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Abstract: This review summarizes the effectiveness of photodynamic therapy (PDT) in the treatment
of the pigmented subtype of basal cell carcinoma (BCC) based on the current literature. PDT is
a light-activated treatment, non-invasive, that selectively destroys tumor cells and tissues via the
interaction of a photosensitizer, light, and molecular oxygen. It can induce cancer cell death through
direct tumor vascular damage or via the induction of immune response. However, human skin
is also an absorption and scattering medium since it contains hemoglobin and melanin that act as
chromophores. Eumelanin can be considered a light-absorber and an intracellular antioxidant that
can neutralize PDT-induced ROS and, therefore, decrease PDT success. Various factors, including
tumor depth, the degree of pigmentation in malignant cells, and the individual’s skin phototype,
can impact the outcome of this intricate biochemical process. It has been widely recognized that
PDT exhibits limited efficacy in the treatment of pigmented lesions. However, new combination
techniques such as curettage or debulking before PDT show promising results in the treatment of
pigmented BCC.
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1. Introduction

Basal cell carcinoma (BCC) is the most frequent skin cancer, especially in the white skin
population, with the incidence rate still increasing worldwide [1]. The most common clinical
variants of BCC are nodular and superficial ones. Each of them may present pigmented
structures and, thus, become so-called pigmented BCC [2]. As BCC is characterized by a
slow progression, rare formation of distinct metastases, and low mortality rate, the most
challenging aspect of managing BCC remains the risk of local tumor recurrence. Although
surgery is considered the gold standard for invasive subtypes of BCCs, in the case of non-
invasive subtypes, many alternative treatment modalities have been introduced throughout
the years to limit the disfigurement risk [3]. These methods encompass cryotherapy,
curettage, electrodesiccation, topical drugs, and, last but not least, photodynamic therapy
(PDT) [4].

PDT is a light-activated treatment modality that is non-invasive and selectively de-
stroys cells and tissues via the interaction of a photosensitizer, light, and molecular oxygen.
The excited photosensitizer (PS), through an intersystem crossing process, can undergo
transformation into a long-lived excited triplet state and launch two kinds of photochemical
reactions with adjacent molecules. In the type I photochemical reaction, PS interacts directly
with cell membrane polyunsaturated fatty acids and forms organic radicals that generate
cytotoxic reactive oxygen species (ROS) and launch free radical chain reactions. The type
II photochemical reaction results in the formation of a powerful oxidizing agent, singlet
oxygen (1O2), via energy transfer to molecular oxygen [5]. In addition, recent studies
documented another important mode of PDT action that impedes mitochondrial electron
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flow, namely, tandem photocatalysis [6,7]. This process, alternatively to the more classic
type II photosensitization pathway, is useful within oxygen-depleted environments.

PDT acts through direct tumor death, vascular damage, and activation of the immune
response. First, it leads to direct photodestruction of malignant cells, then to ROS-generated
vascular damage, and finally enhanced (T-cell dependent) immunological recognition. Dif-
ferent cell death pathways that mediate the cytotoxicity of PDT may play a role including
necrosis, apoptosis, and autophagy. However, non-conventional cell death modalities
can also be induced by PDT, such as mitotic catastrophe, paraptosis, pyroptosis, and
parthanatos, as well as forms of regulated necrosis such as necroptosis, and ferroptosis
(Figure 1) [8,9]. The balance of these cell death mechanisms is driven largely by the sub-
cellular localization inherent to a specific photosensitizer and its incubation conditions,
as well as the light dose. Therefore, new compounds and innovative methods are still
being researched to improve PDT outcomes, especially, to successfully treat deeper le-
sions. Several PDT modifications have been reported including repeated procedures, new
lipophilic compounds, third-generation PS, debulking, laser-assist, and others [10]. How-
ever, melanin, which is a natural pigment in the skin, is a known factor decreasing PDT
efficacy independently of tumor thickness [11,12]. Interestingly, data aiming to counter
the pigmentation in pigmented basal cell carcinoma (pBCC) PDT treatment procedures
are limited. Therefore, we have performed a literature review to summarize the current
knowledge on the effectiveness of PDT in the treatment of the pigmented subtype of BCC.
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Figure 1. Schematic illustration of photodynamic reactions (type I, type II, and photocatalysis)
and cell death pathways in the process of photodynamic therapy (PDT—photodynamic therapy;
PS—photosensitizer; eT—electron transfer; SET—single electron transfer; 1O2—singlet excited state;
3O2—triplet excited state). The Figure was partly generated using Servier Medical Art, provided by
Servier, licensed under a Creative Commons Attribution 3.0 unported license.

2. Melanin in Photodynamic Therapy

The basal layer of the epidermis contains melanocytes (MCs). These cells are responsi-
ble for skin pigmentation and protection against UV radiation via melanin formation [13].
Melanin is enzymatically synthesized at approximately 10-nm granular sites that stud
the internal walls of organelles known as melanosomes. Melanosomes may contain a
variable amount of melanin, i.e., cutaneous melanosomes may contain 1/4th to 1/10th of
the melanin concentration of the melanosomes found in the retinal pigmented epithelium.

2.1. Melanin as a Light-Absorber

From an optical point of view, human skin is an absorption and scattering medium
since it contains hemoglobin (oxygenated and deoxygenated) and melanin which can be
considered as chromophores that show distinctive optical absorption properties within the
visible wavelength range [14].
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The average epidermal absorption coefficient (µa) depends on both the melanosomal
µa (1.7 × 1012 nm–3.48 [cm−1] for skin, where nm equals the wavelength in nm) and the
volume fraction (fv) of melanosomes within the epidermis. Fv varies depending on the
skin color from 1% in pale skin to 5% in darker skin [15]. Some authors, on the other hand,
claimed that fv for light-skinned Caucasians equals 1–3%, for well-tanned Caucasians and
Mediterraneans 11–16%, and for darkly pigmented Africans 18–43% [16].

According to Shimojo et al., both µa ethnic differences and reduced scattering coeffi-
cients (µ’s) have a limited effect on the depth of the PDT treatment. At the same time, the
differences present in energy deposition (S) can cause great variances in the production
of heat in Asian, Caucasian, and African epidermises. The difference in the values of the
µa in different skin types affects the S of the epidermis. At 700 nm, the epidermal layer
is characterized by the maximum S. In Caucasian skin tissue, S is two times lower than
that in Asian and four times lower than that in African skin tissue [17]. Moreover, the µa
of sun-protected skin is generally lower than that of sun-exposed areas within each skin
type group in the wavelength range from 500 to 900 nm. Furthermore, the µa spectra of
sun-exposed skin type V-VI have a greater slope in the 600–800 nm wavelength region
compared to the skin types I-II and III-IV. The average µ′s of the skin type V-VI group is
1–10% higher than those of the skin type I-II and III-IV groups. This phenomenon may be
due to the fact that the density of scatterers in the skin, such as melanin, is higher in the
skin type V-VI group than in skin type I-II and III-IV groups [18].

Photosensitizers used for PDT to treat dermatologic conditions, such as 5-aminolevulinic
acid (5-ALA) and its methyl ester (methyl aminolevulinate—MAL), are mainly metabolized
into protoporphyrin IX (PpIX), which has five absorption wavelength peaks: 410 nm, 510 nm,
545 nm, 580 nm, and 630 nm [19]. Red light (630–700 nm), most commonly used in PDT, is
known to have the deepest penetration depth, however, the presence of melanin in a stable
protein complex with a wide absorption spectrum in the same tissue, competes with PS for
photons resulting in inefficient phototoxicity. However, in the typical skin melanin absorption
spectrum, only a small peak exists beyond the 650 nm wavelength. Generally, the absorbance
values of melanin rise gradually from 750 nm to 600 nm, then moderately from 600 nm to
450 nm, and finally rise sharply from 450 nm to a broad peak at 335 nm [20–22]. Therefore,
in recent years, highly active PS absorbing or primed in the near-infrared spectral region
(700–900 nm) that might allow the use of PDT even in highly pigmented lesions is being
developed [23–25].

2.2. Melanin as an Intracellular Antioxidant

Melanins are pigments of high molecular weight formed by oxidative polymerization
of phenolic or indolic compounds [26]. Melanin formation starts with the oxidation of
tyrosine to dopaquinone. Later, dopaquinone can either undergo cyclization leading, after
a further oxidation (to 5,6-dihydroxyindole (DHI) or 5,6-dihydroxyindole-2-carboxylic acid
(DHICA)) and polymerization, to the creation of melanin pigments brown or dark in color,
known as eumelanins. On the other hand, dopaquinone can become entrapped by cysteine
(creating benzothiazine (BT) intermediates and benzothiazole (BZ)) and polymerize to syn-
thesize the reddish-brown pigments known as pheomelanins [27]. The human epidermis
comprises approximately 76% of eumelanin and 24% pheomelanin (including the 4 moieties
ratio: DHI 35%, DHICA 41%, BZ 20%, and BT 4%), regardless of the degree of pigmenta-
tion (Figure 2). However, lighter skin phototypes possess low content of photoprotective
eumelanin thereby explaining the higher sensitivity toward UV exposure [28,29].
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Figure 2. Schematic illustration of melanocyte structure and melanin granule content of the
human epidermis; DHI—5,6-dihydroxyindole; DHICA—5,6-dihydroxyindole-2-carboxylic acid;
BT—benzothiazine; BZ—benzothiazole. The Figure was partly generated using Servier Medical Art,
provided by Servier, licensed under a Creative Commons Attribution 3.0 unported license.

Eumelanin can be considered an intracellular antioxidant that can neutralize PDT-
induced ROS and decrease PDT success [30]. DHICA-melanin possesses higher antioxidant
activity when compared to DHI-melanin. This phenomenon is attributed to its poorly
aggregated structure [27,31]. It can act as an efficient antioxidant and hydroxyl radical
scavenger, as well as an inhibitor of lipid peroxidation, and can protect the tissue against
hydrogen peroxide-induced cytotoxicity via activation of the Nrf-2 pathway [32–37]. Con-
trarily, pheomelanin exerts photosensitizing characteristics and leads to the UV-induced
production of ROS [38]. In the study by Tanaka et al. on UVA-exposed pheomelanin, BT
and BZ monomers showed similar pro-oxidant activities. However, the effects of ROS
scavengers exhibited a large difference where BZ monomers were more reactive than BT
monomers. Probably, the redox reactions in BZ monomers may proceed via singlet oxygen
and in BT monomers via superoxide anions [39,40].

Lawrence et al. demonstrated that wavelengths of 385–405 nm can cause dark cyclobu-
tane pyrimidine dimer (CPD) formation and, therefore, lead to significant damage, both
in vitro and in vivo. This phenomenon is likely caused by oxidative stress generated by
chromophores in the skin that absorb strongly in this region, such as melanins, PpIX, and
β-carotene [41]. CPDs are the most frequent DNA changes responsible for ultraviolet (UV)
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carcinogenesis [42–44]. PDT-induced ROS, however, does not lead to CPD generation in
melanin-containing cells [45]. PDT locally generates the intracellular ROS dependent on
photosensitizer localization, whereas, in UVA radiation, ROS is generated throughout the
whole cell [46]. Additionally, UVA-ROS-induced CPD requires nuclear melanin, while PDT
does not result in the formation of melanin monomers and nuclear transport [47].

PDT is known to exert a whitening effect in vitro and in vivo by reducing melanin
content and tyrosinase activity [48]. Melanogenesis can also be inhibited via a paracrine
effect when melanocytes are exposed to PDT-treated keratinocytes or dermal fibroblasts.
This is likely due to a decreased release of Kit ligand and hepatocyte growth factor which
are melanocyte-stimulating cytokines [49]. Furthermore, PDT reduces mottled hyperpig-
mentation of photoaged patient skin [50,51]. However, some authors found that in heavily
pigmented lesions, an increase in the amount of melanin can be observed. This is probably
due to the auto-oxidation of melanin precursors present in the lesions via free radicals and
de novo synthesis of melanin triggered by PDT. Nevertheless, the increase in melanogen-
esis does not protect against the PDT-induced DNA and cytoskeleton damage [52]. The
hyperpigmentation induced by PDT is more pronounced in skin types III and above [53].

3. Photodynamic Therapy in Pigmented Basal Cell Carcinoma

The literature search followed PRISMA guidelines for systematic reviews [54] and the
Cochrane manual [55]. Sources included the PubMed (MEDLINE) and Scopus databases.
The initial search was complemented by a manual search of reference lists from retrieved
articles. The following search strategy was used: (photodynamic therapy) OR (PDT) AND
(basal cell) OR (bcc) AND (melanin) OR (pigment). The search yielded 482 results. Where
relevant, articles were read in full, and then the decision about the inclusion of an article
was made. A total of 473 references were not relevant to the scope of the review because
they did not entail cases of BCCs treated with PDT or did not refer to pigmented variants
of BCC. A total of nine studies met the final inclusion eligibility and were included in
the review.

Characteristics of pigmented BCC lesions treated with PDT are summarized in Table 1.

3.1. PDT in pBCC without Prior Debulking

In 2005, Kaviani et al. treated 30 cases of BCC, 18 of them pigmented, with PDT.
They observed that the pBCCs response rate to a single PDT session was significantly
lower than the other subtypes, as it was equal to 14% while it was 100%, 90%, and 62% for
ulcerative, nodular, and superficial BCCs, respectively. They suggested that the pigment
within the pBCCs may prevent adequate light absorption, hindering the PDT effect in those
lesions [56].

Ramirez et al. treated sixteen pBCC lesions with MAL-PDT in two treatment ses-
sions [57]. They obtained a complete response in 50% of treated lesions and a partial
response in another 50% of the cases. Ramirez et al. observed that the pigmented region of
the BCC absorbs both excitation as well as fluorescence emission from PpIX. According
to Ramirez et al., these absorbing regions created a shielding effect during irradiation,
reducing the light dosage to the lesion and resulting in a lack of PDT response at the
tumor’s deep margin. They suggested that similar to nodular BCCs, pBCCs might benefit
from prior curettage and/or debulking. The success of this procedure might, however, be
greatly dependent on the skills of the physician performing the procedure [57].

In a case report by Lin et al., the success of the sequential use of etretinate and PDT
in treating two keratotic, pigmented nodular BCCs was described [58]. A 2-month course
of oral etretinate at a dose of 0.5 mg/kg per day was used to decrease superficial scaling.
A double PDT was performed on days 0, 3, and 5 with the use of a 2% ALA solution for
16 h before irradiation. These authors were the first ones who used the double irradiation
PDT scheme, which was dictated by the fact that the red fluorescence of PpIX initially
disappeared after the first PDT irradiation but reappeared 90 min later. It implied a new
synthesis of PpIX by deeper, still viable tumor cells [58].
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Table 1. Characteristics of pigmented basal cell carcinoma lesions treated with photodynamic therapy.

Study Patient
Number Sex/Age Lesion Number Tumor

Localisation Tumor Subtype PS Number of PDT
Sessions

Light Dose per
PDT Session Debulking/Curettage Light Length Response Rate

Kaviani et al.
(2004); [56]

1 M/47 1–7

cheek 1
8vertex 2
8nose 3

8glabella 1

NS PHD 1 200 J/cm2 no 632 nm no response

2 M/65

1–9

frontal 1
8temporal 2

8vertex 1
8neck 1

8occipital 2
8parietal 2

NS PHD 1 100 J/cm2 no 632 nm no response

10 retro-auricular NS PHD 1 100 J/cm2 no 632 nm partial response
(40–74%)

Ramirez et al.
(2014); [57] NS NS 1–16 NS NS MAL 20% 2 150 J/cm2

yes (surface
debridement (in
sBCC, curettage

without local
anesthesia for nBCC)

630 ± 10 nm

complete response in
50% and partial

response in another
50% of the cases

Lin et al.
(2009); [58] 4 F/68 1–2 scalp Nodular 2% ALA

solution 3 120 J/cm2
2-month course of
oral etretinate 0.5

mg⁄kg per day
630 ± 40 nm complete response

Souza et al.
(2007); [59] 5 F/75

1 scalp nodular-
ulcerative PHD 1 300 J/cm2 curettage 630 nm complete response *

2 temporal superficial PHD 1 300 J/cm2 no 630 nm partial response

Itoh et al.
(2000); [60]

6 F/60 1 right inner
canthus nodular

10% ALA
instillation plus

20% ALA
emulsion

3 100–500 J/cm2
electro-curettage of
pigmentation under

local anesthesia
630 nm complete response

7 M/75 1 nose superficial

10% ALA
instillation plus

20% ALA
emulsion

3 100–500 J/cm2
electro-curettage of
pigmentation under

local anesthesia
630 nm compete response

8 F/71 1 right lower
eyelid nodular

10% ALA
instillation plus

20% ALA
emulsion

3 100–500 J/cm2
electro-curettage of
pigmentation under

local anesthesia
630 nm complete response

9 F/79 1 head superficial

10% ALA
instillation plus

20% ALA
emulsion

5 100–500 J/cm2
electro-curettage of
pigmentation under

local anesthesia
630 nm compete response

10 M/65 1 right nasolabial
fold nodular

10% ALA
instillation plus

20% ALA
emulsion

4 100–500 J/cm2
electro-curettage of
pigmentation under

local anesthesia
630 nm complete response
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Table 1. Cont.

Study Patient
Number Sex/Age Lesion Number Tumor

Localisation Tumor Subtype PS Number of PDT
Sessions

Light Dose per
PDT Session Debulking/Curettage Light Length Response Rate

Itoh et al.
(2000); [60]

11 F/56 1 nose ulcerative

10% ALA
instillation plus

20% ALA
emulsion

3 100–500 J/cm2
electro-curettage of
pigmentation under

local anesthesia
630 nm compete response

12 F/78 1 head nodular

10% ALA
instillation plus

20% ALA
emulsion

3 100–500 J/cm2
electro-curettage of
pigmentation under

local anesthesia
630 nm complete response

13 M/76 1 right lower
eyelid nodular

10% ALA
instillation plus

20% ALA
emulsion

3 100–500 J/cm2
electro-curettage of
pigmentation under

local anesthesia
630 nm partial response

14 M/77 1 right upper
eyelid nodular

10% ALA
instillation plus

20% ALA
emulsion

4 100–500 J/cm2
electro-curettage of
pigmentation under

local anesthesia
630 nm no response

15 M/73 1 left ala nasi nodular

10% ALA
instillation plus

20% ALA
emulsion

3 100–500 J/cm2
electro-curettage of
pigmentation under

local anesthesia
630 nm complete response

16 M/69 1 left auricle ulcerative

10% ALA
instillation plus

20% ALA
emulsion

5 100–500 J/cm2
electro-curettage of
pigmentation under

local anesthesia
630 nm complete response

Ramirez et al.
(2014); [57]

17 F/76

1 left auricle nodular

10% ALA
instillation plus

20% ALA
emulsion

4 100–500 J/cm2
electro-curettage of
pigmentation under

local anesthesia
630 nm complete response

2 left auricle nodular

10% ALA
instillation plus

20% ALA
emulsion

3 100–500 J/cm2
electro-curettage of
pigmentation under

local anesthesia
630 nm complete response

18 F/64 1 nose tip nodular

10% ALA
instillation plus

20% ALA
emulsion

4 100–500 J/cm2
electro-curettage of
pigmentation under

local anesthesia
630 nm complete response

19 M/85 1 nose ulcerative

10% ALA
instillation plus

20% ALA
emulsion

3 100–500 J/cm2
electro-curettage of
pigmentation under

local anesthesia
630 nm complete response
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Table 1. Cont.

Study Patient
Number Sex/Age Lesion Number Tumor

Localisation Tumor Subtype PS Number of PDT
Sessions

Light Dose per
PDT Session Debulking/Curettage Light Length Response Rate

Ramirez et al.
(2014); [57] 20 M/65 1 left ala nasi nodular

10% ALA
instillation plus

20% ALA
emulsion

3 100–500 J/cm2
electro-curettage of
pigmentation under

local anesthesia
630 nm complete response

Garcia-Cazana
et al. (2017) #;

[61]
# 21–41

# 12M and
9F aged
40–100
(mean
73.05)

# 1–21

# Nose 1 Cheek
1 Forehead 2

Scalp 5
8Ear 3

8Neck 2
8Back 2
8Chest 5

NS 16% MAL 2–3 37 J/cm2
curettage with local

anesthesia when
deeper pigmentation

630 nm
complete response in

76.2% of treated
lesions

Pereyra-
Rodriguez et al.

(2009); [62]

42 F/79 1–2 temporal
Nodular
diffusely

pigmented
16% MAL 2 37 J/cm2 blade debulking 630 nm complete response

3 F/71 3–4 frontal 1
8cheek 1

Superficial
partially

pigmented
16% MAL 2 37 J/cm2 debridement 630 nm complete response

4 F/79 5 cheek
Nodular
partially

pigmented
16% MAL 2 37 J/cm2 blade debulking 630 nm complete response

Salvio et al.
(2021); [63]

43 F/56 1–13 upper limb 8
8trunk 6 Nodular 20% MAL 2 150 J/cm2 blade debulking 630 nm complete response

6 F/56 14–20 trunk Superficial 20% MAL 2 150 J/cm2 blade debulking 630 nm complete response

44 F/52 1–11 upper limb 8
8trunk 3 Nodular 20% MAL 2 150 J/cm2 blade debulking 630 nm complete response

Sung et al.
(2017); [64]

45 F/80 1 thigh Superficial 16% MAL 3 37 J/cm2 fractional CO2 laser 630 nm complete resolution

46 M/59 1 back Superficial 16% MAL 4 37 J/cm2 fractional CO2 laser 630 nm complete resolution

47 M/66 1 shoulder Superficial 16% MAL 5 37 J/cm2 fractional CO2 laser 630 nm complete resolution

Abbreviations: ALA—aminolevulinic acid; MAL—methyl aminolevulinate; NS—not specified; PHD—purified hematoporphyrin derivatives; PS—photosensitizer. * After the second
session with ALA-PDT, # a study by Garcia-Cazana et al. [61] had no individual lesion/patient information, data included in this Table refers to the whole study population [62].
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3.2. PDT in pBCC with Prior Debulking/Curettage

In 2007, Souza et al. treated eighteen lesions in six patients with purified hematopor-
phyrin derivatives (PHD)-PDT. Two of those 18 lesions were pigmented (one superficial
and one nodular subtype). Twelve lesions were treated with PDT alone, while six nodular
lesions were selected for prior debulking. The nodular lesion presented with complete
response (only superficial pigmentation along the scar border), while the superficial lesion
presented with partial response to the treatment. Therefore, the procedure of prior curettage
of primary BCC may help to increase the cure rate by either reducing the tumor mass prior
to implementation of intravenous PS or improving the transdermal penetration of topical
PDT agents [59].

The Japanese group, led by Itoh, treated sixteen pBCCs (eleven nodular, two superficial,
and three ulcerative) located in the head and neck area [60]. The PDT procedure was
preceded by electro-curettage under local anesthesia. This resulted in the removal of visible
pigmentation (either partially or completely) and reduced the tumor volume. Immediately
after electro-curettage, ALA-PDT was performed. This procedure was carried out at two
or three-week intervals three or more times (curettage was stopped when the lesion’s
pigmentation became visibly undetectable). In total, fourteen out of sixteen pBCCs showed
complete response (two nodular BCCs showing partial or no response were excised).
No recurrences were seen up to 6 months after treatment. The additional benefit of the
combination of electro-curettage with ALA-PDT was a smaller post-surgery scar compared
to standard surgical procedures such as Mohs micrographic surgery [60]. These authors
also mentioned that in their previous attempts they tried, with little result, bleaching the
pigmentation in a pBCC using a normal-mode ruby laser and Q-switch YAG laser with
high power [60].

A Spanish group led by Garcia-Cazana presented a response rate in pBCCs treated
with PDT of 76.19% [61]. These results were almost identical to nodular BCCs (76.8%), for
which PDT is indicated. However, at the same time, the recurrence rate was established
at about 19%. They treated 25 lesions (66.7% in head and neck area) with MAL-PDT. The
session was preceded by curettage debulking, up to the point where the macroscopic
pigment was completely removed [61].

Pereyra-Rodrizguez et al. [62] presented a case in which five pigmented facial BCCs
(three superficial and two nodular) were treated in the same patient with a standard
regimen of MAL-PDT on day 0 and 7 days after the initial procedure. Superficial lesions
were scraped to increase penetration of the PS, whereas nodular lesions were shaved over
the tumor margins. All lesions achieved a 100% response, and there were no recurrences at
the 12-month follow-up [62].

In 2021, Salvio et al. published an article regarding the long-term follow-up among
patients with multiple pBCCs [63]. This study included two patients with a total of thirty
lesions. The pBCC lesions were debulked (removal of the entire tissue above the skin level
with a blade), and then a standard MAL-PDT procedure was performed. Immediately after
the first illumination, the whole procedure was repeated. However, this time the MAL
incubation period was shortened to 90 min. All treated lesions showed a histologically
confirmed complete response 30 days after treatment. The clinical follow-up showed no
recurrence for all lesions with a mean follow-up time of 24 months. They summarized that
as the visible pigmented area was removed, the remaining microscopic pigment probably
did not affect the efficacy of PDT [63].

3.3. PDT in pBCC with Prior Fractional CO2 Laser

Sung et al. ablated the epidermis of three histologically confirmed pBCCs using a
fractional CO2 laser (tip size of 120 µm, peak power of 30 W, pulse energy of 50 mJ, and
200 spots/cm2) [64]. Next, a 16% MAL-PDT was performed with a shortened incubation
time (90 min), a light wavelength of 630 nm, and a light dose of 37 J/cm2. Treatment
was repeated in four-week intervals until it was no longer palpable and no pigmentation
could be observed. All patients achieved complete resolution of pBCCs in an average of
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four treatment sessions. Interestingly, despite the full-thickness ablation of the epidermis
before PDT, they noted no scar formation. Therefore, PDT may have affected the healing
process of the ablated tissue [64].

4. Other Photodynamic Therapy Resistance Factors of Basal Cell Carcinomas

PpIX formation in human skin declines in an age-dependent manner. Nissen et al.
found that MAL induced a higher PpIX fluorescence in nondysplastic young skin than
in the dysplastic skin of elderly patients [65], a surprising phenomenon because MAL is
believed to have a higher affinity for dysplastic lesions [66]. Due to the more lipophilic
structure, MAL is believed to have an enhanced penetration through the stratum corneum
compared to ALA. However, new nanoformulations of ALA induce more PpIX formation
than MAL, suggesting its superior transdermal delivery [65].

In 2017, Garcia-Cazana et al. reported that BCC response to MAL-PDT was indepen-
dent of age, sex, and both the size and location of the tumor. Although the difference
was not statistically significant, the mean age of non-responders was higher, probably due
to the age-associated decline in PpIX formation in human skin [61]. In 2019, the same
group decided to identify potential biomarkers of BCC responses to MAL-PDT. To this
end, they analyzed skin samples from patients with BCC treated with MAL-PDT and also
studied the effects of MAL-PDT in two representative BCC murine cell lines. The mean
age of non-responders was higher (74.36 years) than in responders (69.22 years) (p = 0.007).
The authors found that higher response rates were observed in superficial BCCs when
compared with nodular BCCs (87.5% vs. 74.5%; p = 0.487). The poorest response rate was
seen in BCCs located on the nose (62.7%), while the best response rate was for tumors
located on the trunk (94.7%) (p = 0.003). Moreover, the cure rate was higher for lighter
versus darker phototypes (89.1% vs. 66.7%; p = 0.034). Of the histological variables, only
peritumoral inflammatory infiltrate determined a higher response rate (85.7%; p = 0.032).
Immunohistochemical variables with a statistically significant association with the response
to MAL-PDT were positive p53 immunostaining (observed in 84.6% of responders but only
15.4% of non-responders; p = 0.011) and β-catenin immunostaining (moderate or intense
expression in 84.6% of responders and in 33.3% of non-responders; p = 0.096) with patterns
of peripheral reinforcement of basaloid islands [67].

Dermoscopy is a tool helpful in predicting response to therapy or assisting the tumor
response to different treatments [68]. It can also help identify structures associated with
BCCs’ lower response to MAL-PDT. They, as expected, encompass superficial pigmented
structures located at the both dermal-epidermal junction as well as the superficial papil-
lary dermis (“spoke wheels”, “concentric structures”, “leaf-like areas”) as well as deeper
pigment structures (blue globules, blue “ovoid nests”) [69].

5. Future Perspectives

The laser-assisted PDT has gained more interest in recent years. Ablative laser pre-
treatment disrupts the stratum corneum and on its own adds a therapeutic effect. Several
preclinical studies showed that pretreatment with a laser facilitated the accumulation of
topical drug formulations, as well as reduced photosensitizer incubation time [70,71]. In
the article by Genouw et al., 12 months after treatment, a 100% efficacy was achieved for
superficial BCCs in a group treated with a continuous CO2 laser plus PDT or fractional
CO2 laser plus PDT [72]. However, only one case series in pBCCs was performed by using
this method [64]. Thus, further studies are definitely needed.

Currently used photosensitizers (5-ALA, MAL) are characterized by limited skin pen-
etration and inferior luminescence. Therefore, new delivery systems such as microvehicles,
nanoparticles, nanoliposomes, and micelles are developed with promising results even in
malignant melanoma [73,74]. Similar studies are needed to enhance the PDT treatment
efficacy in PBC.

Moreover, as we enter the era of personalized medicine, research should focus on
factors contributing to patient resistance to treatment. This would allow physicians to tailor
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a specific treatment mode to an individual patient and make them benefit to the fullest
from the proposed therapy.

A summary of factors influencing PDT success in pBCC is presented in Figure 3.
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6. Conclusions

Taking the above-mentioned facts into consideration, the PDT effect should be more
prominent in patients with fair skin and on sun-protected, thin epidermis. Melanin con-
tent could be the main driver for decision-making processes. Moreover, a light length
of 635 nm, mostly used in PDT, is characterized by a small melanin absorption, which
should not pose a significant problem for the treatment effects. Despite the fact that PDT
is thought to increase melanogenesis, it does not protect target lesions from DNA and
cytoskeleton damage, probably through the keratinocyte paracrine effect. A combination
of tumor debulking by either electro-curettage, standard scalpel removal, or laser ablation,
increases the success rates of ongoing pBCC therapy. Likewise, procedures using double
irradiation in one sitting or repeated techniques (1 or 2 weeks apart), are characterized
by higher complete response rates. However, face lesions, especially eyelids, might not
be good candidates for PDT, as they achieved the lowest treatment response. Patients
with higher phototypes might require higher total light doses and repeated procedures.
Dermoscopy is a helpful tool in predicting the tumor response to undergoing treatment. It
can also assist BCC debulking techniques by identifying features characteristic of persistent
pigment structures.

Nevertheless, there is a need for better-quality studies regarding the use of PDT in
pBCCs. Future research should compare existing protocols in a randomized, blinded
fashion. Moreover, it should include clinical and/or dermoscopic features that enable
classification of the lesions as pigmented ones (by describing specific structures and sub-
types) as well as determining the degree of pigmentation. For each lesion, Fitzpatrick
skin phototype should be mentioned to assess skin type influence on overall treatment
response. Unfortunately, to date, there are no studies that have assessed the response rate
to PDT in different Fitzpatrick skin phototypes. New non-invasive diagnostic tools (such
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as skin ultrasound, confocal microscopy, or optical coherence tomography) can be used to
better assess tumor depth and find features predictive of treatment failure or success. The
development and use of new PS that specifically target pBCC cells, together with studies
regarding patient-specific treatment resistance factors, should be prompted.
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