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Abstract: Benzofuran, 1,3,4-oxadiazole, and 1,2,4-triazole are privileged heterocyclic moieties that
display the most promising and wide spectrum of biological activities against a wide variety of
diseases. In the current study, benzofuran-1,3,4-oxadiazole BF1–BF7 and benzofuran-1,2,4-triazole
compounds BF8–BF15 were tested against HCV NS5B RNA-dependent RNA polymerase (RdRp)
utilizing structure-based screening via a computer-aided drug design (CADD) approach. A molec-
ular docking approach was applied to evaluate the binding potential of benzofuran-appended
1,3,4-oxadiazole and 1,2,4-triazole BF1–BF15 molecules. Benzofuran-1,3,4-oxadiazole scaffolds BF1–
BF7 showed lesser binding affinities (−12.63 to −14.04 Kcal/mol) than benzofuran-1,2,4-triazole
scaffolds BF8–BF15 (−14.11 to −16.09 Kcal/mol) against the HCV NS5B enzyme. Molecular docking
studies revealed the excellent binding affinity scores exhibited by benzofuran-1,2,4-triazole structural
motifs BF-9 (−16.09 Kcal/mol), BF-12 (−15.75 Kcal/mol), and BF-13 (−15.82 Kcal/mol), respectively,
which were comparatively better than benzofuran-based HCV NS5B inhibitors’ standard reference
drug Nesbuvir (−15.42 Kcal/mol). A molecular dynamics simulation assay was also conducted to
obtain valuable insights about the enzyme–compounds interaction profile and structural stability,
which indicated the strong intermolecular energies of the BF-9+NS5B complex and the BF-12+NS5B
complex as per the MM-PBSA method, while the BF-12+NS5B complex was the most stable system
as per the MM-GBSA calculation. The drug-likeness and ADMET studies of all the benzofuran-1,2,4-
triazole derivatives BF8–BF15 revealed that these compounds possessed good medicinal chemistry
profiles in agreement with all the evaluated parameters for being drugs. The molecular docking
affinity scores, MM-PBSA/MM-GBSA and MD-simulation stability analysis, drug-likeness profiling,
and ADMET study assessment indicated that N-4-fluorophenyl-S-linked benzofuran-1,2,4-triazole
BF-12 could be a future promising anti-HCV NS5B RdRp inhibitor therapeutic drug candidate that
has a structural agreement with the Nesbuvir standard reference drug.

Keywords: benzofuran derivatives; hepatitis C; RdRp NS5B inhibitors; molecular docking; MD
simulations; MM-PBSA; SAR; ADMET studies; DFT studies; energy decomposition analysis
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1. Introduction

The HCV (Hepatitis C virus) was first identified as a viral causative agent of Hepatitis
infection in 1975 [1]. Hepatitis C virus (HCV), Zika, dengue, etc., are enveloped viruses
that belong to the very famous human pathogen family Flaviviridae [2]. Hepatitis C virus
infection has become a critical global health issue because 1.1% of the world’s population,
or 71 million people, have Hepatitis C virus infection, which is a major cause of chronic
liver diseases, as reported in a 2017 WHO report [3]. HCV, like other RNA viruses, has
several non-structural proteins (NSPs). An essential and vital non-structural HCV protein
in antiviral drug development is 5B (NS5B), a viral polymerase that carries out the tran-
scription of HCV genomic RNA. Another critical non-structural protein is the NS3/4A
protease, which plays a pivotal role in processing HCV viral polyproteins. Numerous
inhibitors have been reported as effective therapeutic agents for managing HCV infection
by targeting these important and crucial viral components of HCV [4,5]. These enzymes
can be targeted by using various types of inhibitors, including nucleoside inhibitors (NIs)
and non-nucleoside inhibitors (NNIs).

NIs are also termed direct-acting antiviral (DAA) inhibitors, which mainly target
the active sites or the orthosteric sites of these vital viral targets. DAAs are competitive
inhibitors, vying with the substrates of the active site for the enzyme catalytic site [6].
These inhibitors are frequently designed to target viral polymerases [7]. Unfortunately,
the effectiveness of these inhibitors is compromised due to the higher rates of mutations
occurring at the orthosteric sites within the viral proteins, leading to the emergence of
viral drug resistance [8]. In contrast, NNIs, including allosteric inhibitors, have been
employed extensively to address the issue of viral drug resistance [9]. Unlike NIs, which
directly inhibit the active site of the NS5B polymerase, thereby terminating viral RNA
synthesis, NNIs target allosteric sites within this enzyme, inhibiting its activity by alternate
mechanisms. Nearly all NNIs function as allosteric inhibitors, obstructing the enzyme
and impeding the required conformational changes vital for initiating RNA production,
effectively inhibiting this enzyme activity [10].

These allosteric inhibitors provide a promising approach to tackling viral drug resis-
tance and have the potential to be used safely in the treatment of a wide variety of viral
infections. Pharmaceutical companies are actively involved in their production [11,12].
Similarly, there is extensive ongoing research aimed at discovering, identifying, and de-
signing allosteric inhibitors targeting various viral proteins of the HCV virus [4,13,14]. One
of the most targeted enzymes of HCV for allosteric drug discovery by researchers is the
NS5B-viral polymerase. Researchers focus on this enzyme for allosteric drug discovery
because it contains multiple allosteric sites that can be effectively targeted by various NNIs,
thereby enabling efficient attenuation of HCV infection.

The HCV virus’s NS5B RNA-dependent RNA polymerase has the same right-hand
topology and contains the palm, finger, and thumb domains/regions like those of the
other related viruses’ RdRp enzymes [15]. The NS5B enzyme of HCV has a thumb domain
(Thumb Site-I and II), a palm domain (Palm Site-I and II), and a finger domain. These
regions are highlighted and labeled one by one and can be viewed in Figure 1. The sub-
regions in the thumb domain and palm domain, which are named Thumb Site-I and II (TS-I
and II) and Palm Site-I and II (PS-I and II), respectively, are allosteric sites of the HCV NS5B
enzyme. These four allosteric sites have been targeted by various types of compounds for
allosteric inhibitors discovered against the HCV virus [4,13,14].

1.1. Heterocycles as HCV-NS5B Inhibitors

Heterocycles, especially nitrogen-containing compounds, have attracted considerable
attention due to their wide spectrum and important biological uses in the fields of medicines,
pharmacology, pharmaceutics, and pharmaceuticals. Heterocycles furans and benzofu-
ran [16], pyrazoles [17], thiophenes [18], oxadiazoles [19], 1,2,4-Amino-triazines [20], thia-
diazoles [21], imidazoles benzimidazoles, triazoles, pyridines, pyrimidines, benzoxazoles,
benzothiazoles [22,23], etc., constitute the integral part of most of the clinical drugs and ther-
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apeutics to treat various diseases such as antiviral, anti-cancer, anti-bacterial, anti-allergic,
anti-diabetic, analgesic, anti-histamine, anti-inflammatory, anti-tuberculosis, hemolytic,
anti-convulsant, thrombolytic, anti-neurodegenerative, anti-leprosy, anti-tumor, antifungal,
antipyretics, antihypertensive, dehydrogenase kinase inhibitor, herbicidal, etc. [16–23].
Heterocyclic structural hybrids of benzofurans, oxadiazoles, and triazoles display a wide
spectrum of biological activities against various pathogenic and lethal diseases, especially
the anti-HCV virus [24–26].
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main allosteric regions for allosteric drug discovery.

The four aforementioned allosteric sites in the HCV virus’s NS5B polymerase have
been previously explored by different pharmaceutical companies and independent re-
searchers in the quest for inhibitor discovery. Notably, William J. Watkins (2019) has
reported several heterocyclic scaffolds featuring inhibitory compounds, such as benzofuran
and indole scaffolds, that showed good inhibitory potencies against the NS5B of the HCV
virus. The first reported allosteric site in HCV NS5B was TS-I, and it was explored for drug
discovery by pharma companies such as Merck and Boehringer Ingelheim [27]. These com-
panies utilized benzimidazole scaffolds for the inhibition of the HCV-NS5B (TS-I) allosteric
site, which resulted in potent HCV inhibitors. Similarly, other pharma companies targeted
the TS-II allosteric site of the HCV NS5B enzyme: ViroPharma/Wyeth, Agouron/Pfizer,
GSK, and Gilead pursued designing allosteric drugs against the TS-II allosteric site [27].
They utilized benzamide, a thiophene-based scaffold, as well as other heterocycles like
pyrrole and pyrazole-based compounds for drug design against HCV NS5B [27]. These
efforts also yielded good allosteric inhibitors of the said target enzyme’s TS-II allosteric site.
Similar intensive efforts were also made against the allosteric palm site regions for drug
discovery against the NS5B of HCV [27].

Palm Site-I was explored by SmithKline Beecham, Anadys/Roche, and other compa-
nies, and they used different heterocycle-based compounds based on the benzothiadiazine
pyrazolone and phosphadiazine-based scaffolds against the PS-I and further modifications
and additions to these main scaffolds with other moieties like benzenesulfonamide, ben-
zothiazine, naphthalene, and quinolone improved their efficacy against the HCV NS5B.
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Palm Site-II (PS-II) is also a hotspot for allosteric drug discovery. Similar approaches were
used by pharma companies like ViroPharma/Wyeth, GSK, Merck, and Roche against the
Palm Site-II, and they heavily utilized the benzofuran core [27] and the incorporation
of substituents of diverse electronic effects on this benzofuran scaffold yielding potent
allosteric drugs that also proved valuable in clinical interventions against the HCV viral
infection. Some of the allosteric inhibitors developed against the HCV viral polymerase
NS5B that we discussed above are provided in Figure 2 [28–30].
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1.2. Rational Designed and SAR of Previously Reported Heterocycles

Previous SAR investigations of various inhibitors of Palm Site II have shown that this
allosteric site has significant conformational flexibility and that it can accommodate diverse
benzofuran-based compounds due to the plasticity/flexibility of this binding pocket [27].
The composition of this allosteric site, along with an inhibitor, Nesbuvir, is shown in
Figure 3. Several amino acids that make up this site have been reported to be important
for the binding of HCV NS5B inhibitors. These inhibitors interact with the allosteric
site through a variety of molecular contacts, which ultimately inhibit the activity of this
enzyme. Making molecular interactions with the SER365 and ARG200 allosteric residues
has been reported to be very important for the inhibitory activity of Nesbuvir and its other
benzofuran base derivatives, as these amino acid residues form key hydrogen bonding
interactions with benzofuran-based compounds, e.g., Nesbuvir. Similarly, key interactions
with CYS316 and CYS366 along with PHE193 of Nesbuvir further improve its inhibitory
potency, and SAR studies have shown that engaging or making molecular interactions with
these key Palm Site-II amino acids by an inhibitor is essential for inhibition and controlling
the activity of the NS5B enzyme of HCV [31,32].

1.3. In Silico Anti-HCV NS5B Inhibitory Work Flow via CADD Approach

Other than these potent anti-HCV inhibitory activities of the benzofuran-based com-
pounds, these benzofuran scaffolds have been reported to have a diverse set of activities
against different types of enzyme targets implicated in various diseases. Inspired by the
diverse bioactive profiles of benzofurans, oxadiazoles, and triazoles, we were interested in
evaluating previously synthesized benzofuran derivatives (benzofuran–oxadiazoles and
benzofuran–triazoles) [33,34] for their potential against the Hepatitis C virus via an in silico
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structure-based computer-aided drug design (CADD) approach to evaluate the affinities
and binding potential with the Palm Site-II (PS-II) of the HCV RdRp enzyme.
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The assessment of the therapeutic efficacy of synthesized benzofuran-1,3,4-oxadiazole
and 1,2,4-triazole scaffolds was carried out by applying the CADD approach, as depicted
in Figure 4.
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2. Materials and Methods
2.1. Chemistry of Benzofuran-1,3,4-Oxadiazoles BF1-7 and-1,2,4-Triazoles BF8-15

All the screened benzofuran–oxadiazole and triazole structural motifs BF1–15 were syn-
thesized and published [33,34], and their structural formulae are provided in Supplementary
Table S1.

2.2. Molecular Docking of Benzofuran-1,3,4-Oxadiazoles BF1-7 and-1,2,4-Triazoles BF8-15

The molecular docking computational research was carried out using the PDB struc-
ture of the target enzyme HCV NS5B, with PBD code 4TLR [35] downloaded from the RCSB
website. The Molecular Operating Environment (MOE) was used to carry out the molecular
docking analyses (Version 2009.10). The target enzyme’s protein structure was prepared
for docking investigations using the Biovia DS program [36]. ChemDraw Professional was
used to prepare the ligands’ structures, and then these ligands’ structures in (.mol) format
were imported into MOE, where the partial charges were incorporated into it, and the
compounds’ energies were minimized using the MMFF94x-ff. The protein structures were
loaded and 3D protonated in MOE, and the site-finder function was then used to determine
the allosteric pocket of the HCV NS5B enzyme [37]. The DOCK module of MOE software
and the triangle matcher approach, along with the London-dG scoring algorithms, were
selected to estimate the binding affinity of these compounds against the HCV NS5B enzyme.
Furthermore, the ligand–protein complexes’ interactions were analyzed and visualized
using the BIOVIA DS software.

2.3. ADMET and Drug-Likeness Studies of Benzofuran-1,3,4-Oxadiazoles BF1-7
and-1,2,4-Triazoles BF8-15

The drug-likeness, ADMET, and medicinal chemistry profiles of the compounds were
predicted using the ADMETlab2.0 online server [38].

2.4. MD Simulation of the Most Bioactive BF-9, BF-12 and BF-13 Derivatives

The simulation of docked complexes was accomplished using AMBER20 [39]. The
initial parameterization of docked systems was processed using the Antechamber program.
The force fields used to describe the HCV NS5B enzyme and compounds were FF14SB and
GAFF, respectively [40,41]. All the simulated complexes were submerged into a TIP3 solva-
tion box (padding distance of 12 Å). The systems were neutralized by adding counterions.
The Particle–Ewald summation method [42] was used to define long-range electrostatic
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interaction. The simulation was carried out in four phases: first, energy minimization via
two algorithms in a sequential manner (steepest descent and conjugate gradient), heating
to 310 K, followed by equilibration and a production run for 100 ns. In the production run,
constraints on bounded hydrogen atoms were accomplished using the SHAKE algorithm,
while the temperature was maintained by Langevin [43,44]. The simulation trajectories
were generated by employing NVE and NPT ensembles and setting the collision frequency
to 2. The simulation trajectories were investigated using the CPPTRAJ module [45], and
the plots were generated and analyzed in XMGRACE 5.1 [46].

2.5. MM-PBSA Binding Free Energy Calculations of the Most Bioactive BF-9, BF-12, and
BF-13 Derivatives

The estimation of binding free energy docked compounds with HCV NS5B was
carried out using the Molecular Mechanics Poisson–Boltzmann Surface Area (MM-PBSA)
and Molecular Mechanics Generalized Born Surface Area methods [47]. The initial files and
processing were carried out using the AMBER20 MMPBSA.py method [48]. The energy
calculation was carried out throughout the length of the simulation time, considering
1000 simulation frames. The binding free energy was estimated using Equation (1).

∆G net binding energy = Gprotein-ligand complex − (Gprotein + Gligand) (1)

2.6. DFT Studies of the Most Bioactive BF-9, BF-12, and BF-13 Derivatives

The DFT study of BF-9, BF-12, and BF-13 was performed using the Gaussian program,
as reported earlier [49,50]. The total energy, the highest occupied molecular orbital (HOMO)
energy, and the lowest unoccupied molecular orbital (LUMO) energy were obtained from
the Gaussian program, and the related energies were also calculated. Thereafter, the
calculated energies were interpreted accordingly.

3. Results and Discussion
3.1. Chemistry

The chemical structures of seven benzofuran-1,3,4-oxadiazoles BF1–BF7 and eight
benzofuran-1,2,4-triazoles BF8–BF15 have been provided in Supplementary Table S1.

3.2. Computational Biological Screening of Benzofuran-1,3,4-Oxadiazoles BF1–BF7
and-1,2,4-Triazoles BF8–BF15 Using CADD Approach

The in silico molecular docking investigation of these fifteen benzofuran-linked oxadi-
azole and triazole compounds was performed against the HCV RdRp important enzyme
to evaluate their binding affinities using the MOE software. The studies revealed that the
evaluated benzofuran compounds (benzofuran–oxadiazole hybrids) and the benzofuran–
triazole hybrids were able to show good affinities with the Palm Site-II of the HCV NS5B.
The synthesized benzofurans (BF1–BF15) showed significantly improved and comparable
binding affinities to the PS-II allosteric site of HCV NS5B compared to the standard in-
hibitor Nesbuvir, as determined by molecular docking studies, as shown in Supplementary
Table S1.

The binding affinity analysis of the standard inhibitor of HCV, Nesbuvir, with the NS5B
(PS-II) site, revealed that it bound to this site with a binding affinity of −15.42 Kcal/mol.
Compared to the Nesbuvir compound, only 3 out of the 15 reported benzofurans showed
comparable binding affinities with the target enzyme. The BF-9 benzofuran–oxadiazole hy-
brid compound containing morpholinyl structural moiety was able to show a significantly
higher binding affinity with the PS-II allosteric site of the HCV NS5B. It showed a binding
affinity of −16.09 Kcal/mol with the target enzyme, while the conformational analysis of
this compound with the PS-II site revealed that it occupied this allosteric pocket with a
stable conformation and had significant molecular interactions with the allosteric pocket
residues. It can be seen in Figure 5 that BF-9 interacts with the allosteric pocket residues
via conventional and carbon–hydrogen-type hydrogen bonds. CYS316 and SER368 can be
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seen in Figure 6, which shows the C-H type hydrogen bond with the phenyl ring and the
triazole ring’s nitrogen atom, respectively.
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The furan core and the morpholine moiety of the BF-9 also contributed to a hydrogen
bond by engaging the SER365 and the TYR415 allosteric pocket residues. The acetamide
scaffold’s oxygen atom, as well as the nitrogen atom of the morpholine moiety present in
this compound, were able to engage multiple residues via conventional hydrogen bonding.
The sulfur-containing thio group of BF-9 also interacted with the allosteric pocket via
sulfur-X and Pi-Sulfur interactions. Other non-covalent interactions, i.e., pi-sigma, pi-alkyl,
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van der Waals, etc., that further stabilize a compound inside a protein pocket were also
observed in the BF-9 and HCV NS5B enzyme complexes. These higher interactions and
affinity of BF-9 suggest its stability within the PS-II allosteric pocket of HCV NS5B. Its
conformational 2- and 3-dimensional poses are provided in Figure 5.
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Similarly, BF-12 (having a 4-fluorophenyl moiety attached to the acetamide scaffold)
was also able to show higher affinity with the HCV NS5B PS-II allosteric pocket than
Nesbuvir. The BF-12 structural motif showed a binding affinity of −15.75 Kcal/mol with
the HCV NS5B PS-II allosteric pocket; its binding conformation, which is provided in
Figure 5, shows that BF-12 binds with the PS-II pocket of HCV NS5B with a similar binding
pose to that of the BF-9 structural motif. The interaction analysis of BF-12 revealed that it
made conventional and carbon–hydrogen-type H-bonds with the CYS384, SER368, PRO197,
and TYR383 of the PS-II allosteric pocket. Similarly, the acetamide scaffold also showed
stronger conventional-type hydrogen bonding by interacting with the ARG200 and MET414
of the PS-II of the HCV NS5B enzyme. Other stabilizing interactions of different types that
were present in the BF9-NS5B complex were also present in the BF12-NS5B ligand enzyme
complex, while the fluorophenyl moiety of BF-12 along with the benzofuran core of BF-12
contributed and showed significantly higher molecular interactions with the PS-II allosteric
pocket, indicating higher affinity and stability inside the PS-II of the HCV NS5B enzyme.
Its conformational poses are presented in Figure 6.

Another compound, BF-13 (belonging to the benzofuran–triazole-based class of com-
pounds), showed higher affinities towards the HCV NS5B PS-II allosteric site. The scaffold
BF-13 showed an affinity of −15.82 Kcal/mol with the PS-II allosteric site of the HCV NS5B
enzyme and showed robust molecular interactions with the target enzyme allosteric site’s
pocket residues. Compound BF-13 showed a similar binding conformation as that observed
in the BF9-NS5B ligand–protein complex. The structural hybrid BF-13 showed diverse
types of molecular interactions with the PS-II allosteric site by engaging the allosteric pocket
residues via conventional as well as carbon–hydrogen-type hydrogen bonding interactions.
The acetamide, as well as the thio group, also showed good interactions with the allosteric
site residues. The benzofuran core, the triazole scaffold, and the dimethyl phenyl moiety
also contributed to various types of diverse molecular interactions with the target enzyme’s
(PS-II) allosteric site. Figure 7 shows the 2- and 3-dimensional conformations of BF-13 with
HCV NS5B.

Furthermore, compounds having different substituents studied against the HCV NS5B
PS-II allosteric domain showed considerable differences in affinity towards this target
enzyme. Notably, within these benzofuran compounds featuring nitrogen-based hetero-
cycles such as oxadiazole and triazole, there was a consistent pattern where compounds
containing a triazole moiety (benzofuran–triazoles) exhibited a considerably higher affinity
for the target enzyme compared to those with benzofuran–oxadiazoles.

The literature reveals that there are significant differences between an enzyme active
site, also known as the orthosteric site, and the allosteric sites present in it. It is reported
in the literature that the active/orthosteric site receptor amino acid residues tend to be
more polar, while the amino acid residues present in the allosteric site are hydrophobic in
nature [51–54]. These differences in the amino acid residues in the active site and allosteric
site affect the ligands/inhibitors/modulators that bind to these sites in an enzyme. Further
investigations showed that the compounds in the allosteric inhibitors/modulators that
target allosteric sites are more aromatic and more rigid as compared to those inhibitors that
target the active sites [55,56]. From these observations, we deduced that benzofuran com-
pounds having the triazole moiety substituted with an extra-phenyl (which increases their
hydrophobicity) increase their affinity with the target enzyme as opposed to benzofurans
with the corresponding oxadiazole moiety. The compounds that had the highest binding
affinities to the HCV NS5B PS-II allosteric site are listed in Table 1.
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Table 1. Binding affinities of the lead compounds and the Nesbuvir (standard) in the molecular
docking studies, along with the molecular interactions observed with the HCV NS5B Palm Site-II
allosteric residues.

Compounds

Binding
Affinities with

NS5B PS-II
(Kcal/mol)

Hydrogen Bonds
with PS-II Residues

Hydrophobic Interactions
with PS-II Residues

Other Interactions, e.g.,
Sulfur-X, Pi-Sulfur, and

Halogen Interactions with
PS-II Residues

BF-9 −16.09 CYS316, SER365,
CYS366,SER368, TYR415

LEU204, LEU 314,VAL321,
ILE363,SER365, CYS366,

LEU384

CYS316, CYS366, ARG200,
TYR555

BF-12 −15.75
CYS366, SER368,

LEU384,PRO197, LEU384,
TYR383, ARG200

VAL201,LEU314, VAL321,
CYS316, PRO417, HIS467,

CYS366, LEU384
HIS467, MET414,

BF-13 −15.82 CYS316, ARG200, SER368,

LEU204, LEU 314, VAL321,
ILE363, SER365, CYS366,

LEU384, TYR415 MET414,
PRO197, TYR448

CYS366, ARG200

Nesbuvir −15.42 CYS316, SER368, ASP319,
ARG200, LEU314

CYS366, SER365, LEU384,
PHE193, CYS316, LEU204,
VAL321, SER365, TYR448

MET414, CYS316

Moreover, previous literature investigations into the inhibitor discovery targeting Plam
Site-II of the HCV NS5B polymerase have shown some of the important pharmacophoric
features of Plam Site-II inhibitors. The reported inhibitors of this specific site mainly consist
of the benzofuran core scaffold (already discussed in the introduction section). SAR studies
on these benzofuran-based Palm Site-II inhibitors have shown the important receptor
residues of this site. Nesbuvir (HCV-796) has been shown to form important interactions
with certain residues of this site and is considered important to be engaged by inhibitors
targeting this site. Nesbuvir and its derivatives [31], along with BMS-929075, another
benzofuran Palm Site-II inhibitor [31,32], and other developed inhibitors bearing a fused
benzofuran scaffold [57], have been reported to have a similar interaction pattern with some
specific allosteric residues of the Palm Site-II. These inhibitors have been reported to engage
SER365 and ARG200 with key hydrogen bonding interactions; similarly, several changes
in the benzofuran side groups that were able to engage CYS316, CYS366, and PHE193
pocket residues have been reported to increase the potencies of these inhibitors against
the NS5B polymerase [31]. In comparison to these reported benzofuran-based inhibitors,
the compounds investigated here also showed diverse types of strong interactions with
the targeted allosteric site of NS5B polymerase. The benzofuran core of BF-9 can be seen
in Figure 5, engaging different allosteric pocket residues. Similarly, the triazole moiety
and the substituted phenyl on this ring can be seen making diverse interactions of both
hydrogen bonds as well as other hydrophobic interactions. The sulfur atom, along with the
acetamide moiety, can also be seen making significant and important interactions with the
receptor residues. These similar binding interaction patterns, along with the comparable
binding affinities of these compounds with previously reported inhibitors against the HCV
NS5B polymerase Palm Site-II, suggest that these compounds have a promising potential
for the development of new drugs to treat HCV infection. Further studies are needed to
confirm these findings and evaluate the efficacy and safety of these compounds in animal
models and humans.

3.3. Structure–Activity Relationship (SAR) of the Most Bioactive Benzofurans BF-9, BF-12,
and BF-13

We rationally evaluated a set of S-alkylated N-phenyl-based benzofuran–triazoles
and oxadiazoles by considering the incorporation of various moieties, functionalities, and
features found in well-established reference antiviral drugs, as illustrated in Figure 3.
The prevalent antiviral constituents in all the drugs featured in Figure 3, particularly the
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Nesbuvir reference drug, encompass oxygen-based heterocycles, nitrogenous heterocycles,
substituted phenyls, sulfur, and amide groups.

These assessed derivatives possess a core structure comprising a benzofuran, serving
as an oxygen-based heterocycle, in addition to oxadiazole and triazole functionalities as
nitrogenous heterocyclic components. They also incorporate sulfur, amide groups, and
substituted N-phenyl units within their framework. These structural features validate their
potential as chemotherapeutic agents against various viral targets.

In our study, the results obtained through molecular docking techniques revealed
that the presence of the polynitrogen triazole ring, sulfur and amide moieties, and the
N-phenyl ring in the structures of the most potent antiviral benzofurans (BF-9, BF-12,
and BF-13) exhibited significantly improved and comparable binding affinities compared
to the Nesbuvir standard drug. Notably, this improvement was particularly evident in
comparison to Nesbuvir, which lacks the triazole moiety, as depicted in Figure 8.
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3.4. ADMET and Drug-Likeness Investigations of the Most Bioactive Benzofurans BF-9, BF-12,
and BF-13

These compounds were further evaluated for their pharmacokinetics and drug-likeness
properties and showed favorable physicochemical properties and LogS, LogD, and LogP
scores. These compounds had optimal molecular weights and TPSA scores, along with
other physicochemical properties like the number of hydrogen bond acceptors and donors,
as well as the number of rings (nHA, nHB, and nRing) present in them that are necessary
for a bioactive compound. These compounds showed low to medium permeability in the
MDCK cells and showed optimal human intestinal absorptions (HIA), as predicted by
ADMETlab 2.0. All of the compounds showed good medicinal chemistry profiles and com-
pletely complied with Lipinski’s Rule and the Golden Triangle medicinal chemistry rules.

The toxicity studies showed that only the BF9 compound is not AMES toxic, and the
other two are AMES toxic. Moreover, these compounds have low rat oral toxicity along
with lower hepatotoxicity profiles. The acute toxicity rule and aquatic toxicity rule also
showed no alerts for these compounds. The predictive metabolism studies revealed that
some of these compounds are non-inhibitors of the CYP1A2, CYP2C9, and CYP2D6 and are
substrates of the CYP2C19 and CYP3A4 metabolic transformation enzymes. The excretion
prediction profiles of these compounds showed they show moderate to low clearance
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values (5–15 mL/min/kg) from the host excretory system. ADMET and drug-likeness
profile information for the top three compounds is provided in Table 2.

Table 2. ADMET, drug-likeness, and medicinal chemistry profiles of the lead compounds reported in
this study.

ADMET and Drug-Likeness Profile BF-9 BF-12 BF-13

LogS −4.022 −5.624 −5.157
LogD 2.544 3.786 4.019
TPSA 85.420 72.950 72.950
HIA +ive +ive +ive

AMES Toxic No Yes Yes
MDCK cells permeability Medium Low Low

Lipinski’s Rule Accepted Accepted Accepted
Golden Triangle Accepted Accepted Accepted
BBB penetration +ive +ive +ive

Acute Toxicity Rule 0-Alerts 0-Alerts 0-Alerts

3.5. MD Simulations of the Most Bioactive Benzofurans BF-9, BF-12, and BF-13

The molecular dynamics simulation assay was conducted to obtain valuable insights
into the enzyme–compound interaction profile and structural stability along the simulation
time. The impact of compounds on the enzyme’s conformational stability, root mean square
deviation (RMSD), was computed based on backbone carbon alpha atoms (Figure 9A). The
BF-13+NS5B complex showed more deviations compared to the other two (BF-12+NS5B
complex and BF-9+NS5B complex) until 125 ns. The RMSD of this system touches almost
4 angstroms at 75 ns. Initially, the system revealed an increasing RMSD pattern in the
first 30 ns phase, then gained some stability and was subjected to another round of high
deviation. After 125 ns, the RMSD can be seen to have consistent structural stability.
Similarly, the BF-12+NS5B complex and the BF-9+NS5B complex experienced structure
fluctuations until 125 ns but then equilibrated till the end. The residue level fluctuations
of HCV NS5B in the docked systems were revealed through root mean square fluctuation
(RMSF), as displayed in Figure 9B. The C-terminal residues were more flexible compared
to the rest of the enzyme structure. The majority of the enzyme residues are within a stable
range, and the presence of compounds does not influence enzyme conformation stability. In
the case of BF-9+NS5B, the RMSF values of the active site residues were Cys366 (1.12 Å) and
Tyr555 (1.14 Å). Similarly, BF-12+NS5B reported the following active site residues as the
most stable, with RMSF values of Arg200 (0.86 Å) and Met414 (0.67 Å). The RMSF values
of residues involved in BF-13+NS5B hydrogen bond interactions were Arg200 (0.97 Å)
and Cys316 (1.1 Å). Throughout the length of the simulation time, the intermolecular
interaction network of the complexes was found to be uniform, with no major deviations.
This can be inferred from the constant RMSD plots. Further, the number of hydrogen
bonds formed between the compounds and the enzyme was estimated using the VMD
H-Bonds plugin. It can be seen in Figure 9C that all complexes reported the formation of
several intermolecular hydrogen bonds along the length of simulation time, supporting
intermolecular conformational stability. The BF-12+NS5B complex, in particular, was
noticed to show a high number of intermolecular hydrogen bonds in the simulation time.
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3.6. MM-PBSA Investigations of the Most Bioactive Benzofurans BF-9, BF-12, and BF-13

The binding free energy calculation was carried out to obtain insights into the com-
pound’s binding potential with the receptor, both in bounded and unbounded states. In
the calculations as tabulated in Table 3, it can be noticed that all the compounds showed
robust atomic-level interaction energies with NS5B. The major dominance was seen in
gas-phase energy, which can be split into van der Waals energy and electrostatic energy.
The van der Waals component was observed to dominate the net energy contribution.
The electrostatic energy also played a significant role in the docked compounds’ stabi-
lization with the enzyme. This illustrates that the majority of the chemical regions of
the compounds are bridged to the enzyme-active residues through hydrophobic contacts.
The hydrophilic contacts supported the intermolecular interactions and stabilized the
binding mode of the compounds to the enzyme-active pocket. According to MM-GBSA
analysis, the net binding free energy of BF-9+NS5B complex, BF-12+NS5B complex, and
BF-13+NS5B complex is −77.33 Kcal/mol, −78.16 Kcal/mol, and −71.31 Kcal/mol, re-
spectively (Table 3). This shows that the BF-12+NS5B complex is the most stable system as
per the MM-GBSA calculation. The mean Van der Waals and electrostatic energies of this
system are −69.25 Kcal/mol and −28.09 Kcal/mol, respectively. The BF-9+NS5B complex
and the BF-12+NS5B complex showed strong intermolecular energies as per the MM-PBSA
method, with a binding energy of less than −75.40 Kcal/mol.

Table 3. MMPB/GBSA binding free energy calculation of the three ligand–protein complexes. All
values are in Kcal/mol.

Energy Parameter BF-9+NS5B Complex BF-12+NS5B Complex BF-13+NS5B Complex

MM-GBSA
Van der Waals −69.25 −70.06 −65.22
Electrostatic −28.09 −29.10 −25.97
Delta Ggas −97.34 −99.16 −91.19
Delta Gsolv 20.01 21.00 19.88
DeltaTotal −77.33 −78.16 −71.31

MM-PBSA
Van der Waals −69.25 −70.06 −65.22
Electrostatic −28.09 −29.10 −25.97
Delta Ggas −97.34 −99.16 −91.19
Delta Gsolv 22.00 23.77 20.11
DeltaTotal −75.34 −75.39 −71.08

3.7. Energy Decomposition Analysis

Further, the MM-GBSA net energy was decomposed into residue-wise energy in order
to highlight the residues that contributed significantly to the compounds binding with the
enzyme. The residues that have a binding energy score of <−1 Kcal/mol were tagged as
hotspot residues due to their good stability in the presence of ligands. The free energy
decomposition analysis results are provided in Table 4. According to the data, Arg200,
Cys366, and Met414 were the most contributing residues that strongly bridged the enzyme
to the compounds.

Table 4. Free energy decomposition analysis to highlight the most contributing residues that stabilize
the complexes.

Residues
Complex

BF-9 BF-12 BF-13

Arg200 −3.04 −4.20 −3.08
Arg386 −1.67 −1.08 −1.63
Asn369 −1.34 −1.05 −1.64
Asp319 −1.02 −1.11 −1.05
Cys316 −1.10 −1.64 −1.60
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Table 4. Cont.

Residues
Complex

BF-9 BF-12 BF-13

Cys316 −1.06 −1.00 −1.04
Cys366 −4.62 −3.10 −2.85
His467 −1.03 −1.05 −1.12
Leu384 −1.36 −1.14 −1.67
Met414 −3.2 −5.36 −3.36
Phe193 −1.36 −1.05 −1.67
Pro197 −1.10 −1.05 −1.87
Ser365 −1.05 −1.36 −1.45
Ser368 −1.05 −1.41 −1.36
Tyr415 −1.03 −1.01 −1.0
Tyr555 −2.68 −1.67 −1.39
Val370 −1.02 −1.09 −1.54

3.8. DFT Studies of the Most Bioactive Benzofurans BF-9, BF-12, and BF-13

The HOMO and LUMO energy values of BF-9, BF-12, and BF-13 that were obtained
from the DFT calculation were utilized to calculate the other related parameters. The
parameters computed and the formulas used are provided in Table 5 [58,59].

Table 5. The HOMO-LUMO and related energies of BF-9, BF-12, and BF-13 (in eV).

Parameters BF-9 BF-12 BF-13

Etotal −37,010.927 −38,200.867 −37,639.591
EHOMO −5.961 −6.008 −5.914
ELUMO −1.913 −1.686 −1.865

∆E 4.048 4.322 4.049
Ionization potential (IP = −EHOMO) 5.961 6.008 5.914

Electron affinity (A = −ELUMO) 1.913 1.686 1.865
Chemical potential (µ = −(I + A)/2) −3.937 −3.847 −3.890

Hardness (η = (I − A)/2) 2.024 2.161 2.025
Mulliken electronegativity (χ = (I + A)/2) [60] 3.937 3.847 3.890

Softness (S = 1/2η) 0.247 0.231 0.249
Electrophilicity index (ř= µ2/2η) [61] 3.828 3.419 3.768

Maximum charge transfer (∆Nmax = (I + A)/2(I − A)) [62] 0.973 0.890 0.960

The DFT study exhibited that a significant difference in the electrochemical properties
of the investigated compounds was not observed. Since these compounds are derivatives
of a core structure without major variation, the similarity of their electrochemical properties
was as expected. Together with this, the small difference in the parameters calculated
was analyzed in a way that would make sense to the findings. First, the relative electron
exchange capability of the three derivatives was evaluated by the HOMO and LUMO
energies. The HOMO energy value of BF-13 was the highest in the DFT study (Table 4).
Since HOMO is representative of the electron-donating capability of a compound, BF-13 is
expected to have the highest electron-donating tendency [63]. On the other hand, the LUMO
energy value of BF-12 was found to be the highest (Table 4). As LUMO is representative
of electron-accepting capability, BF-12 is anticipated to give electrons easily relative to the
other two derivatives [64]. The relative stability of compounds can be evaluated by using
their HOMO-LUMO energy gaps. A higher energy gap implies higher chemical stability
for compounds [65].

The DFT study results showed that BF-12 had the highest energy gap (Table 4). There-
fore, compound BF-12 is expected to possess the highest chemical stability. A lower energy
gap provides a higher ease of charge transfer and, thus, a higher chemical reactivity for
a compound. Therefore, BF-9 is expected to have the highest reactivity. Together with
this, the compounds produced similar energy gaps that would imply similar stability and
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reactivity for them (Table 5, Figure 10). On the other hand, the resistance of atoms to
electron transfer is represented by global hardness. In this study, BF-12 had the highest
global hardness value (Table 4). From these results, it is possible to infer that compound
BF-12 might have the highest chemical stability and the least reactivity [66].
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The HOMO-LUMO orbital orientations for compounds BF-9, BF-12, and BF-13 were
similar to each other (Figure 10). The HOMO orbitals of compounds BF-9 and BF-12 were
concentrated on benzofuran, triazole, and the functional group bridge. In addition to the
HOMO orbital concentrations of BF-9 and BF-12, compound BF-13 had similar orbitals
on the phenyl group substituted for the amine group, but the orbital density was sparse
here (Figure 10). The LUMO orbitals of BF-9, BF-12, and BF-13 were mainly concentrated
on the vicinities of benzofuran, triazole, and the phenyl substituted to the triazole ring.
Furthermore, sparse LUMO orbitals were observed around the sulfur atom. There was
a similarity between the DFT study results and the interactions detected via molecular
docking. In the DFT study, potential electron exchange vicinities were observed around
the benzofuran, triazole, the phenyl substituted to it, and the functional group bridge.
Similarly, various interactions were observed between the compounds and the enzyme in
these vicinities. The difference in the concentration of electron exchange potential areas and
interaction points was observed on the substituted phenyl ring next to the bridge functional
group. Though there was no orbital concentration on it, various interactions were observed
between the compounds and the enzyme (Figures 5–7 and Figure 10).
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4. Conclusions

In the present study, benzofuran-1,3,4-oxadiazole BF1–BF7 and benzofuran-1,2,4-
triazole compounds BF8–BF15 were virtually screened against HCV NS5B RdRp enzymes
via the CADD approach. In silico structure-based computer-aided drug design method-
ology was applied to evaluate the affinities and binding potential of benzofuran-1,3,4-
oxadiazole and 1,2,4-triazole BF1–BF15 hybrid structures. The benzofuran-1,2,4-triazoles
BF8–BF15 showed excellent and remarkably high affinities and binding scores (−14.11 to
−16.09 Kcal/mol) against the HCV NS5B enzyme in comparison to their sister benzofuran-
1,3,4-oxadiazole molecules (−12.63 to −14.04 Kcal/mol) as well as the Nesbuvir standard
reference drug due to the presence of a triazole ring. The highest binding affinity scores
were displayed by the benzofuran-1,2,4-triazole structural motifs BF-9 (−16.09 Kcal/mol),
BF-12 (−15.75 Kcal/mol), and BF-13 (−15.82 Kcal/mol) amongst all fifteen compounds
BF1–BF-15, as well as by Nesbuvir (−15.42 Kcal/mol). The molecular dynamics simula-
tions were conducted to obtain valuable insights about the enzyme–compound interaction
profile and structural stability, which indicated that the BF-9+NS5B complex and the
BF-12+NS5B complex showed strong intermolecular energies as per the MM-PBSA/MM-
GBSA method with a binding energy of less than −75.40 Kcal/mol, while the BF-12+NS5B
complex is the most stable system as per the MM-PBSA/MM-GBSA calculations. The
results of the MM-PBSA/MM-GBSA calculations reveal a significant enhancement in the
free binding affinity energies of the studied complexes when compared to the docking
energies. This implies a strong attraction between these compounds and the overall sta-
bility of the complexes. In particular, both the BF-9+NS5B complex and the BF-12+NS5B
complex demonstrate significant intermolecular interactions, with a binding energy below
−75.40 Kcal/mol. Among them, the BF-12+NS5B complex emerges as the most robust
system based on the calculations using MM-PBSA/MM-GBSA. These findings indicate
a high affinity of these compounds for the Palm Site-II binding pocket of the NS5B poly-
merase of HCV. The drug-likeness and ADMET studies of all the benzofuran-1,2,4-triazole
derivatives BF8–BF15 revealed that these compounds demonstrated promising medicinal
chemistry profiles in agreement with all evaluated parameters for being drugs. The molecu-
lar docking binding affinity score, MM-PBSA/MM-GBSA, MD-simulation stability analysis,
drug-likeness profiling, and ADMET assessment results indicated that N-4-fluorophenyl-S-
linked benzofuran-1,2,4-triazole BF-12 could be a promising future inhibitor of HCV NS5B
RdRp enzyme, which has therapeutic potential to be a leading drug candidate.
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65. Han, M.I.; Dengiz, C.; Doğan, D.; Gündüz, M.G.; Köprü, S.; Özkul, C. Isoquinolinedione-urea hybrids: Synthesis, antibacterial
evaluation, drug-likeness, molecular docking and DFT studies. J. Mol. Struct. 2022, 1252, 132007. [CrossRef]

66. Smith, R.D.; Lu, J.; Carlson, H.A. Are There Physicochemical Differences between Allosteric and Competitive Ligands? PLoS
Comput. Biol. 2017, 13, e1005813. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1093/nar/gkz958
https://doi.org/10.1016/j.csbj.2021.08.029
https://www.ncbi.nlm.nih.gov/pubmed/34426762
https://doi.org/10.1093/nar/gkv902
https://doi.org/10.1021/acs.jmedchem.7b01674
https://doi.org/10.1016/j.molstruc.2021.130413
https://www.ncbi.nlm.nih.gov/pubmed/33846658
https://doi.org/10.1016/j.bmcl.2018.01.029
https://doi.org/10.1002/slct.202204630
https://doi.org/10.1063/1.436185
https://doi.org/10.1021/cr040109f
https://www.ncbi.nlm.nih.gov/pubmed/16771443
https://doi.org/10.1016/S0031-8914(34)90011-2
https://doi.org/10.1080/07391102.2023.2169765
https://doi.org/10.1177/1747519820932091
https://doi.org/10.1021/jp021152e
https://doi.org/10.1016/j.molstruc.2021.132007
https://doi.org/10.1371/journal.pcbi.1005813
https://www.ncbi.nlm.nih.gov/pubmed/29125840

	Introduction 
	Heterocycles as HCV-NS5B Inhibitors 
	Rational Designed and SAR of Previously Reported Heterocycles 
	In Silico Anti-HCV NS5B Inhibitory Work Flow via CADD Approach 

	Materials and Methods 
	Chemistry of Benzofuran-1,3,4-Oxadiazoles BF1-7 and-1,2,4-Triazoles BF8-15 
	Molecular Docking of Benzofuran-1,3,4-Oxadiazoles BF1-7 and-1,2,4-Triazoles BF8-15 
	ADMET and Drug-Likeness Studies of Benzofuran-1,3,4-Oxadiazoles BF1-7 and-1,2,4-Triazoles BF8-15 
	MD Simulation of the Most Bioactive BF-9, BF-12 and BF-13 Derivatives 
	MM-PBSA Binding Free Energy Calculations of the Most Bioactive BF-9, BF-12, and BF-13 Derivatives 
	DFT Studies of the Most Bioactive BF-9, BF-12, and BF-13 Derivatives 

	Results and Discussion 
	Chemistry 
	Computational Biological Screening of Benzofuran-1,3,4-Oxadiazoles BF1–BF7 and-1,2,4-Triazoles BF8–BF15 Using CADD Approach 
	Structure–Activity Relationship (SAR) of the Most Bioactive Benzofurans BF-9, BF-12, and BF-13 
	ADMET and Drug-Likeness Investigations of the Most Bioactive Benzofurans BF-9, BF-12, and BF-13 
	MD Simulations of the Most Bioactive Benzofurans BF-9, BF-12, and BF-13 
	MM-PBSA Investigations of the Most Bioactive Benzofurans BF-9, BF-12, and BF-13 
	Energy Decomposition Analysis 
	DFT Studies of the Most Bioactive Benzofurans BF-9, BF-12, and BF-13 

	Conclusions 
	References

