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Abstract: Autism spectrum disorder (ASD) prevalence is emerging with an unclear etiology, hindering
effective therapeutic interventions. Recent studies suggest potential renin–angiotensin system (RAS)
alterations in different neurological pathologies. However, its implications in ASD are unexplored.
This research fulfills the critical gap by investigating dual arms of RAS and their interplay with
Notch signaling in ASD, using a valproic acid (VPA) model and assessing astaxanthin’s (AST)
modulatory impacts. Experimentally, male pups from pregnant rats receiving either saline or VPA on
gestation day 12.5 were divided into control and VPA groups, with subsequent AST treatment in a
subset (postnatal days 34–58). Behavioral analyses, histopathological investigations, and electron
microscopy provided insights into the neurobehavioral and structural changes induced by AST.
Molecular investigations of male pups’ cortices revealed that AST outweighs the protective RAS
elements with the inhibition of the detrimental arm. This established the neuroprotective and anti-
inflammatory axes of RAS (ACE2/Ang1-7/MasR) in the ASD context. The results showed that AST’s
normalization of RAS components and Notch signaling underscore a novel therapeutic avenue in
ASD, impacting neuronal integrity and behavioral outcomes. These findings affirm the integral role
of RAS in ASD and highlight AST’s potential as a promising treatment intervention, inviting further
neurological research implications.

Keywords: astaxanthin; Notch1 receptor; renin–angiotensin system; autism spectrum disorder;
gliosis; tauopathies; Mas receptor; carotenoids; valproic acid; rats

1. Introduction

Autism, a neurodevelopmental disorder, is classified as a “spectrum” disorder (ASD)
since it displays a range of symptoms during early childhood [1], including motor chal-
lenges [2], abnormal social communication, and restricted/repetitive movements [3,4] due
to alterations in different brain areas [2]. Indeed, cortical/subcortical overgrowth and
dysfunction were detected in post-mortem samples [5].

ASD originates from genetic, environmental, and mother-and-child-associated risk
factors [4,6]. The prenatal environment includes exposure to harmful substances, infections,
and medication use [7], such as in the case of valproic acid (VPA), which is used in
neurological and psychiatric disorders. VPA in pregnancy can cause ASD [8], initially
known as fetal valproate syndrome [9,10], partly by increasing oxidative stress, which is
detected in ASD patients [11,12].
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ASD is not a standalone disorder but is associated with other neurological conditions
such as anxiety disorders [13], depression [14], and epilepsy [15,16]. In addition, ASD is
highly engaged with Alzheimer’s disease (AD), sharing common characteristics despite
impacting individuals at different stages of life [6]. Similar symptoms as dementia, cognitive
impairment, speech difficulties, and intellectual disability are common in both diseases,
in addition to the presence of different signaling pathways such as the Notch signal [17]
and the processing mechanism of amyloid-β precursor protein (APP) [18], highlighting
their overlapping pathophysiology. Recently, the renin–angiotensin system (RAS) has
participated in the pathophysiology of AD and other neurodegenerative diseases [19], but
not in ASD so far. Moreover, the aberrant phosphoinositide 3-kinase (PI3K) signaling
pathway contributes to ASD pathogenesis since the PI3K/protein kinase B (Akt) axis has a
crucial role in neuronal morphogenesis and survival [20,21]. The cardiogenic effect of the
Ang 1-7/Mas receptor was linked to the PI3K/Akt survival signal; however, Mas receptor,
PI3K, or Akt inhibitors unequivocally abolish the beneficial effects [22].

Furthermore, accumulated amyloid-β (Aβ) plaques and the presence of hyperphos-
phorylated tau (p-tau) protein characterize AD [23], as well as autism [24,25]. Therefore, it
is noteworthy to understand the tau pathomechanisms in autism and to delve deeper into
the effects of reducing tau levels on neurogenesis since its reduction prevents excessive
brain growth (megalencephaly) and alleviates behavioral abnormalities, which are facts
that nominate it as a targeted therapy against ASD [26].

To date, p-tau is known to be augmented by different kinases, including activated
glycogen synthase kinase (GSK)-3β and cyclin-dependent kinase 5 (CDK5) [27]. GSK-3β
is activated when the PI3K/Akt axis is turned off [21,28], whereas the effect of CDK5
is mediated by calpain-dependent cleavage of p35 to give the active p25 moiety [21,25].
However, CDK5 enhances learning and memory by playing a role in synaptic plasticity
when bound to p35 [29]. Apart from these kinases, our comprehension of the mechanisms
underlying tau hyperactivation remains incomplete.

For example, Notch signaling is implicated in AD and ASD [17]. Moreover, neurofib-
rillary tangles in AD brains contain Notch1, which overlaps with p-tau in plaque-like
structures [30]. A previous study suggested a potential association between tau aggregates
and Notch-1 expression in neurodegenerative diseases [31].

Furthermore, limited research has been conducted on the involvement of the renin-
angiotensin system (RAS) in this process. In one study, the activation of the angiotensin II
(Ang II)-converting enzyme (ACE) enhanced p-tau, while its inhibition decreased p-tau [32].
A subsequent study clarified that Ang II activates tau by stimulating CDK5, which is
reversed by losartan [33]. Nonetheless, the activated Yang arm of RAS (ACE2/Ang1-7/Mas
receptor hub) reduced tau pathology in both AD and Parkinson’s disease (PD) models [34,
35]. In addition, AD, with its hallmark p-tau, is linked to decreased ACE2 [36]. Although
not extensively studied in autism, one study linked ASD to ACE genetic variations [37].

Although the search for a specific pathology underlying ASD is still challenging, recent
research suggests that glial cell pathology may be a defining feature of ASD. Astrocytes,
the most abundant glial cells in the brain, play a crucial role in neuronal function during
development and adulthood [12]. An altered astrocyte number and function have been
linked to impaired connectivity, highlighting the potential role of activated astrocytes in
neuronal disorders, including ASD [38,39]. Though limited, the available data indicates that
while the number of astrocytes is reduced in ASD, their activation level and hallmark glial
fibrillary acidic protein (GFAP) expression are increased [12]. Similarly, GFAP is elevated
in the cerebrospinal fluid of ASD patients [40]. However, further research is necessary to
better understand the role of astrocytes in ASD. Autistic patients with increased levels of
secreted APP-α show increased GFAP expression and Notch1 alteration [41]. Furthermore,
the activated Notch1/Hes axis promotes the phosphorylation of signal transducer and
activator of transcription 3 (STAT3), which is responsible for the expression of GFAP [42,43].
While no correlation was found between RAS and GFAP in neuronal disorders, a previous
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study reported that the renin inhibitor (aliskiren) reduced LPS-induced astrogliosis in a
depression model [44].

Although recent studies highlighted crosstalk between RAS and Notch1, few data are
available on their link to neuronal disorders, autism, tauopathy, or astrogliosis. In an in vitro
study, Ang II upregulated Notch1 to mediate its harmful effect on renal podocytes [45],
while the activation of angiotensin receptor 1 (AT1R) activated the Notch pathway in
human vascular smooth muscle cells [46].

ASD lacks reliable treatments due to its diverse pathomechanisms [47]. Hence, preclin-
ical studies are necessary to find new therapies and evaluate their potential mechanisms.
Astaxanthin (AST), a natural xanthophyll carotenoid, may hold promise as an adjunctive
treatment for autism and neurodegenerative diseases. AST has potent antioxidant capabili-
ties [48] and can cross the blood–brain barrier [49], characteristics that make it a potential
option, as proven in a VPA-induced ASD model [50]. However, more data are needed to
unveil additional mechanisms beyond its antioxidant role in autism.

We investigated the potential of AST in treating tauopathy and astrogliosis associated
with ASD. We hypothesize that AST’s modulation of the Yin/Yang arms of RAS and
correction of the inflammatory signal may prove effective. We used a prenatal VPA-
induced ASD model in rats to explore this hypothesis. Indeed, animal models are essential
in understanding ASD since they mimic certain traits observed in ASD patients.

2. Materials and Methods

Animal models play a pivotal role in elucidating the intricacies of ASD. These models
are reliable in translational research to replicate clinical behavioral and neurobiological traits
of ASD. Moreover, as highlighted previously, they are instrumental in exploring potential
therapeutic avenues such as mTOR, GABAergic, and glutamatergic systems [51,52]. These
insights have spurred efficient interventions in reversing behavioral anomalies in these
models. A comparative analysis drew intriguing parallels between clinical observations
in ASD patients and findings in animal models [52]. In that review, various ASD animal
models, including environmental-induced (e.g., VPA), immune-induced (e.g., maternal
immune activation), and genetic (e.g., Shank3 deletion) models, were examined. Among
these, the VPA model produced the most pronounced and severe phenotypes across
behavioral and cellular aspects with gender relevance, especially to males. This model
effectively simulated the consequences of prenatal exposure to certain environmental
factors, such as medications, on neurodevelopmental outcomes. However, the review
acknowledged the limitations of animal models, emphasizing that not all ASD symptoms,
such as cognitive stereotypy, intellectual disability, and speech deficits, are reproducible
in rodents.

Moreover, animal models prove to be a critical aspect in understanding the comor-
bidities often accompanying autism. These comorbidities, like epilepsy [53], mood distur-
bance [54], and other psychiatric disorders [55], have been noted in animals and have been
attributed to the lens of disturbances in the tryptophan–kynurenine metabolic pathway [55].

In our quest to adopt a reliable, reproducible, ethically sound, and methodologically
valuable approach to investigating the complex mechanisms underlying ASD, we utilized
the in utero VPA model. Specifically, the use of VPA during pregnancy, a prevalent strategy
for managing central disorders, often leads to fetal valproate syndrome, reinforcing the
ecological validity of this model’s findings. In this study, a methodological decision was
made to utilize male offspring to parallel the gender ratio discrepancy observed in ASD
prevalence, where males are significantly more affected than females. This is compatible
with [55], who documented the behavioral traits of ASD in male offspring more than in
female offspring.

2.1. Animals and Induction of the ASD Model

After one week of acclimatization at the institutional animal facility (Faculty of Phar-
macy, Cairo University), adult 8-week-old male and female Wistar rats (200–250 g; El-Salam
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Breeding Center, Cairo, Egypt) were allowed to mate. Nine females were examined every
morning for the presence of vaginal plugs or spermatozoa in vaginal smears to confirm preg-
nancy. Once confirmed, the date was designated as gestational day 0.5 (G 0.5) [56]. A well-
established, reliable, and integral autism model, namely, the in utero-VPA paradigm, was
used to induce neurotypical autistic signs in offspring, following previous studies [57–60],
in which 6 pregnant female rats received a single intraperitoneal injection of 500 mg/kg
sodium VPA (Depakine; SANOFI, Paris PA, France) [57–60] at the critical period of ex-
posure to VPA [61]. Similarly, the other 3 normal control pregnant female rats received
an equal volume of distilled water. The experimental protocol was followed with minor
modifications regarding the housing of the animals. Instead of single caging, dams were
maintained with their partner till the weaning of the offspring to avoid cannibalism or ma-
ternal death noted in our pilot study, resulting from pre-gestational stress, which increases
vulnerability to depression [62]. Pups were weaned on postnatal day (PND) 23, and the
male offspring enrolled in our study were separated into new cages until the end of the
experimentation. Notably, all rats were kept under controlled environmental conditions
of constant temperature (23 ± 2 ◦C), humidity (60 ± 10%), and light/dark cycle (12/12 h;
lights on at 6:00 a.m.) and were allowed free access to standard chow pellets and water
ad libitum. The handling of animals strictly adhered to the Guide for the Care and Use of
Laboratory Animals protocol (NIH publication No.85-23, 2011) adopted by the Research
Ethics Committee of the Faculty of Pharmacy, Cairo University (Cairo, Egypt; PT 2613). All
efforts were exerted to minimize animal suffering during the experimental period.

2.2. Experimental Design

On PND 34 (early adolescence), animals were allocated into 3 groups containing 9 rats
each. The in utero saline-injected male offspring (group 1) served as the control group
(CONT), whereas VPA-exposed male offspring were randomly allocated into two groups
(2 and 3). Animals in group 2 were left untreated and designated as the model group (ASD),
whereas those in group 3, were administered AST daily (25 mg/kg; Nutrex Hawaii Inc.,
Kailua-Kona, HI, USA) [63] until PND 58 (early adulthood). Animals in the first two groups
(CONT and ASD) received distilled water p.o daily for 25 days (PND 58). Starting from
PND 56, behavioral tests were performed. The marble burying test (MBT) was conducted
to assess repetitive, stereotyped behavior, whereas the three-chamber test (3CT) was carried
out on PND 57 to assess sociability and social novelty preference. Finally, general locomotor
activity was assessed in open field apparatus on PND 58 (Figure 1).
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Figure 1. Schematic timeline for prenatal VPA model induction, AST treatment schedule, behavioral
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tional day; MBT: marble burying test; OFT: open field test; PND: postnatal day.

2.3. Assessment of Autistic-Like Behaviors
2.3.1. Marble-Burying Test (MBT)

In this test, rats were placed individually in a standard Plexiglas cage containing
a 5 cm depth of clean bedding. Fifteen glass marbles (15 mm diameter) were evenly
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placed in 3 rows on the bedding, and animals were tested for 20 min for burying/hiding
behavior. The number of marbles buried with bedding up to two-thirds of their depth was
counted [64,65].

2.3.2. Three-Chamber Sociability Test

The test was conducted as mentioned before [60,61,66]. The three-chamber apparatus
(60 × 45 × 45 cm) is divided into three connected chambers with openings between the
compartments, allowing the animals to freely explore the three chambers, and a wire cage
is placed in each of the lateral compartments. Notably, the chambers were cleaned with
70% alcohol after each tested animal. The 3-CST consisted of three phases: the habituation
phase, in which the tested rat was placed in the central chamber before the sociability phase
and was allowed to explore for 5 min. The second is the sociability phase, which started
directly after the habituation phase, where a novel rat (novel rat 1) of the same age, sex,
and strain was placed into a wire cage in one of the lateral chambers, and the other wire
cage was left empty, representing the novel object. The tested rat was left for 10 min, and
the time spent exploring novel rat 1 or the novel object was recorded. The sociability index
(SI) was calculated as follows:

SI =
(time exploring novel rat 1− time exploring novel object)
(time exploring novel rat 1 + time exploring novel object)

(1)

The third phase is the social novelty preference phase, which starts directly after the
sociability phase for an additional 10 min. A new, unfamiliar rat was placed into the
opposite chamber’s empty wire cage and considered “novel rat 2”. This session evaluates
the preference for the social novelty of the tested rat to choose whether to interact with the
familiar animal (novel rat 1) or the novel one (novel rat 2). The social novelty preference
index (SNI) was calculated using the following equation:

SNI =
(time exploring novel rat 2− time exploring familiar rat)
(time exploring novel rat 2 + time exploring familiar rat)

(2)

2.3.3. Open Field Test (OFT)

A 60 × 60 × 45 cm quadrangular arena divided into 16 equal squares was used. Rats
were allowed to acclimatize to the test room for 30 min before starting the experiment,
and then each rat was individually placed in the center of the dimly illuminated arena for
5 min. The number of crossed squares visited with all 4 feet, the entries to the central zone
compromising the central 4 squares, the time spent in this zone, and the latency to leave it
were recorded. In addition, the duration (s) of rearing and grooming was documented. The
test arena was cleaned with 70% alcohol after each rat [67,68].

2.4. Cortical Processing

After behavioral testing, all animals were euthanized under deep anesthesia (Pheno-
barbital 100 mg/kg) followed by transcardiac perfusion with phosphate-buffered saline
(PBS; pH 7.4), and the cortices were rapidly dissected and divided into 3 sets (each contain-
ing 3 rats). The left hemispheres of animals in the first set were fixed in 10% neutral buffered
formalin for histopathological/immunochemical examinations, whereas those of animals
in the second set were kept in glutaraldehyde for electron microscopy. From 3 animals in
set 3, the left cortices were submerged in a RIPA buffer with protease and phosphatase
inhibitors for measurements with Western blots. After that, the right cortex of the first 3 rats
(set 1) was placed in lysis buffer for qRT-PCR analysis, and the remaining right cortices
from rats in sets 2 and 3 were flash frozen in liquid nitrogen and then homogenized in PBS
and aliquoted for the assessment of ELISA parameters and stored at −80 ◦C.
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2.4.1. Assessments of p(S396)-tau, p(Y458/199)-PI3K p85/p55, Notch1, NICD, p25, and p35
Using the Western Blot Technique

Following cortical protein quantification (Bio-Rad Protein Assay Kit, Hercules, CA,
USA), 10 µg protein of each sample was separated using SDS polyacrylamide gel elec-
trophoresis, transferred to a PVDF membrane, and then blocked with 5% bovine serum
albumin (BSA). Afterward, the membrane was incubated with anti-p(S396)-tau (cat#: 35-
5300), anti- p(Y458/199)-PI3K p85/p55 (cat#: PA5-17387), anti-Notch1 (cat#: PA5-23181),
anti-NICD-1 (cat#: PA5-99448), anti-P35 (cat#: MA5-14834), or β-actin (cat#: PA1-183)
polyclonal antibody (ThermoFisher Scientific, Waltham, MA, USA) and anti-P25 (ABClonal
Technology, Woburn, MA, USA; cat#: A4637) overnight at 4 ◦C on a roller shaker. Next,
the membranes were probed with horseradish peroxidase-conjugated goat anti-rabbit im-
munoglobulin (Dianova, Hamburg, Germany). Finally, the blots were developed with
an enhanced chemiluminescence detection reagent (Amersham Biosciences, Chicago, IL,
USA), and the corresponding expressed protein was quantified with densitometric analysis
using a scanning laser densitometer (GS-800 system, Bio-Rad, Hercules, CA, USA). The
results were expressed as arbitrary units (AUs) after normalization to β-actin.

2.4.2. Assessments of Cortical Gene Expressions of Mas Receptor with qRT-PCR

Total RNA was extracted from cortical tissue using an RNeasy Mini kit (Qiagen, Venlo,
Netherlands), and the obtained RNA was verified for pureness spectrophotometrically at
OD 260/280 nm. According to the manufacturer’s procedure, equal amounts of RNA (1 µg)
were reverse transcribed into cDNA using a reverse transcription system (Promega, Leiden,
Netherlands). The qRT-PCR of the Mas receptor was performed using SYBR Green Master
Mix (Applied Biosystems, Waltham, CA, USA). In a 25 µL reaction volume, 5 µL of cDNA
was combined with 12.5 µL SYBR Green mixture, 5.5 µL RNase-free water, and 2 µL of
each primer (Table 1). The PCR amplifications were accomplished with 40 cycles for 15 s at
95 ◦C (denaturation), 60 s at 60 ◦C (annealing), and 60 s at 72 ◦C (extension). The relative
expression of the target gene was obtained using the 2−∆∆CT formula using β-actin as a
housekeeping gene.

Table 1. Primer sequences used for qPCR.

Gene Name Primer Sequence (5′–3′) Accession Number

MAS receptor F: TGACCATTGAACAGATTGCCA
R: TGTAGTTTGTGACGGCTGGTG NM_153722

β-Actin F: CCCATCTATGAGGGTTACGC
R: TTTAATGTCACGCACGATTTC NM_031144.3

2.4.3. Quantification of Cortical Contents of Ang II, ACE2, and Ang1-7 Using the
ELISA Technique

MyBioSource ELISA kits (San Diego, CA, USA) were used for the determination of
Ang II (cat#: MBS705139), ACE2 (cat#: MBS014209), and Ang1-7 (cat#: MBS2604372). All
procedures were performed according to the manufacturer’s instructions.

2.5. Microscopic Investigation

For both histopathological and immunohistochemistry inspections, brain specimens
were embedded in paraffin, and sections of 5 µm thickness were blindly inspected by a
pathologist under a light microscope (BX43, Olympus, Tokyo, Japan) and photographed
using Cellsens dimension software version 4.1 CS-EN-V4.1 (Olympus) connected to an
Olympus DP27 camera. The Nissl staining and immune reactivity of the corresponding
antigens were assessed using image analysis software (Image J, version 1.46a, NIH, MD,
USA). Measurements were prepared from five non-overlapping randomly chosen fields in
each section at 200×magnification and averaged.
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2.5.1. Hematoxylin and Eosin Staining

Brain sections were stained with hematoxylin and eosin (H & E), and the cortical
neuropathologic damage was graded from 0 to 4 as follows: (0) indicated no changes;
(1) indicated <10% area affected; (2) indicated 20–30% area affected; (3) indicated 40–60%
area affected; and (4) indicated >60% area affected [69].

2.5.2. Nissl Staining

Brain sections were stained with cresyl violet to analyze the intensity of the Nissl
proteins in cortical neurons. Brain sections mounted on gelatinized slides were air-dried
and stained with 0.1% aqueous cresyl violet (Sigma-Aldrich, St. Louis, MO, USA) for 20 min
at 60 ◦C. The slides were then washed in distilled water, differentiated in 70% ethyl alcohol,
dehydrated in ascending grades of ethyl alcohol, and cleared in xylene to be mounted with
DPX (Sigma-Aldrich). The number of both intact and degenerated neurons was counted.

2.5.3. Cortical GFAP and NF-κB p65 Immunoreactivity

The deparaffinized and rehydrated sections were incubated with primary rabbit mon-
oclonal GFAP antibody (Cat#: SAB4501162; Merck KGaA, ON, Canada) or primary mouse
monoclonal nuclear factor-kappa B (NF-κB) p65 (cat #: sc-8008; Santa Cruz Biotechnology
Inc., Dallas, TX, USA) antibody. Subsequently, they were washed with PBS and incu-
bated with a secondary antibody using the HRP EnVision kit (DAKO, Santa Clara, CA,
USA). Sections were developed and visualized using diaminobenzidine tetrachloride. The
substrate system produced a crisp brown end-product at the site of the target antigen.
Sections were counterstained with hematoxylin, dehydrated in alcohol, cleared in xylene,
and covered and slipped for microscopic examination. GFAP and NF-κB p65 quantification
was estimated by measuring the area% immune expression.

2.5.4. Electron Microscopy

For transmission electron microscopy (TEM) preparation, the samples were fixed in 3%
glutaraldehyde in 0.1 M sodium cacodylate buffer (pH = 7.0) for 2 h at room temperature,
rinsed in the same buffer, and post-fixed in 1% osmium tetroxide for 2 h at room temper-
ature. The samples were dehydrated in an ethanol series ranging from 10% to 90% for
15 min in each alcohol dilution and finally with absolute ethanol for 30 min. The samples
were infiltrated with epoxy resin and acetone through a graded series until they were
finally in pure resin. Ultrathin sections were collected on formvar-coated copper grids. The
sections were then double stained in uranyl acetate followed by lead citrate. The stained
sections were observed with a JEOL JEM 1010 transmission electron microscope at 70 kV
at the Regional Center for Mycology and Biotechnology (RCMB), Al-Azhar University
(Cairo, Egypt).

2.6. Statistical Analysis

For parametric data, values were expressed as mean ± SD, and statistical differences
between groups were computed using a one-way analysis of variance (ANOVA) followed
by Tukey’s multiple comparisons tests. For non-parametric data, values were expressed
as median (minimum-maximum) and analyzed using a Kruskal–Wallis test followed by
a Dunnett’s post hoc or Mann–Whitney test to compare every 2 groups. The level of
significance was set at p < 0.05. GraphPad Prism version 9.4.1 (GraphPad Software Inc.,
San Diego, CA, USA) software was used to carry out all the statistical tests and to draw the
corresponding figures.

3. Results
3.1. AST Increases Sociability While Reducing Repetitive/Compulsive Behaviors in Autistic Rats

Both impaired social and repetitive/compulsive behaviors are diagnostic hallmarks
of ASD. During the 3-CST, male autistic rats (Figure 2A) displayed significant reductions
in the SI (A) and SNI (B) by 59% (F(2,24) = 196.7, p < 0.0001) and 120% (F(2,24) = 818.5,
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p < 0.0001), respectively compared with the CONT group. However, socialization im-
provement was noted following AST treatment, where the carotenoid abrogated social
withdrawal and normalized both SI (F(2,24) = 196.7, p < 0.0001) and SNI (F(2,24) = 818.5,
p < 0.0001) in VPA in utero exposed offspring. Additionally, VPA exposure enhanced repet-
itive stereotyping in the marble burying test, as indicated by the 4-fold (F(2,24) = 77.85,
p < 0.0001) increment in the number of hidden marbles (C) compared with the CONT
group. This repetitive compulsive-like disorder was, however, normalized in the AST-
treated group, indicating reduced disruptive behavior and social discourse difficulties
(F(2,24) = 77.85, p < 0.0001). A defective exploration of the surroundings was evaluated with
the OFT (Figure 3) and manifested by the significant decrease in the total number of crossed
squares (A) by 55% (F(2,24) = 51.56, p < 0.0001), along with the entries to the central zone (B) by
67% (F(2,24) = 44.80, p < 0.0001). These decrements were associated with a 2-fold (F(2,24) = 107.7,
p < 0.0001) prolongation of time spent in the central zone (C) and latency (D) (2 folds;
F(2,24) = 26.87, p < 0.0001) along with a reduction in rearing behavior (E) by 59% (F(2,24) = 42.92,
p < 0.0001). In addition, animals experienced a longer duration of grooming (F) (4.7 folds;
F(2,24) = 100.4, p < 0.0001), denoting higher repetitive stereotyped behaviors compared
with the CONT group. In contrast, AST-enhanced locomotion was indicated by a large
number of crossed squares (1.8 folds; F(2,24) = 51.56, p < 0.0001) and entries to the central
zone (2.2 folds; F(2,24) = 44.80, p < 0.0001) with a shorter time spent in the central zone
(30%; F(2,24) = 107.7, p < 0.0001) compared with the VPA untreated group. Additionally,
AST normalized the latency to leave the central zone (45%; F(2,24) = 26.87, p < 0.0001),
increased rearing to 2 folds (F(2,24) = 42.92, p < 0.0001), and abrogated grooming (41%;
F(2,24) = 100.4, p < 0.0001), as compared with the ASD group. The amendments mentioned
above in AST-treated rats signify the ability of AST to improve sociability and reduce
repetitive/compulsive core signs of autism.
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Figure 2. Effect of AST on (A) SI and (B) SNI in 3-CST, and (C) MBT in autistic rats. Male offspring
rats of dams were injected with VPA on GD 12.5 and were treated with AST (25 mg/kg/day, p.o)
on PND 34 (early adolescence) until PND 58 (early adulthood). Values are expressed as mean ± SD
(n = 9 rats/group). Statistical analysis was carried out using one-way ANOVA followed by Tukey’s
post hoc test, p < 0.05, as compared with the CONT (*) and ASD (#) groups. ANOVA: analysis of
variance; AST: astaxanthin; ASD: autism spectrum disorder; CONT: control; 3-CST: three-chamber
sociability test; GD: gestational day; MBT: marble burying test; p.o: per os; PND: postnatal day;
SI: sociability index; SNI: social novelty preference index; VPA: valproic acid. Blue circles for
control group; red squares for ASD group; purple triangles for AST treated group are indicative of
individual data.
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transducer for the Mas receptor signaling. However, treatment with AST effectively cor-
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mal levels across most parameters. Hence, modulation of the Yin/Yang RAS axis can be a 
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Figure 3. Effect of AST on locomotor behavior and exploration of surroundings using the OFT test
in autistic rats: (A) the total number of crossed squares; (B) frequency of entering the central zone;
(C) stay duration in the central zone; (D) latency to leave the central zone; (E) duration of rearing;
and (F) grooming. Male offspring rats of dams were injected with VPA on GD 12.5 and were treated
with AST (25 mg/kg/day, p.o) on PND 34 (early adolescence) until PND 58 (early adulthood). Values
are expressed as mean ± SD (n = 9 rats/group). Statistical analysis was carried out using one-way
ANOVA followed by Tukey’s post hoc test, p < 0.05, as compared with the CONT (*) and ASD (#)
groups. ANOVA: analysis of variance; AST: astaxanthin; ASD: autism spectrum disorder; CONT:
control; GD: gestational day; OFT: open field test; p.o: per os; PND: postnatal day; VPA: valproic acid.
Blue circles for control group; red squares for ASD group; purple triangles for AST treated group are
indicative of individual data.

3.2. AST Modulates Cortical AngII/ACE2/Ang1-7/Mas Receptor/Trajectory and Augments PI3K
p85/p55 in Autistic Rats

As depicted in Figure 4, the ASD model resulted in a significant increase of 3.4-fold
(F(2,15) = 1887, p < 0.0001) in the cortical content of Ang II (A), a vital activator of the
canonical RAS. However, ASD reduced ACE2 (B), an enzyme that catalyzes the hydrolysis
of Ang II into Ang1-7 for homeostatic regulation, as well as Ang1-7 (C), a heptapeptide
that counterbalances the Ang II harmful effects, by 72% (F(2,15) = 264.8, p < 0.0001) and
74% (F(2,15) = 892.1, p < 0.0001), respectively. Additionally, the mRNA expression of Mas
receptor (D), the Ang1-7 receptor that activates the alternative protective RAS arm, was
downregulated by 71% (F(2,6) = 20.87, p = 0.0019). Furthermore, the insult led to a depletion
of 73% in the protein expression of (E) p(Y458/199)-PI3K p85/p55 (F(2,6) = 53.63, p = 0.0001),
a downstream transducer for the Mas receptor signaling. However, treatment with AST
effectively corrected the altered molecules of RAS and increased PI3K protein expression
to nearly normal levels across most parameters. Hence, modulation of the Yin/Yang RAS
axis can be a novel player in the pathomechanism of ASD and can be one of the anti-
autistic mechanisms of AST by reducing Ang II, activating the ACE2 enzyme to trigger the
Ang1-7/Mas receptor axis, and stimulating its neuroprotective downstream target PI3K
p85/p55.
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Notch1 (A), a single-pass transmembrane receptor activated by Ang II and CDK5/p25 ki-
nase, and its downstream intracellular signaling molecule NICD-1 (B). These parameters 
were increased by approximately 6.7 fold (F(2,6) = 74.80, p < 0.0001) and 6 fold (F(2,6) = 52.58, 
p = 0.0002), respectively. Additionally, the insult led to a downregulation in the protein 
expression of the neuron-specific CDK5 activator (C), p35, by 61%, while upregulating p25 
(D) generated by Ca2+-dependent calpain cleavage of p35, to approximately 4.7 fold, re-
sulting in a significant increase in the p25/p35 ratio (E) by 13.4-fold. However, treatment 
with AST effectively inhibited the protein expression of the Notch1/NICD-1 axis and re-
versed the impact of VPA on the p25/p35 ratio by increasing p35 (2.3-fold) while reducing 
p25 and the p25/p35 ratio by 62% and 84%, respectively, compared with the insulted 
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Figure 4. Effect of AST on cortical contents/gene expression of (A) Ang II, (B) ACE2, (C) Ang1-7,
(D) MasR, and (E) p(Y458/199)-PI3K p85/p55 of autistic rats. Male offspring rats of dams were
injected with VPA on GD 12.5 and were treated with AST (25 mg/kg/day, p.o) on PND 34 (early
adolescence) until PND 58 (early adulthood). Values are expressed as mean ± SD (n = 3 rats/group
for PCR and 6 rats/group for ELISA). Statistical analysis was carried out using one-way ANOVA
followed by Tukey’s post hoc test, p < 0.05, as compared with the CONT (*) and ASD (#) groups.
ANOVA: analysis of variance; AST: astaxanthin; ASD: autism spectrum disorder; CONT: control;
ACE2: angiotensin-converting enzyme 2; Ang1–7: angiotensin 1–7; Ang II: angiotensin 2; MasR: Mas
receptor; p.o: per os; p(Y458/199)-PI3K: phosphorylated phosphoinositide 3-kinase at tyrosine 458
and 199; PND: postnatal day; VPA: valproic acid; GD: gestational day. Blue circles for control group;
red squares for ASD group; purple triangles for AST treated group are indicative of individual data.

3.3. AST Deactivates the Cortical Notch1/NICD-1/NF-κB Trajectory and Increases the Cortical
p25/p35 Ratio in Autistic Rats

Figure 5 shows that the autistic rats displayed an elevated protein expression of
Notch1 (A), a single-pass transmembrane receptor activated by Ang II and CDK5/p25
kinase, and its downstream intracellular signaling molecule NICD-1 (B). These parameters
were increased by approximately 6.7 fold (F(2,6) = 74.80, p < 0.0001) and 6 fold (F(2,6) = 52.58,
p = 0.0002), respectively. Additionally, the insult led to a downregulation in the protein
expression of the neuron-specific CDK5 activator (C), p35, by 61%, while upregulating
p25 (D) generated by Ca2+-dependent calpain cleavage of p35, to approximately 4.7 fold,
resulting in a significant increase in the p25/p35 ratio (E) by 13.4-fold. However, treatment
with AST effectively inhibited the protein expression of the Notch1/NICD-1 axis and
reversed the impact of VPA on the p25/p35 ratio by increasing p35 (2.3-fold) while reducing
p25 and the p25/p35 ratio by 62% and 84%, respectively, compared with the insulted group.

ASD-induced activation of the Notch1/NICD-1 axis extended to impact its down-
stream target NF-κB, a transcription factor with pleiotropic effects, as presented in Figure 6.
The ASD insult resulted in an increased immunoreactivity of the transcription factor NF-κB,
reaching a level approximately 12.7-fold higher (F(2,12) = 232.0, p < 0.0001) compared with
the CONT group (A, D), whereas treatment with AST (C, D) blunted this expression by
75% (F(2,12) = 232.0, p < 0.0001). These results confirmed the involvement of the active
inflammatory signal Notch1/NICD-1/NF-κB in the ASD model and the inhibited CDK5,
which plays a role in synaptic plasticity and the formation of learning and memory. Oppo-
sitely, AST acted by reverting the ASD effect to enhance the neurogenic CDK5 indicated by
stimulation of p35 in addition to abating the inflammatory trajectory.
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Figure 5. Effect of AST on the protein expression of (A) Notch1, (B) NICD, (C) p35, (D) p25, and their
ratio (E) p25/35 in the cerebral cortex of autistic rats. Male offspring rats of dams were injected with
VPA on GD 12.5 and were treated with AST (25 mg/kg/day, p.o) on PND 34 (early adolescence) until
PND 58 (early adulthood). Values are expressed as mean ± SD (n = 3 rats/group). Statistical analysis
was carried out using one-way ANOVA followed by Tukey’s post hoc test, p < 0.05, as compared with
the CONT (*) and ASD (#) groups. ANOVA: analysis of variance; AST: astaxanthin; ASD: autism
spectrum disorder; CONT: control; GD: gestational day; Notch1: neurogenic locus notch homolog
protein 1; NICD: Notch intracellular domain; p.o: per os; PND: postnatal day; VPA: valproic acid.
Blue circles for control group; red squares for ASD group; purple triangles for AST treated group are
indicative of individual data.
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tical analysis was conducted using one-way ANOVA followed by Tukey’s post hoc test, with p < 0.05 
considered significant. (*) and (#) indicate comparisons with the CONT and ASD groups, respec-
tively. ANOVA: analysis of variance; AST: astaxanthin; ASD: autism spectrum disorder; CONT: con-
trol; NF-κB: nuclear factor kappa B. Blue circles for control group; red squares for ASD group; pur-
ple triangles for AST treated group are indicative of individual data. 

3.4. AST Reduces ASD Hallmarks Astrogliosis/p-tau, Amends Cortical Structure, and Rescues 
Neurons in Autistic Rats 

Figure 7 shows strong immunoreactivity of the astrocyte marker GFAP in the section 
of (B) autistic rats that shows deep brown-stained hypertrophied astrocytes in the cerebral 
cortex compared with the lightly stained section of the CONT rats (A) that have normal 
small-sized astrocytes. Moreover, AST (C) treatment weakened astrogliosis, as evidenced 
by the light GFAP immunoreactivity, compared with the ASD section. The data are sum-
marized in panel D (F(2,12) = 453.8, p < 0.0001). Moreover, the ASD insult caused a 6.6-fold 

Figure 6. Representative photomicrographs of NF-κB immuno-expression in the cerebral cortex
illustrating the differences between the groups. Section of the CONT (A) group shows negative
immune expression, while that from the ASD (B) rats depicts strong immunoreactivity (arrow).
Section from the AST-treated group (C) represents a weak NF-κB immune reaction (arrow; scale
bar 50 µm). The data in panel (D) represent the mean ± SD, with 5 fields analyzed from 3 rats per
group. Statistical analysis was conducted using one-way ANOVA followed by Tukey’s post hoc
test, with p < 0.05 considered significant. (*) and (#) indicate comparisons with the CONT and ASD
groups, respectively. ANOVA: analysis of variance; AST: astaxanthin; ASD: autism spectrum disorder;
CONT: control; NF-κB: nuclear factor kappa B. Blue circles for control group; red squares for ASD
group; purple triangles for AST treated group are indicative of individual data.

3.4. AST Reduces ASD Hallmarks Astrogliosis/p-tau, Amends Cortical Structure, and Rescues
Neurons in Autistic Rats

Figure 7 shows strong immunoreactivity of the astrocyte marker GFAP in the section
of (B) autistic rats that shows deep brown-stained hypertrophied astrocytes in the cerebral
cortex compared with the lightly stained section of the CONT rats (A) that have normal
small-sized astrocytes. Moreover, AST (C) treatment weakened astrogliosis, as evidenced
by the light GFAP immunoreactivity, compared with the ASD section. The data are sum-
marized in panel D (F(2,12) = 453.8, p < 0.0001). Moreover, the ASD insult caused a 6.6-fold
increase in the protein expression of p(S396)-tau (E), which disables neural network function
in ASD to be significantly downregulated upon treatment with AST.
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demonstrates a soothing effect on this reaction, with mild GFAP-positive expression (scale bar = 50 
µm). The data are summarized in panel (D). Panel (E) presents the protein expression of p(ser396)-
tau. The data are presented as mean ± SD, with 5 fields analyzed from 3 rats per group for GFAP 
and 3 rats per group for tau. Statistical analysis was performed using one-way ANOVA followed by 
Tukeyʹs post hoc test, with p < 0.05 considered significant. (*) and (#) indicate comparisons with the 
CONT and ASD groups, respectively ANOVA: analysis of variance; AST: astaxanthin; ASD: autism 
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The photomicrographs (Figure 8) of ASD rats (C, D) showed severe neuropathic le-
sions surrounded by empty areas and were characterized by increased cell-packing den-
sity, pyknosis, and reduced neuronal size. In addition, vacuolation of neuropil and prolif-
eration of glial cells were noted compared with CONT rats (A, B), which exhibited normal 
histological architecture with intact neurons. On the contrary, sections of the AST-treated 
rats (E, F) depicted a marked upturn with some shrunken necrotic neurons associated 
with mild proliferation of glial cells. As shown in panel G, ASD scores reached 11 (p = 
0.0010), whereas AST abated it to 2 (p = 0.0079); furthermore, it improved the individual 
lesions, as presented in panel H. 

Figure 7. Effect of AST on GFAP and p(ser396)-tau protein expression. Representative photomicro-
graphs of cortical GFAP immuno-expression in the CONT (A) rats showing normal small-sized astro-
cytes with lightly stained GFAP positive-short processes. In contrast, the section from the ASD rats
(B) displays astrogliosis, indicated by strongly immunoreactive hypertrophied astrocytes with deeply
stained GFAP-positive brown processes. However, the section from the AST-treated rats (C) demon-
strates a soothing effect on this reaction, with mild GFAP-positive expression (scale bar = 50 µm).
The data are summarized in panel (D). Panel (E) presents the protein expression of p(ser396)-tau. The
data are presented as mean ± SD, with 5 fields analyzed from 3 rats per group for GFAP and 3 rats
per group for tau. Statistical analysis was performed using one-way ANOVA followed by Tukey’s
post hoc test, with p < 0.05 considered significant. (*) and (#) indicate comparisons with the CONT
and ASD groups, respectively ANOVA: analysis of variance; AST: astaxanthin; ASD: autism spectrum
disorder; CONT: control; GFAP: glial fibrillary acidic protein; p(ser396)-tau: phosphorylated tau pro-
tein at serine 396; p.o: per os; PND: postnatal day; VPA: valproic acid. Blue circles for control group;
red squares for ASD group; purple triangles for AST treated group are indicative of individual data.

The photomicrographs (Figure 8) of ASD rats (C, D) showed severe neuropathic
lesions surrounded by empty areas and were characterized by increased cell-packing
density, pyknosis, and reduced neuronal size. In addition, vacuolation of neuropil and
proliferation of glial cells were noted compared with CONT rats (A, B), which exhibited
normal histological architecture with intact neurons. On the contrary, sections of the
AST-treated rats (E, F) depicted a marked upturn with some shrunken necrotic neurons
associated with mild proliferation of glial cells. As shown in panel G, ASD scores reached
11 (p = 0.0010), whereas AST abated it to 2 (p = 0.0079); furthermore, it improved the
individual lesions, as presented in panel H.

Sections stained with Nissl stain (Figure 9) revealed that ASD rats (C, D) possess
shrunken and darkly stained neurons, as compared with sections of the CONT rats (A, B)
that depict intact neurons with a visible nucleus and blue-violet stained perinuclear Nissl
proteins. Furthermore, the AST-treated rat (E, F) sections revealed decreased degenerated
neuronal cells. Panels G (F(2,12) = 139.1, p < 0.0001) and H (F(2,12) = 229.5, p < 0.0001)
represent the number of intact and degenerated neurons, respectively.
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Figure 8. Representative photomicrographs of H & E-stained cerebral cortexes of rats in the CONT
group (A,B) show normal histological architecture with intact neurons, whereas sections of the ASD
rats (C,D) show pyknosis with shrunken and reduced neuronal size (black arrow), vacuolation of
neuropil (asterisk), and proliferation of glial cells (blue arrow). Sections from the AST-treated rats
(E,F) depict a few shrunken necrotic neurons (black arrow) with a mild proliferation of glial cells
(scale bar, 50 and 25µm). Panel (G) illustrates the collective cortical damage scores presented as
box and whiskers; median (minimum–maximum) data were analyzed using the Mann–Whitney
test to compare between every 2 groups. Panel (H) depicts individual cortical alteration scores
expressed as median (max–min) and analyzed using the Kruskal–Wallis test followed by Dunnett’s
posthoc test. Values were calculated from 5 fields of 3 rats/group (p < 0.05), as compared with the
CONT (*) and ASD (#) groups. Male offspring rats of dams were injected with VPA on GD 12.5
and were treated with AST (25 mg/kg/day, p.o) on PND 34 (early adolescence) until PND 58 (early
adulthood). AST: astaxanthin; ASD: autism spectrum disorder; CONT: control; GD: gestational day;
P: proliferation of glial cells; p.o: per os; PND: postnatal; SPN: shrunken, pyknosis, and necrosis of
neurons; V: vacuolation of neuropil; VPA: valproic acid; Blue circles for control group; red squares for
ASD group; purple triangles for AST treated group are indicative of individual data.
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Figure 9. Representative photomicrographs of cresyl violet-stained sections of the cerebral cortex
illustrate the differences between the groups. In the CONT group (A,B), normal intact neurons with
visible nuclei are observed, and Nissl proteins around the nucleus are stained blue-violet (black
arrow). Sections from the ASD rats (C,D) show shrunken, darkly stained neurons (red arrow), while
sections from the AST-treated group (E,F) display a decreased number of degenerated, darkly stained
neurons (red arrow) and an increased number of intact neurons (black arrow) (scale bar, 50 and
25 µm). The panels (G,H) provide quantitative data on the number of intact and degenerated neurons,
respectively. The values are expressed as mean ± SD, with 5 fields of view analyzed from 3 rats
per group. Statistical analysis was conducted using one-way ANOVA followed by Tukey’s multiple
comparisons tests, with p < 0.05 considered significant. (*) and (#) indicate comparisons with the
CONT and ASD groups, respectively. Male offspring rats of dams were injected with VPA on GD 12.5
and were treated with AST (25 mg/kg/day, p.o) from PND 34 (early adolescence) until PND 58 (early
adulthood). ANOVA: analysis of variance; ASD: autism spectrum disorder; AST: astaxanthin; CONT:
control, GD: gestational day; p.o: to per os; PND: postnatal day; VPA: valproic acid. Blue circles for
control group; red squares for ASD group; purple triangles for AST treated group are indicative of
individual data.

In Figure 10, electron micrographs of cortical sections of CONT rats (A) show normal
nuclei with regular nuclear membranes and prominent nucleoli. In contrast, the sections
of the ASD model (B, C) depict a shrunken irregular nucleus with an irregular nuclear
membrane, empty lysed cytoplasm, and degenerated mitochondria. However, the section
of the AST-treated rats (D) shows a large normal nucleus surrounded by apparently normal
cytoplasm containing slightly swollen mitochondria. Accordingly, the enhanced cortical
structure and neuronal count by AST is a consequence of its ability to deter astrogliosis and
p-tau, two decisive pathological events related to autism.
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Figure 10. Electron micrographs of cerebral cortex sections from different groups provide insights
into cellular changes. In the CONT group (A), the images show normal nuclei (N) with regular
nuclear membranes (arrow) and prominent nucleoli (Nu). In contrast, the ASD group (B) exhibits a
shrunken nucleus (N), empty lysed cytoplasm (white star), and degenerated mitochondria (arrow).
Similarly, section (C) displays an uneven nucleus (N) surrounded by an irregular nuclear membrane
(arrow) and lysed cytoplasm (white star). However, in the AST-treated group (D), the section reveals
a large, normal nucleus (N) surrounded by apparently normal cytoplasm containing slightly swollen
mitochondria (arrow).

To sum up, AST, by activating the Mas receptor and stimulating ACE2-induced
Ang1-7 production, halted Ang II, Notch1/NICD1/p25, and NF-κB hubs. Additionally,
AST enhanced two survival molecules, namely, PI3K and p35. The crosstalk between
these proteins amended structural alterations and behavioral deficits induced by the VPA-
induced autistic model. Moreover, the interplay between these signals limits both tauopathy
and astrogliosis, which participate in the pathomechanism of ASD.

4. Discussion

ASD is a complex neurodevelopmental disorder characterized by difficulties in social
interaction, communication, and repetitive behaviors. Despite its prevalence, the patho-
physiology of ASD is not well understood, making it challenging to develop effective
treatments. The underlying causes of ASD are believed to be a combination of genetic and
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environmental factors, but specific mechanisms are still unclear. This lack of understanding
hampers the progress in finding targeted therapies for individuals with ASD, leaving many
struggling to find suitable treatments and interventions. As research continues to uncover
the underlying mechanisms and causes of ASD, it is hoped that more effective treatments
will be developed to improve the lives of those affected by this disorder.

Our study revealed, for the first time, the involvement of the imbalanced RAS in
the pathomechanisms of ASD, and the correction of this imbalance with AST serves as
an in vivo “proof of concept”. By redirecting the RAS toward the beneficial arm, as ev-
idenced by the strengthening of the ACE2/Ang1-7/Mas receptor axis, AST effectively
diminished the unwanted effects of Ang II and the Notch1/NICD/NF-κB inflammatory
cascade. Simultaneously, AST increased the expression of the neurogenesis marker PI3K
and improved the p35/p25 ratio. The interplay between these pathways reduced astroglio-
sis and p-tau, which play a critical role in ASD pathogenesis. Furthermore, on a behavioral
level, these events led to an improvement in sociability/social preference and a decrease
in stereotypies/perseverative behavior, which are cardinal features of ASD. Additionally,
AST facilitated the repair of the histological structure and enhanced neuronal survival, as
indicated with H & E stain, Nissel stain, and electron microscopy (Figure 11).

While previous research has linked genetic variations in ACE to autism [37], this
study is the first to examine the role of the Yin/Yang arms of RAS in in utero VPA-exposed
animals. The results showed that ASD is associated with a surge in Ang II, the surrogate
marker of the classical arm of RAS, and a significant suppression of the good RAS arm
ACE2/Ang1-7/MasR. It is worth noting that although there are no existing data on the
effect of AST on central cortical RAS, our findings on the inhibitory effect of AST on Ang
II can be explained by the work of Gao et al. [70]. They reported that chronic infusion
of AST in the hypothalamic paraventricular nucleus in spontaneously hypertensive rats
reduced the expression of ACE and AT1R and pointed to the ability of AST to hinder both
the synthesis of Ang II and its effect.

Moreover, the effect of AST on the neuroprotective arm of the RAS was investigated to
provide a comprehensive understanding. The results revealed that the Yang arm of the RAS
was significantly activated by treatment with AST to provide one possible explanation for
its neuroprotection in ASD pups. Interestingly, the central role of AST on the beneficial axis
of the RAS aligns with its central effect observed in spontaneously hypertensive rats [70],
where in addition to inhibiting Ang II, the chronic infusion of AST enhanced the expression
of ACE2 and the Mas receptor, reinforcing our findings. The modulatory effect of AST
on the RAS may partly contribute to the improved behavior observed in our study, as the
disturbed Yang arm of the RAS has previously been implicated in impaired cognition [71].
ACE2 knockout rodents have shown impaired cognitive functions, while upregulation of
the Mas receptor has been found to improve social interaction and emotions [72]. These
findings highlight the ACE2/Ang1-7/Mas receptor pathway as a potential target for
managing disturbed behavior in ASD.

The corrective effect of AST on the beneficial aspect of the RAS can be partially
attributed to the activation of PI3K, as observed in our study. This is noteworthy because
the neuroprotective role of the PI3K/Akt pathway relies, in part, on the inactivation of
Ang II, as demonstrated in a model of hypertension-induced cardiac hypertrophy [73]
and the stimulation of the Ang1-7/Mas receptor axis. The latter has been reported to
activate PI3K [74], which subsequently counteracts the harmful effects of the Ang II/AT1R
axis [75]. Indeed, a previous study strengthened our finding since weakening this protein
and its downstream trail, Akt-Bcl-xL, enhanced cell death [18]. Furthermore, in a VPA-
induced autistic rat model, Nicolini and coauthors [76] found that the PI3K/AKT trajectory
was downregulated. Similarly, in BTBR mice, Luo et al. [77] found that the PI3K/Akt
axis was inhibited but reactivated when moesin was overexpressed to mitigate autism-
associated behaviors.
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Figure 11. Illustrating diagram representing the effect of AST through interaction with different
signaling proteins to mitigate ASD. AST increased Ang 1-7 by binding to its receptor Mas, inhibited
Ang II, and activated ACE2 to increase the formation of Ang 1-7 to abate p-tau. In addition, AST and
activated Ang 1-7/Mas receptor activated the survival proteins PI3K and p35 to decrease p-tau and
GFAP. AST inhibited the inflammatory cascade Notch1/NICD-1/NF-κB to lessen GFAP and p-tau.
Ang: angiotensin; ACE2: angiotensin-converting enzyme 2; GFAP: glial fibrillary acidic protein;
Notch 1: neurogenic locus notch homolog protein 1; NICD-1: Notch intracellular domain; NF-κB:
nuclear factor kappa B p65; PI3K: phosphoinositide 3-kinase; p-tau: phosphorylated tau protein. The
green arrows are indication of autistic effect while red inhibitory lines are indication of AST effect.

In addition to rebalancing the RAS, AST treatment has been shown to curb the in-
flammatory Notch1/NICD-1/NF-κB cascade, shedding light on another neuroprotective
mechanism against the ASD model. It is noteworthy that the dysfunctional Notch pathway
has a potential correlation with autism. Consistent with our findings, it has been reported
that VPA-induced ASD activates the Notch1 signaling, and its inhibition alleviates autistic-
like behavior [78]. In addition, activated Notch1 cascade stimulates its downstream target
NF-κB, which has been linked to autism, as documented from post-mortem tissue analysis
of autistic patients showing increased NF-κB expression [79]. An interplay between Notch1
and NF-κB has been recognized since NF-κB, in addition to being activated by Notch1, en-
hances the expression of Jagged-1 to activate the Notch signaling in recipient cells [80]. Our
findings demonstrated that AST inhibits the Notch1/NICD-1/NF-κB pathway, explaining
the increased survival of neurons in the ASD model.

Moreover, the inhibition of NF-κB has been reported to alleviate synaptic deficits
associated with ASD [81]. A previous study explained the inhibitory effect of AST on
NICD-1 by enhancing the protein numb homolog (Numb), which degrades NICD-1 prote-
olytically [82]. Additionally, the ability of AST to downregulate NF-κB protein expression
aligns with its effects in a model of subarachnoid hemorrhage [83], supporting its potential
as an anti-autistic agent by reducing one of the inflammatory markers associated with
autism [79].
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The current study highlighted the cross-communication and integration between the
RAS and the Notch signaling pathways. In a previous report, Ang II, which is activated by
ACE [84], was reported to stimulate both the Notch system [45] and its downstream target
NF-κB [85]. Mutually, increased levels of Ang II have been shown to cause Notch1 cleavage
and subsequent release of NICD-1 in podocytes [45]. Thus, the reduction in the cortical
Ang II by AST is considered a novel culprit for deactivating the Notch1/NICD-1/NF-κB
axis, which together intermingles to mitigate autism.

Since p-tau is a characteristic trait of ASD and its reduction mitigates autism key
features [86], the AST modulatory effect on the previous markers explains the reduced
p-tau. One contributing factor to the observed decrease in tau levels is the AST-mediated
inhibition of Ang II since activation of its synthesizing enzyme ACE is associated with an
increase in p-tau, an effect that can be reversed by inhibiting the converting enzyme [32].
Additionally, the aptitude of AST to augment the p35/p25 ratio, as observed in our study,
partakes in the activation of CDK5 to promote neurogenesis [87]. Similarly, the activation of
PI3K plays a role in tau inhibition by inactivating GSK3β [19,26], which is another reason
for the inhibited p-tau. Notably, inflammatory Notch1 signaling was reported to increase
p-tau in an AD model, and turning off this cascade was shown to reduce this marker [88].
Therefore, the ability of AST to modulate these mechanisms offers a potential explanation
for the inhibited p-tau levels observed in our study.

Increased astrogliosis associated with an increase in GFAP is another participant in
ASD [89] that is partly linked to the activated inflammatory Notch1/NICD-1/NF-κB axis.
Notably, the dysfunctional Notch pathway has a potential correlation with autism [78], and
via its pleiotropic actions, the activated Notch/NICD axis has been reported to promote
the formation of GFAP [41] by activating NF-κB p65 [90]. Therefore, AST extends the
anti-autistic mechanisms via reducing astrogliosis by repressing Notch1 signaling and
NF-κB, as presented in our findings. Moreover, the inhibitory effect of AST on NF-κB was
recounted earlier in a model of subarachnoid hemorrhage [91], supporting our results. The
modulation of RAS may play a role in the reduced GFAP immunoreactivity, as documented
earlier, where blocking AT1R with losartan [92] or inhibiting ACE with perindopril [93] in
models of AD have inhibited this astrogliosis marker.

In conclusion, our study unveiled novel molecular mechanisms through which AST
can partially improve the core behavioral abnormalities associated with ASD. Our results
demonstrated that AST effectively mitigates tauopathy by activating the neuroprotective
ACE2/Ang1-7/Mas receptor pathway and the neuroprotective proteins PI3K p85/p55 and
p35. Moreover, AST, by inhibiting AngII and the Notch1/NICD/NF-κB pathway, leads
to reduced levels of p-tau and astrogliosis, as evidenced by decreased GFAP expression.
Therefore, by modulating these intersecting pathways, AST plays a crucial role in amelio-
rating behavioral disabilities and improving the compromised cortical structure observed
in VPA-induced ASD. Consequently, our findings suggest that targeting both arms of
the RAS, specifically the Ang1-7/Mas receptor and AngII, as well as the inflammatory
Notch1/NICD/NF-κB signaling pathway, could serve as potential therapeutic approaches
for treating ASD.

It is important to acknowledge the challenges and limitations of the present study.
While this study highlighted the role of the two arms of RAS in the pathophysiology of ASD,
it did not encompass the contribution of other angiotensin metabolites to ASD. Therefore,
further validations may be needed to establish the role of the examined angiotensin arms
and metabolites in the pathophysiology of ASD and its associated abnormal behaviors.
However, these limitations should not overshadow the merits of this study. It is pioneering
in investigating the involvement of dysregulated RAS in the pathological environment
of ASD.

Furthermore, it sheds light on the interaction between the RAS and Notch signaling
pathways, providing a deeper understanding of the complex mechanisms underlying ASD.
For future clinical applications and drug development, the findings emphasize the need to
consider RAS modulators as potential treatments for ASD. Additionally, the effectiveness of
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anti-inflammatory drugs that inhibit the inflammatory Notch1/NICD-1/NF-κB signaling
pathway suggests they could be promising therapeutic approaches for ASD treatment.

5. Conclusions

Preclinical studies are essential to gain insights into the disease mechanism and to
test novel interventions. Despite its cardiovascular role, the RAS attracted attention as a
target in neuronal disorders. Recent reviews highlighted the RAS’s crucial role in AD by
hindering Aβ plaque and p-tau accumulation, improving symptoms, and slowing disease
progression. The promising preclinical results extended to clinical trials, where blocking
AT1R reduced stroke risk, improved cognition, and offered neuroprotection in AD patients.

Considering the similarities between AD and ASD, we evaluated the role of RAS in an
ASD VPA acid model and studied the possible role of AST in correcting imbalanced arms
of the RAS. Our results uncovered a new pathomechanism of ASD and a neuroprotective
role for AST to improve behavior. AST was found to mitigate tauopathy and astrogliosis
by activating the neuroprotective arm ACE2/Ang1-7/Mas receptor pathway, as well
as the neuroprotective proteins PI3K p85/p55 and p35 while inhibiting AngII and the
Notch1/NICD/NF-κB pathway. Although our preclinical study supported our hypothesis,
additional experiments involving the modulation of several RAS molecules and their
targeted administration to the brain are necessary in the future to validate this strategy.
Furthermore, clinical trials are still required to substantiate the approach.
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Abbreviations

3-CT Three chamber test
ACE2 Angiotensin-converting enzyme 2
AD Alzheimer disease
Akt/PKB Protein kinase B
Ang1-7 Angiotensin 1–7
Ang II Angiotensin 2
ASD Autism spectrum disorder
AST Astaxanthin
CDK5 Cyclin-dependent kinase 5
GD Gestational day
GFAP Glial fibrillary acidic protein
MasR Mas receptor
MBT Marble burying test
NF-κB p65 Nuclear factor Kappa B p65
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NICD Notch intracellular domain
Notch1 Neurogenic locus notch homolog protein 1
OFT Open field test
PI3K p85/p55 Phosphoinositide 3-kinase p85/p55
PND Postnatal day
p-Tau Phosphorylated tau protein
RAS Renin angiotensin system
SI Sociability index
SNI Social novelty preference index
VPA Valproic acid
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