
majority of MDR Gram-negative bacteria [66]. Cephamycins include cefoxitin, cefotetan,
moxalactam, cefmetazole, and flomoxef. Cephamycins are ineffective against AmpC
cephalosporinases and porin mutations [67]. Cefepime, a fourth-generation cephalosporin
that is less hydrolyzed by AmpC lactamases and ESBL than other cephalosporins, could
help against low-risk infections (MIC ≤ 2 mg/L) [68]. However, there is a possible risk of
mortality in some cases [43]. Temocillin (b-a-methoxy-derivative of ticarcillin), a new drug,
has a narrow spectrum that is limited only to Enterobacterales and is not easily degraded
by various β-lactamases [66].

For non-β-lactams, quinolones and aminoglycosides are good options. ESBL genes were
shown to mediate quinolone resistance [69]. The spreading of aminoglycoside-modifying
enzymes can impact microbial susceptibility to aminoglycosides [70]. Amikacin and the next-
generation aminoglycoside plazomicin could be used for the treatment of urinary tract infections,
including the treatment of acute pyelonephritis by plazomicin [71–73]. Tigecycline has effi-
cacy against ESBL-producing E. coli and against multidrug-resistant (MDR) and extensively
drug-resistant Acinetobacter baumannii and K. pneumoniae [66,74]. The tetracycline derivatives,
Eravacycline and Omadacycline, have anti-ESBL activity that could be used to control Gram-
negative bacteria [75,76]. Fosfomycin interferes with the synthesis of peptidoglycan by inhibiting
phosphoenolpyruvate transferase and can be effective with urinary tract infections [66]. Fos-
fomycin is efficient for the treatment of acute uncomplicated cystitis [77]. Finally, monotherapy
is generally less effective than combination therapy [78].

8. Current Status of ESBL in South Asian Developing Countries

In this era of antibiotic resistance, developing countries are considered as a hotbed
for the spread of resistant bacteria due to the imprudent use of antibiotics, poor drug
quality, lack of proper monitoring, as well as many other factors associated with individual
and national poverty in many of these countries [6]. Bangladesh, India, and Pakistan
are three densely populated South Asian developing countries that have high degrees of
antimicrobial resistance in both the human and animal sectors. Availability of antibiotics
over the counter, the tendency to self-medicate, lack of completion of antibiotic courses,
unnecessary overprescribing of antibiotics by physicians, and the indiscriminate use of
antibiotics in agriculture and veterinary practices are considered major causes of AMR in
these countries [79,80].

ESBL have been frequently reported on the Asian subcontinent since the late 1990s. In
Bangladesh, ESBL have been reported for more than two decades [81]. The globally dominant
ESBL blaCTX-M-15 was first reported in India in the mid-1990s and is still a dominant ESBL
type in India, Bangladesh, and Pakistan [82]. AMR surveillance in these countries is not
comprehensive and there is a general underreporting of AMR. The largest proportions of these
studies were conducted on humans. A significantly high proportion of AMR, MDR, and ESBL
producers were detected in the period from 2015 to 2020 (Tables 2 and 3).
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Table 2. Current status of ESBL as reported in Bangladesh, India, and Pakistan public health sectors from 2015 to 2023.

Country ESBL Enterobacteriaceae Source Prevalence Reference

1 Bangladesh blaCTX-M-15 E. coli Urine 80% [83]

2 India blaCTX-M-15 E. coli Skin and soft tissue 70% [84]

3 India blaCTX-M-15 E. coli Urine, pus, extra intestinal clinical samples 25% [85]

4 Bangladesh blaTEM E. coli Urine 50% [86]

5 Bangladesh

blaCTX-M-15

E. coli Rectal swabs

48.2%

[87]

blaCTX-M-1 11.1%

blaSHV-12 11.1%

blaCTX-M-14 7.4%

blaCTX-M-27 7.4%

blaCTX-M-9 3.7%

blaCTX-M-14b 3.7%

blaSHV-28 3.7%

blaTEM-12 3.7%

6 Bangladesh
blaCTX-M-1 E. coli

Clinical specimens
33.9%

[88]
blaCTX-M-1 K. pneumoniae 51.4%

7 Bangladesh
Non-specific E. coli

Urine
25.84%

[81]
Non-specific Klebsiella pneumoniae 6.6%

8 Bangladesh

blaTEM

E. coli Urine

22.7%

[89]blaCTX-M 24.2%

blaSHV 4.3%

9 Bangladesh
Non-specific K. pneumoniae Tracheal swabs, sputum, wound swabs,

pus, blood, urine
50%

[90]
Non-specific K. oxytoca 25%

10 Bangladesh
blaCTX-M-3 Pseudomonas spp. Urine, swab, pus

78.0%
[91]

blaCTX-M- 14 80.0%
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Table 2. Cont.

Country ESBL Enterobacteriaceae Source Prevalence Reference

11 Bangladesh
blaTEM

E. coli Stool
41%

[62]
blaCTX–M–group–1 96%

12 India
blaCTX-M-15

E. coli Urine
52%

[92]
blaOXA-2 8%

13 India Non-specific E. coli
Pus 9.8%

[93]
Urine 82.6%

14 North-East India

blaCTX-M

E. coli Urine, sputum, vaginal discharge

54.34%

[94]blaTEM 60.86

blaSHV 63.04%

15 South India blaCTX-M-15 E. coli
Urine, wound swab, sputum, pus,
endotracheal secretions, bronchoalveolar
lavage, bile fluid

90% [95]

16 Bihar, India

blaTEM

E. coli Stool

51.8%

[96]blaSHV 68%

blaCTX-M 86.1%

17 India
blaSHV Pseudomonas aeruginosa Urine, blood, sputum, endotracheal

aspirate
15.1%

[97]
blaTEM 57.1%

18 Pakistan blaCTX-M-15 E. coli Fecal samples 86.2% [98]

19 North-West Pakistan Non-specific P. aeruginosa Burn patients 35.85% [99]

20 Lahore, Pakistan

blaCTX - M E. coli, Klebsiella spp.,
Pseudomonas aeruginosa,
Enterobacter spp.,
Acinetobacter spp.

Urine, pus, wound swabs

76%

[100]blaTEM 28%

blaSHV 21%

21 Faisalabad, Pakistan blaCTX-M-1 E. coli

Dog owners 59%

[101]Cat owners 73.9%

Veterinary professionals 80%
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Table 2. Cont.

Country ESBL Enterobacteriaceae Source Prevalence Reference

22 Pakistan

blaCTX-M1

K. pneumoniae Hospital waste

71%

[102]blaTEM 53%

blaSHV 6%

23 Lahore, Pakistan
blaCTX-M-I

E. coli Clinical specimens
72.1%

[103]
blaCTX-M-II 8.5%

24 Peshawar, Pakistan blaCTX-M-15 Pseudomonas aeruginosa Clinical specimens 19.71% [104]

25 Lahore, Pakistan Non-specific E. coli
Healthy individuals 57.0%

[105]
Patients 53.0%

26 Faisalabad, Pakistan

blaCTXM-1

E. coli Urine

70%,

[106]blaTEM-1 74.4%

blaCTXM-15 49%

Table 3. Current status of ESBL as reported in Bangladesh, India, and Pakistan animal health sectors from 2015 to 2023.

Country ESBL Enterobacteriaceae Species Source Prevalence Reference

1 Bangladesh blaTEM E. coli Chicken Droppings 78% [86]

2 India blaCTX-M-15 E. coli Poultry Meat 17% [107]

3 Pakistan blaCTX-M-15 E. coli Migratory birds Fecal samples 92.3% [61]

4 Bangladesh blaTEM E. coli Chicken Meat 86% [108]

5 India
blaCTX-M-15

E. coli Piglets Fecal samples
2.94%

[109]
blaTEM 6.47%

6 India blaCTX-M-1 E. coli Piglets Fecal samples 55.55% [110]

7 West Bengal, India

blaCTX-M

Klebsiella spp. Broiler Cloacal swabs

10.7%

[111]blaSHV 51.5%

blaTEM 48.5%
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Table 3. Cont.

Country ESBL Enterobacteriaceae Species Source Prevalence Reference

8 West Bengal, India blaCTX-M E. coli Cattle Milk 54.54% [112]

9 Assam and
Meghalaya

blaCTX-M
E. coli, Salmonella. Pigs Fecal samples

0.67%
[113]

blaTEM 2.76%

10 Faisalabad, Pakistan blaCTX-M-1 E. coli
Dogs

Fecal samples
81.8%

[101]
Cats 73.9%

11 Pakistan blaCTX-M-15 E. coli Wild birds Fecal samples 92.3% [61]

12 Punjab, Pakistan blaTEM-1
Salmonella enterica
serovar Infantis Poultry Post mortem specimens 44·4% [114]

13 Lahore, Pakistan Non-specific E. coli

Cattle Feces 66.0%

[105]Chicken Feces 59.0%

Cattle, Chicken Raw meat 70.0%

14 Pakistan

blaCTX-M-15

E. coli Cows Mastitic milk samples

63.04%

[115]

blaCTX-M-55,
blaCTX-M-14

8.69%

blaCTX-M-3, blaCTX-M-1 2.17%

blaTEM 47.82%

blaSHV 17.39%

15 Pakistan blaCTX-MblaTEM E. coli Backyard chicken Cloacal swabs 45.1% [116]

16 Bangladesh blaSHV E. coli
Broiler

Raw meat swabs
12.8%

[117]
Layer 7.61%
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In Bangladesh, a study in a tertiary care hospital in Dhaka revealed the presence of
~16% ESBL producers (15.75% Escherichia coli, 14.01% Pseudomonas spp., 36.84% Proteus spp.,
18.57% Klebsiella spp., and 21.05% Acinetobacter spp.) in indoor (~50%) and outdoor (13%)
patients [118]. A similar study has reported that 34% of E. coli isolated from extra-intestinal
infection in patients were ESBL-producing [88]. Another study revealed a high preva-
lence of MDR ESBL-producing E. coli isolates in Bangladesh (most isolates were shown to
have blaCTX-M), including the uropathogenic ESBL-producing E. coli clone O25:H4 [119].
Moreover, about 60% of ESBL-positive E. coli carrying blaCTX-M-1, blaCTX-M-2, blaCTX-M-8,
blaCTX-M-9, blaCTX-M-15, blaCTX-M-25, blaTEM, and blaSHV genes were detected in human faecal
sludge samples isolated from a Rohingya camps in Cox’s Bazar, Bangladesh [120]. Addi-
tionally, 74% ESBL-producing E. coli were detected in stool samples from healthy infants in
rural areas of Bangladesh [62]. It is unknown whether the resistance was primarily acquired
from the environment, vertically from the child’s mother, or through selective pressure
from pediatric antibiotic overuse [121]. In a molecular study, CTX-M-type and SHV-type
ESBL genes were detected in E. coli, K. pneumoniae, and Enterobacter cloacae isolated from
surface water in Dhaka, Bangladesh [122]. The fairly common practice in rural areas of
Bangladesh to dispose of infants’ stool in front yards or nearby ditches might have con-
tributed to the transmission of resistant bacteria to domestic and stray birds and/or other
animals [123]. It has been reported that crows act as potential carriers of human-pathogenic
ESBL-producing E. coli ST13-O25b clones because of their foraging behaviors [124]. House-
hold pigeon droppings were shown to contain blaCTX-M-15 genes of the ESBL-producing
E. coli ST1408, known to be a bird-associated sequence [125]. Migratory birds traveling to
Bangladesh have been reported to be a potential source of ESBL-producing E. coli carrying
blaTEM, blaCTX-M, blaCMY, and blaSHV genes [126]. To alleviate the escalating food
shortage for an increasing population in Bangladesh, antibiotics are overused to promote
growth and to prevent and treat diseases in food animals. A high percentage of ampicillin-
resistant blaTEM gene (91.25%) was reported in E. coli isolated from cloacal swabs of live
broiler chicken [127]. Both AMR and MDR isolates of E. coli, V. cholerae, and Salmonella
spp. were identified in large numbers in the poultry sector in Bangladesh [128,129]. Food
items such as chicken nuggets were reported to be contaminated with MDR bacteria in
Dhaka, Bangladesh [130]. In large animals, separate studies reported quinolone-resistant
E. coli in apparently healthy cattle; gatifloxacin-resistant E. coli in raw milk of cattle and
buffalo; ampicillin, oxytetracycline, tetracycline, and amoxicillin-resistant P. aeruginosa
from abscesses of cattle; and azithromycin, tetracycline, erythromycin, oxytetracycline, and
ertapenem-resistant E. coli and Salmonella spp. from dairy farms [109,131–133].

In India, it has been reported that 70–90% of Enterobacteriaceae are ESBL-positive and
that the CTX-M-15 β-lactamase is dominating in India following its first detection in Delhi
in 2000 [134]. ESBL in animals also rose from 12 to 33% from 2013 to 2019 [135]. A high
prevalence of 26% has been reported in north India [136].

In Pakistan, ESBL have been frequently reported in community and hospital settings
as well as in animals from different parts of the country. The blaCTX−M gene has been
reported as a predominant genotype in this region, while blaTEM and blaOXA genes were
less common in healthcare settings [100]. In another study, 25.41% of ESBL-producing E.
coli was detected in milk from mastitis-affected cattle, an alarming percentage for the whole
region [115].

9. Future Threats of ESBL in South Asian Developing Countries

Undoubtedly, infections caused by ESBL-producing organisms are of great concern
to the medical world. The rising prevalence rates along with the dire lack of effective
antimicrobial therapy are alarming. Carbapenem is the drug of choice for the treatment
of infection caused by ESBL-producing enterobacteria. However, carbapenem-resistant
Enterobacteriaceae are superbugs that can cause significant morbidity and mortality [137].
New Delhi metallo-β-lactamase (NDM) can inactivate carbapenem and other β-lactam
antibiotics except aztreonam [138]. The NDM variant might have evolved in Enterobacte-
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riaceae, Vibrionaceae, and other non-fermenters by single and double amino acid residue
substitutions at different positions [139]. Therapeutic options may be more limited as a
result of the evolution of new variants of NDM [140]. Genome transfer among unrelated
bacterial species is not the only factor responsible for the increase and spread of NDM
variants worldwide. Human factors, such as travel, sanitation, and food production and
processing, can also amplify the issue [141]. NDM-17 and NDM-20 were reported in
ST1114 E. coli isolated from chicken and pig, respectively, in China, indicating that food
animals have become a reservoir of NDM-producing bacteria [142]. For the treatment of
infections caused by NDM producers, the last resort antibiotic colistin is commonly used.
However, a colistin-resistant mcr-1 gene in E. coli was recently detected from a pig farm in
China [143,144]. From 2016 to date, several plasmid-mediated colistin-resistant mcr genes
have been detected in E. coli. The use of colistin has been limited in humans because of
nephrotoxicity, but it has been used extensively in the veterinary field for decades for pre-
vention and treatment of enteritis and as a growth promoter [145,146]. Thus, the prevalence
of colistin-resistant mcr-1 gene variants in E. coli was higher in animals than in humans,
indicating that the livestock sector was most likely the main source of colistin resistance
amplification and spread in animals and in the human population [147,148].

In Bangladesh, reports indicated the emergence of carbapenem-resistant bacteria
harboring blaOXA-48, blaNDM-1,5 and blaVIM-5, and colistin-resistant K. pneumoniae har-
boring mcr-8 in clinical isolates [149,150]. The MDR NDM-1 was first detected in Klebsiella
pneumoniae in an individual who traveled to India in 2008 [151]. Since then, NDM-1 has
been found in various species of Enterobacteriaceae, Acinetobacter spp., and Pseudomonas spp.
and 24 variants of NDM have been identified. Another superbug is the Bengal Bay clone
of Staphylococcus aureus, which originated from the Indian subcontinent in the 1960s [152].
Additionally, methicillin-resistant Staphylococcus aureus (MRSA) remains a current and a
future threat to hospital patients [153]. In 2018, an outbreak of extensively drug-resistant
(XDR) Salmonella enterica serovar Typhi was reported in Pakistan and Bangladesh [154].
Poor sanitation and overuse of antibiotics are considered the main culprits for the emer-
gence of superbugs in these regions and are expected to impact the South Asian region in
future years.

10. Conclusions

Antimicrobial resistance is an ongoing global issue. During the COVID-19 pandemic,
a decline in the rising trends of ESBL infections, as compared to rates observed before the
pandemic, was observed [155]. Travel restrictions, in addition to overall precautions for
preventing the spread of infections, might have contributed to this. This gives us hope
that proper antimicrobial stewardship could contribute to the reduction of transmission
rates of ESBL infections in the future. This is in spite of studies indicating a higher preva-
lence of other MDR infections, such as MRSA, vancomycin-resistant Enterococci (VRE),
carbapenem-resistant Enterobacteriaceae (CRE), and carbapenem-resistant Acinetobacter bau-
mannii (CRAB), during the COVID-19 pandemic [155]. Given this, detailed molecular
studies on ESBL-producing bacteria and other superbugs could help identify changing
mechanisms of resistance, transmission routes, and alternative drug targets to control
pathogenicity. Moreover, there is an urgent need to develop precise diagnostic tools, new
drugs, and novel strategies against difficult-to-treat antibiotic-resistant pathogens, includ-
ing the use of antibiotics in combination or with adjuvants, bacteriophages, antimicrobial
peptides, nanoparticles, antibacterial antibodies, and photodynamic light therapy. A One
Health approach of systematic surveillance of ESBL across the public health and animal
health sectors could be helpful. Finally, there should be more control of the use and release
of antibiotics in the environment in South Asian countries and elsewhere in the world.
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