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Abstract: With the discovery of induced pluripotent stem cell (iPSCs) a wide range of cell types,
including iPSC-derived cardiomyocytes (iPSC-CM), can now be generated from an unlimited source
of somatic cells. These iPSC-CM are used for different purposes such as disease modelling, drug
discovery, cardiotoxicity testing and personalised medicine. The 2D iPSC-CM models have shown
promising results, but they are known to be more immature compared to in vivo adult cardiomyo-
cytes. Novel approaches to create 3D models with the possible addition of other (cardiac) cell types
are being developed. This will not only improve the maturity of the cells, but also leads to more
physiologically relevant models that more closely resemble the human heart. In this review, we
focus on the progress in the modelling of inherited cardiac arrhythmias in both 2D and 3D and on
the use of these models in therapy development and drug testing.
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1. Introduction

Since the discovery of induced pluripotent stem cells (iPSCs) in 2006 by Takahashi
and Yamanaka [1], iPSCs have increasingly gained popularity in the scientific field; not
only to perform stem cell research but also to create somatic cells derived from these iPSCs
such as neurons [2], cardiomyocytes [3] and hepatic cells [4] amongst many others. The
numerous advantages, such as access to difficult-to-access human cell types, the develop-
ment of patient-specific cell types, decreased need for laboratory animals and less ethical
concerns compared to embryonal stem cells (ESC), are well-known. However, there are
also some drawbacks on the use of these derived cells such as variability, low differentia-
tion efficiency and the immature state of the differentiated cells. Nevertheless, iPSC-de-
rived cells are indispensable in the current cell-biology research community.

In 2009, Zwi et al. presented their work on the development of a way to differentiate
iPSCs into cardiomyocytes [3]. Their iPSC-derived cardiomyocytes (iPSC-CM) expressed
the cardiac specific markers cardiac troponin-I and sarcomeric a-actinin, were electro-
physiologically active and they displayed the expected response to the admission of dif-
ferent drugs. Ever since, an increasing number of papers have been published using iPSC-
CM to model diseases, perform drug and cardiotoxicity testing and develop new thera-
pies.

In this review, we take a closer look at these recent developments focusing on cardiac
arrhythmia disorders and the transition from 2D to 3D culture models (Figure 1).
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Figure 1. Schematic representation of different applications of iPSC-cardiomyocytes.

2.iPSC-Derived Cardiomyocytes as Inherited Cardiac Arrhythmia Models

Inherited cardiac arrhythmias are characterised by the dysfunction of cardiac ion
channels, their accessory proteins or cell-cell contact proteins which can lead to ventricu-
lar arrhythmias and potential sudden cardiac death. The most well-known inherited car-
diac arrhythmias include long QT syndrome (LQTS), Brugada syndrome (BrS), catechol-
aminergic polymorphic ventricular tachycardia (CPVT), short QT syndrome (SQTS) and
arrhythmogenic cardiomyopathy (ACM). These diseases are caused by pathogenic vari-
ants in genes encoding components or accessory elements of these ion channels or desmo-
somes. The type of mutation (loss-of-function (LOF) or gain-of-function (GOF)) is also im-
portant in defining the disease outcome.

The arrhythmias mostly occur in the ventricles, making ventricular cardiomyocytes
the most relevant cell type to investigate. Most of the currently used iPSC-CM differenti-
ation protocols generate a mixture of atrial, ventricular and sinoatrial pacemaker cardio-
myocytes, but with a clear overrepresentation/higher presence of ventricular cells. Ven-
tricular action potentials (AP) are characterised by a more negative maximum diastolic
potential, a rapid AP upstroke, a long plateau phase and an APD90/APD50 ratio <1.3/1.4
[5-7]. Itis also possible to differentiate iPSCs directly into the specific cardiomyocyte types
[8].

In 2018, Garg et al. reviewed the published iPSC-CM models of several channelopa-
thies [9] and Pan et al. updated this review with the addition of ACM (Table S1 (Supple-
mentary Materials)) [10]. Here, the overview is updated (see Table 1) with more recently
published models.

Table 1. overview of published 2D iPSC-CM cardiac arrhythmia disease models.

Causal Gene Experimental

Syndrome Variant Approach Cellular Phenotype Ref.

Prolonged AP, reduced Ixscurrent, ER reten-
KCNQ1 PC IF tion, increased susceptibility to catechola- (6]
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Prolonged APD50 and APD90, beat irregular-
LQTS KCNH2 p.(Thro83lle)  PC, MEA, WB, Cl ity, EAD, decreased IK.r dens'ity, red.uced. [11]

channel surface expression, higher diastolic
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SCN5A Reduced Ina peak current, persistent Ina, re-
Brs/LQT p-(1798insAsp) PC, duced Vmax, prolonged APD90 [13]
SCN5A
p-(Arg620His)+ Reductions in Ina and Vmax of AP, increased
p-(Arg811His) PC, CI burden of triggered activity, abnormal cal- [14]
SCN5A cium transients and beating interval variation
(c. 4190delA)
Reduction in peak Icat, acceleration recovery
of inactivation and altered voltage dependent
CACNEB? inactivation, reduced APA and Vmax, re-
PC, CI duced protein expression of the CACNB2 [15]
p-(Ser142Phe) gene, increased arrhythmia-like events, sup-
BrS pression of arrhythmic events by quinidine
and bisoprolol
SCNBA Reduction in peak Ina density, reduced APA
p.(Vall405Met) SCNBI PC, Cl and Vmax, prolonged Al?, more proarrhythmic [16]
p.(Ala197Val) events (EAD, DAD—I.lke events.), reduced
Navl.5 protein expression
Reduced Ina and a delayed sodium channel
SCN5A activation, slowed AP upstroke velocity, re-
p.(Ser1812X) PC, IF, MEA duced FP and CV, enhanced I and an aug- [17]
mented Icat window current, reduced Navl.5
protein expression
KCNH? Shortening APD, Increased Ix: tail current, ar- [18,1
PC, IF, CI rhythmic events, increased hERG expression, /
SQTS p-(Asno88Lys) re-entrant arrhythmias 7l
KCNH?2 PC WB Increased Ik, shortened APD, beat-to-beat [20]
p-(Thr618lle) ’ variability, increased membrane expression
RYR2 Arrhythmias, DAD, forskolin can rescue
p-(Phe2483Ileu) PC, MEA, O these phenotypes [21]
RYR? Longer Ca? sparks, higher diastolic Ca?* lev-
CI els, irregular beating, SR calcium leak and [22]
p-(Phe2483lle) lower load levels
RYR? Higher beat rate, diastolic SR Ca? leak,
AFM, CI, PC, weaker force contraction during stress, APD,  [23]
p-(Asp3638Ala) Vmax and APA decreased during stress
RYR2 . .
b.(Argl76GIn) CI Aberrant diastolic SR Ca?* release, EAD [24]
RYR2
.(GIn4201Arg): decrease mRNA levels
CPVT p-(GIn4201Arg) PC, CI, qPCR, WB R§R2, protein s%milar, All mutants: longer [25]
giﬁﬁiﬁg;ﬁ; sparks p.(Arg420GIn): lower spark frequency
RYR2
p-(Phel3Leu) CILWB, qPCR Increased Ca? amplitude and upstroke veloc-
p.(Leul4Pro) i\/IE Al LEAP " ity, decrease in calcium transient duration, ir-  [26]
p-(Argl5Pro) regular beating, decreased beat rate
p-(Argl76Gln)
DADs, oscillatory arrhythmic, after-contrac-
CASQ2 tions and diastolic [Ca2l rise, less organised
p-(Asp307His) PC, CL EM myofibrils, enlarged SR cisternae and re- (271

duced number of caveolae
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Reduction in rate of spontaneous cell contrac-
PKP2 tion and amplitude under nifedipine, re-
PC, CI, qPCR, IF ) e 28
p-(Leu614Pro) e duced expression plakophilin2 and plakoglo- [28]

bin

ACM

Lower APA and Vmax, decreased peak In,

DSG2
SG IF, PC, CI, qPCR  Incx, Lo, Is, and Ikate, increased Ikr, more ar-  [29]
p-(Gly638Arg) .
rhythmogenic events
DSG2 Upregulation of SK4 and NDPK-B, enhanced
p.(Gly638Arg) PC, WB, qPCR SK4 channel currents, pacemaker activity and  [30]

more arrhythmic events

Adapted and updated from Garg et al. (2018) and Pan et al. (2021) [9,10]. PC: patch clamp; IF: im-
munofluorescence; MEA: Multi electrode array; WB: Western Blot; CI: Calcium imaging; AFM:
atomic force microscopy; AP: action potential; Iks: slow delayed rectifier K+ current; ER: endoplas-
mic reticulum; APD50-90: Action potential duration at 50%—90% of repolarisation; EAD: early after
depolarisation; Ix:: rapid delayed rectifier K+ current; IcaL: L-type calcium current; APA: action po-
tential amplitude; Vmax: maximum rate of rise of the action potential; Ina: sodium current; DAD:
delayed after repolarisation; FP: field potential; CV: conduction velocity; Lo: transient outward cur-
rent; SR: sarcoplasmic reticulum; EM: electron microscope.

2.1. Long QT Syndrome

Long QT syndrome has a prevalence of 1 in 2000 and is clinically diagnosed by a
prolongation of the QT interval (heart rate-corrected QT interval 2480 ms) on the electro-
cardiogram (ECG) [31]. Currently, there are 17 subtypes of LQTS based on the gene in-
volved and the most common subtypes are LQT1, LQT2 and LQT3, caused by mutations
in the KCNQ1, KCNH2 and SCN5A genes, respectively [32]. Over the years, several LQTS
iPSC-CM models have been published, the first in 2010 by Moretti et al. [6]. The latter
investigated patient-specific iPSC-CM of three related LQT1 patients harbouring a
p-(Argl90Gln) variant and showed a prolonged action potential duration at 90% of re-
polarisation (APD90) and lower potassium current densities compared to control individ-
uals. This corresponded to the phenotype observed in the patients. Since then, several
papers have been published describing LQTS iPSC-CM models of known pathogenic mu-
tations (reviewed by Garg et al. [9], Table S1). More recently, LQTS iPSC-CM models have
been used to investigate the pathogenicity of variants of uncertain significance (VUS). For
example, Garg et al. created a LQT2 iPSC-CM model harbouring the VUS p.(Thr983lle) in
the KCNH2 gene. Using CRISPR/Cas9 technology, they developed both a homozygous
VUS cell line as well as an isogenic control line. Both patch-clamp and multi-electrode
array (MEA) experiments showed prolonged APD50, APD90 and field potential duration
(FPD) in the homozygous as well as in the heterozygous VUS iPSC-CMs . In addition,
more beat irregularity or early after depolarisations (EADs) were observed and the phe-
notype of the homozygous VUS iPSC-CMs resembled that of the known pathogenic
p-(Ala561Val) KCNH2 variant. Potassium (Ikr) current was decreased in the VUS cell line
and restored to normal current densities in the isogenic control [11]. Chavali et al. took a
different CRISPR/Cas9 approach when they introduced a VUS p.(Asn639Thr) in the
CACNAIC gene into iPSCs to create a patient-independent iPSC model. Prolonged APD
and FPD were recorded due to a slower inactivation of the Cav1.2 current. As this cellular
phenotype recapitulated the patient phenotype, the authors reclassified the VUS as prob-
ably pathogenic [12].

2.2. Brugada Syndrome

Brugada syndrome is a cardiac arrhythmia with a prevalence ranging from 1 in 500
to 1in 2000 and patients display a specific ST-segment elevation on the ECG. Many genes
encoding ion channels and accessory proteins have been associated with the disease but
only one is currently considered as causal, namely SCN5A, encoding the cardiac sodium
channel Nav1.5. Mutations in SCN5A account for up to 20-25% of the BrS cases [33,34].
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The first report on iPSC-CM in BrS was published by Davis et al. They modelled an iPSC-
CM line harbouring a SCN5A mutation p.(1798insAsp) from a patient with an overlap
syndrome of LQT/BrS and conduction disorder. Reduced and persistent sodium currents,
slower upstroke velocity and prolongation of APD90 were observed in patients’ iPSC-
CMs but not in controls, mimicking the LOF and GOF phenotype of this mutation [13].
Later, two iPSC-CM lines from BrS patients with SCN5A (p.(Arg620His)+ p.(Arg811His)
and c. 4190delA) mutation were evaluated by Liang et al. Both cell lines showed abnormal
action potentials (AP) compared to the controls as well as a reduced sodium current [14].
In 2021, Nijak et al. published a review on iPSC-CM models generated of BrS patients,
included in Table S1 [35]. More recently, extra reports on BrS iPSC-CM models harbouring
variants in SCN5A (p.(Vall405Met), p.(Ser1812X)), SCN1B (p.(Alal97Val)) and CACNB2
(p-(Ser142Phe)) were published. Reduced expression of the encoded proteins was ob-
served as well as reduced sodium or calcium currents leading to reduced action potential
amplitude (APA) and maximum upstroke velocity (Vmax) but prolonged APDs [15-17].
Calcium imaging showed more proarrhythmic events such as EADs and DADs (early and
delayed after depolarisations) in BrS cell lines compared to control cell lines [16]. A SCN5A
p-(Ser1812X) variant resulted in reduced conduction velocity and proarrhythmic events
[17].

2.3. Short QT Syndrome

Short QT syndrome is diagnosed by a shortening of the QT interval on the ECG and
has a prevalence ranging from 1 in 1000 to 1 in 5000 [36]. Causal GOF mutations are mostly
found in potassium channel genes such as KCNH2, KCNQ1 and KCNjJ2 [37]. The first iPSC-
CM model of SQTS was published by El-Battrawy et al. in 2018 where one patient cell line
with a p.(Asn588Lys) mutation in the KCNH2 gene was compared to two control cell lines.
They demonstrated an upregulation of the hERG channel expression and increased po-
tassium currents (Ikr) resulting in a shortening of the action potential. During calcium-
handling experiments, irregular beating, DAD-like and EAD-like arrhythmic events were
recorded more in patient iPSC-CMs compared to control iPSC-CMs [18]. Later, the same
mutation and another KCNH2 p.(Thr618lle) variant were modelled in iPSC-CMs and sim-
ilar electrophysiological and molecular results were obtained [19,20]. An iPSC-based car-
diac cell sheet model was created by Shinnawi and colleagues and an increase in suscep-
tibility to the development of re-entrant arrhythmias recorded [19]. The p.(Thr618lle) var-
iant did not give rise to any arrhythmic events. However, there was an increased beat-to-
beat variability in the patient cell line [20].

2.4. Catecholaminergic Polymorphic Ventricular Tachycardia Type

CPVT most often occurs in young adults and athletes and is triggered by (3-adrener-
gic stimulation related to exercise or emotional stress. It is mainly caused by mutations in
Ca?-handling related genes such as RYR2 and CASQ?2 and has an estimated prevalence of
1 in 10.000 [37,38]. Both proteins are essential in the Ca?* handling in heart and muscle
cells, responsible for the proper contraction of the cells. Different iPSC-CM CPVT models
have been developed (reviewed by Garg et al. in 2018 [9], included in Table S1). The first
CPVT iPSC-CM model from a patient carrying a RYR2 pathogenic variant (p.Phe2483Ile)
was published in 2011 by Fatima et al. The analysis revealed more DAD events in patient
iPSC-CMs compared to control iPSC-CMs and embryonal stem cell-derived cardiomyo-
cytes (ESC-CM), recapitulating the CPVT phenotype. The underlying aberrant sarcoplas-
mic reticulum (SR) Ca?* release in the iPSC-CMs is responsible for the development of
these DADs and arrhythmias [21]. The same variant was modelled using CRISPR/Cas9 by
Wei et al. and showed longer calcium sparks in both hetero- and homozygous iPSC-CMs,
larger SR Ca?* leak levels and smaller load levels which is consistent with higher diastolic
Ca? levels [22]. In 2018, Acimovic et al. published an iPSC-CM model of a CPVT patient
with a RYR2 p.(Asp3638Ala) variant. They found an increase in beat rate in the patient
cell line compared to both iPSC- and ESC-derived CMs and a weaker response in force
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contraction upon stress induction. Calcium handling was normal under basal conditions,
but upon stress more irregular Ca?-release events in CPVT iPSC-CMs were recorded.
Patch clamp data revealed a prolongation of the AP in basal conditions while during
stress, APD, Vmax and the amplitude were lower in CPVT CMs compared to controls [23].
Several other reports on RYR2 variants, either from patient-specific [24,26] or
CRIPSR/Cas9-induced iPSC-CMs [25], show similar aberrant Ca?* handling although mu-
tant lines also differ from each other, for example in the magnitude of the Ca?* leak or SR
Ca? content [24-26]. Two CASQ2 (p.(Asp307His)) patient-specific iPSC-CM models
showed DADs, oscillatory prepotentials, after-contractions and diastolic [Ca?]i rises sim-
ilar to RYR2 CPVT models [27].

2.5. Arrhythmogenic Cardiomyopathy

ACM, previously known as arrhythmogenic right ventricular cardiomyopathy
(ARVC), is a rare disease (1 in 5000) that is characterised by fibrofatty myocardial replace-
ment, leading to impaired ventricular systolic function and ventricular arrhythmias. Mu-
tations in desmosomal genes such as PKP2, DSG2, DSP, DSC2 and JUP play a prominent
role in the development of the disease [39]. The first model of ARVC was published in
2013 by Ma et al. They created a patient-specific iPSC-CM model with a PKP2
p-(Leu614Pro) mutation and showed downregulation of the expression of plakophilin and
plakoglobin but no other desmosomal genes [28]. El-Battrawy and Buljubasic studied the
same patient-derived iPSC-CM ACM model harbouring a mutation in the DSG2 gene
(p-(Gly638Arg)) [29,30]. The amplitude and the upstroke velocity of the AP were de-
creased as well as peak INa, Incx, Lo, Isk and Ixkate, while Ixk: on the contrary was enhanced.
Mutant iPSC-CMs showed more arrhythmogenic effects compared to control cells [29]. In
addition, Buljubasic further investigated the underlying molecular mechanisms and re-
vealed upregulation of SK4 channels and NDPK-B resulting in increased Isks, pacemaker
activity and arrhythmic events [30].

3. From 2D to 3D

In the iPSC-CM field, immaturity of the created iPSC-CM is a well-known problem.
As the cardiomyocytes often only stay in culture for 30 days or less, it is not surprising
that the phenotype of these cells does not fully recapitulate the phenotype of a mature
native cardiomyocyte that has been developing for many years. Ahmed et al. (2020) re-
viewed the currently applied methods of maturation and pinpointed the main differences
between fetal-like iPSC-CMs and adult cardiomyocytes. Methods to promote maturation
include prolonged culture, addition of hormones (e.g., thyroid hormone) or cellular en-
ergy source (e.g., fatty acids such as palmitate, oleic acid, linoleic acid), co-culture, extra-
cellular matrix, mechanical or electrical stimulation and 3D culture [40]. The latter is not
only beneficial for the maturity of the cardiomyocytes but also enables the creation of 3D
models that are more similar to native heart tissue. The heart consists of cardiomyocytes,
but also various other cell types are present in the tissue such as endothelial cells (EC),
fibroblasts (FB), pericytes, smooth muscle cells, immune cells (myeloid and lymphoid),
adipocytes, mesothelial cells and neuronal cells [41]. Meanwhile, Pinto et al. found that
CMs accounted for only 25%-35% of the cells in the heart, ECs for 60% and FBs for less
than 20%; Litvinukova found CMs represented 30% to 50% of the cells in atrial and ven-
tricular samples, respectively, while ECs represented 10% and FBs 20% [41,42]. Adding
these extra cell types to the model will make it even more physiologically relevant and
likely more suitable for modelling pathological conditions and downstream applications
such as drug or cardiotoxicity screening.

Below, we will discuss the development from 2D to 3D iPSC-CM cultures with or
without other cell types using scaffold-free and scaffold-based techniques.

3.1. Scaffold-Free 3D Culture
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One method to create a 3D cell culture is the scaffold-free hanging droplet method in
which iPSC-CMs are placed in a droplet in an ultra-low attachment plate with [43,44] or
without [45,46] the addition of other cell types such as cardiac fibroblasts and endothelial
cells. Beauchamp et al. and Ergir et al. reported a long-term stable 3D model of iPSC-CMs
that was able to respond to electrical, pharmacological, and physical stimuli but Ca?* dyes
only partially penetrated the culture and the CMs still displayed more fetal-like features
such as shorter sarcomeres [45,46]. Sharma et al. combined iPSC-CM with human cardiac
fibroblasts (HCFs) and human coronary artery endothelial cells to create cardiac spheroids
containing a cardiac endothelial cell network that recapitulated better than the in vivo
human heart [44].

Organoids are mainly formed by differentiating iPSC directly to CM (and other cell
types) in ultra-low attachment plates. Drakhlis et al. generated a model of heart-forming
organoids (HFO) by differentiating free-floating iPSC aggregates into cardiac organoids
that resemble the early embryonic heart as they are composed of a myocardial layer and
endocardial-like cells. They were able to model a NKX2.5 KO which resulted in similar
cardiac malformations such as decreased cardiomyocyte adhesion and hypertrophy as
observed in in vivo mouse studies [47]. A similar HFO protocol by Lewis-Israeli et al.
using different small molecules’ concentrations and adding one WNT pathway modula-
tion step enabled the generation of multiple cardiac-specific cell lineages such as endo-
and epicardial cells, endothelial cells and cardiac fibroblasts [48]. Lee at al. started from
embryonic bodies and generated chamber-forming HFOs. RNA-seq revealed that they
more closely resembled the fetal heart than adult heart tissue, but here as well, several cell
types were generated [49]. As such, a drawback of this technique is that the iPSC-CMs still
display an immature phenotype but the HFOs are well suited to studying cardiac diseases
linked to development.

Another scaffold-free method is used to create cardiac microtissues (cMT) where sev-
eral (previously generated) cell types (CMs, ECs, FBs, ...) are combined. Giacomelli et al.
combined iPSC-derived ECs, iPSC-derived cardiac FBs and iPSC-CMs to form a microtis-
sue displaying mature iPSC-CM ultrastructures such as elongated tubular myofibrils and
T-tubule-like structures [50]. RNA-seq indicated a mature expression profile of the iPSC-
CMs comparable to that of adult CMs. Electrophysiological maturation was proven by the
presence of the typical AP notch, although this has also been observed in 2D cultures
[17,51]. As a proof-of-concept they created a cMT consisting of healthy iPSC-CMs and
iPSC-ECs combined with mutant cardiac FB of an ACM patient with a PKP2 (c.2013delC,
p-(Lys672ArgfsX12)) mutation (Table 2) and found reduced Cx43 expression in ACM cMT
as well as arrhythmic behaviour [50], highlighting the importance of the presence of these
non-myocytes in the model. In another paper, a LQTS cMT harbouring a KCNQ1
p-(Arg594Gln) variant, showed a prolonged field potential compared to wild-type cMT
[52] proving that the cMT can recapitulate the disease phenotype (Table 2). However, as
2D models already showed this phenotype, the MT model was not of specific added value
in this case.

Table 2. Overview of published 3D iPSC-CM arrhythmia models.

Disease/Gene/
3D Model . Cellular Phenotype Ref.
Variant
ACM
. Lower Cx43 expression and arrhythmic be-
Cardiac PKP2 . .
) ) haviour of ACM cMT consisting of control [50]
Microtissue (c.2013delC, .2
CM and EC and ACM cardiac fibroblasts
p-(Lys672ArgfsX12))
. LQTS Prolonged field potential duration (FPD), f3-
Cardiac . ) )
) ) KCNQ1 adrenergic stimulation shortened the RR in- [52]
Microtissue

p.(Arg594GlIn) terval and decreased the FPD
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Engineered LQTS APD prolongation (via ArcLight), re-entrant
heart tissue KCNH2 arrhythmic activity after Ixr blocking with  [53]
p.(Ala614Val) dofetilide
Engineered CPVT More [Ca2+]i transient abnormalities and ar-
heart tissue CASQ2 rhythmias compared to control EHT but  [53]
p-(Asp307His) less than single cell CPVT iPSC-CM

3.2. Scaffold-Based 3D Culture

Another frequently used method is scaffold-based culture. These scaffolds consist of
(decellularised) extracellular matrix (ECM) [54], natural or synthetic polymers [55,56] and
can be combined as a hydrogel in an organised well-defined shape or in certain orienta-
tions [57]. Fong et al. tested the effect of adult and fetal extracellular matrix from decellu-
larised bovine adult and fetal heart tissue on the maturity of the CMs in both 2D and 3D
cultures. Adult heart ECM improved maturation, demonstrated by increased expression
of several calcium-handling genes and enhanced calcium signalling, both in 2D and 3D
culture with the highest expression levels observed in 3D cultured iPSC-CMs. However,
there was no improvement on the formation of T-tubules [54].

In engineered heart tissue (EHT) iPSC-CMs are grown on hydrogel scaffolds
wrapped around two flexible pillars that have the ability to mechanically stimulate the
cells and improve maturation. Several published models indeed prove that CMs grown
in EHT present more mature electrophysiological properties such as action potential am-
plitude and upstroke velocity and more mature rod-shape morphology and sarcomere
alignment [58]. Expression profiles as well as the cardiac ultrastructure, bioenergetics and
t-tubule formation of stimulated EHT are more in line with adult cardiac tissue then fetal
cardiac tissue [59]. To improve maturation even more, Lu et al. induced progressive
stretch on the EHT which led to higher contractility and passive elasticity, more mature
excitation/contraction coupling and a higher ratio of beta-myosin heavy chain (MHC) by
alpha-MHC mRNA [60]. Goldfracht et al. combined the use of ECM with EHT, and in
comparison, using a 2D model they found an increased expression of cardiac-related
genes and the cardiomyocytes were arranged anisotropically and developed relatively
elongated and oriented cell alignments. They created a LQTS2 (KCNH2 p.(Ala614Val))
and CPVT2 (CASQ?2 p.(Asp307His)) (Table 2) model and using voltage and calcium dyes,
AP prolongation in LQTS iPSC-CM was revealed while the CPVT cell model showed ab-
normal calcium transients and more arrhythmias under stress conditions, indicating that
these EHT models can be used to study channelopathies. In comparison with a 2D single
cell model, the EHT showed less frequent, severe or complicated arrhythmogenic activity
which is clinically more relevant as the extremely high incidence of arrhythmias as rec-
orded in a single cell model would probably be incompatible with life. Re-entrant arrhyth-
mias were not observed at baseline in the LQT-EHT but they were developed after block-
ing the Ix:, mimicking the clinical situation in LQT patients challenged with a QT prolong-
ing agent [53]. The major advantage of this technique is the maturation state of the CMs,
but special equipment for the generation of this EHT is needed, which might not be avail-
able for every lab.

3.3. Heart-on-a-chip

Heart-on-a-chip is a method to culture iPSC-CM —with or without other cell types —
in a 2D or 3D manner on a microfluidic device in a chamber with built-in channels for
fluids, microactuators and microsensors [61]. Microactuators can give either electrical or
mechanical stimuli to the cells/tissue, while the sensors record electrophysiological signals
or contraction force [61]. Heart-on-a-chip has been used for drug toxicity assessments and
maturation was shown to be improved through electrical and mechanical stimulation [62].
Although some cardiac disease models such as ischaemia and fibrosis have been investi-
gated using the heart-on-a-chip method [63] [64], to date there are no publications on its
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use for inherited cardiac arrhythmias. The technique is currently still under development
and the primary focus is on its application for drug cardiotoxicity screening. Even for this
application, there are some challenges such as standardisation, reliable tissue manufac-
turing, high throughput, high content functional readouts and high cost, that still need to
be solved before heart-on-a-chip can be more widely used [65,66].

4. Drug and Gene Therapy Testing
4.1. Cardiotoxicity Screening

A first application of iPSC-CMs and their ability to model/display/show arrhythmias
and structural pathology is testing of the cardiotoxicity of a drug under development.
Cardiotoxicity and arrhythmia induction such as life-threatening Torsade de pointes
(TdP) are a main reason for preclinical and clinical drug failure and withdrawal from the
market. In 2013, the Comprehensive in Vitro Proarrhythmia Assay (CiPA) initiative was
founded to overcome the low specificity of the preclinical studies and clinical trials at that
time [67]. One of the novel components is testing the effect of a drug in vitro in iPSC-CM.
A total of 28 compounds with known cardiac effects were tested in commercially available
iPSC-CMs using a MEA system and voltage-sensitive dyes and could be classified as high-
, intermediate- and low-risk for TdP [68]. To confirm these findings, these drugs were
tested over several laboratories/facilities, commercial cardiomyocyte types and different
MEA platforms and reproducible concentration-dependent electrophysiological re-
sponses were reported, indicating that iPSC-CMs can predict clinical QT prolongation
and/or arrhythmogenic potential of drug compounds [69-71]. Lee at al showed that addi-
tion of a contractility assay (impedance measurement) into the evaluation of cardiotoxicity
provides/allows more mechanistic insights on the drug effect [72]. As discussed above, 3D
heart-on-a-chip models are also being tested, holding promise for even better prediction
of cardiotoxic and pro-arrhythmic drug effects as they better recapitulated the clinical ef-
fects compared to 2D iPSC-CM models as they present occasionally with arrhythmias that
are not reported in adult cardiomyocytes [73,74]. Regarding inherited cardiac arrhyth-
mias, variable expressivity is a known characteristic, with many individuals who carry
pathogenic variants remaining asymptomatic throughout life. However, specific drugs
can also elicit life-threatening arrhythmias in these carriers/patients and patients are rec-
ommended to avoid taking them. Using iPSC-CM with such pathogenic variants in cardi-
otoxicity screening could be a valuable option to predict these adverse effects in a subset
of the population.

4.2. Drug Testing

In addition to cardiotoxicity, iPSC-CM can also be deployed to test compounds that
could (partially) restore the phenotype of inherited cardiac arrhythmias models (Table 3).
Two recent publications reported a 2D LQT3 (SCN5A p.(Phel473Cys)) model that was
used to test mexiletine and different analogues in their ability to reduce the prolongation
of the AP and they found that the analogues were more potent and selective in inhibiting
the late sodium current, responsible for the APD prolongation in patients. In addition,
they did not induce AP prolongation or EADs, known off-target effects of mexiletine due
to unwanted inhibition of hERG [75], and were still able to suppress arrhythmias [76,77].
Verapamil and lidocaine were able to reduced APD in another LQT model harbouring to
variants (KCNQ1 p.(Gly219Glu)/ TRPM4 p.(Thr160Met)) [78].
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Table 3. Overview of published drug testing in iPSC-CM arrhythmia models.

Disease
Drug Mode of Action Gene Effect on Phenotype Ref.
Mutation
Mexiletine: Ina inhibition and APD short-
ening at lower dose but modest prolonga-
tion at higher dose and proarrhythmic re-
. . LQT sponse
Mexiletine an- ClazsriB iii?gt};};thmm SCN5A Analogues ‘MexA2' and ‘MexA5": more po- [76,77]
Na
alogues & p-(Phe1473Cys),  tent and selective for INa. over Inar and Ik, ’
p-(Asn406Lys)  Shortening of APD and suppression of ar-
rhythmia
Analogues "13, 14, 25": shortening of APD
and no EADs
LQT
. . KCNQ1
Ve.rapar'nll, Calc‘lum channel blocker b.(Gly219GIu)/ Reduction in APD 78]
Lidocaine Sodium channel blocker
TRPM4
p-(Thr160Met)
Telmisartan, Agonists of the PPARD Reduction in APD50, APD90 and triangu-
s LQT o
GW0742 pathway, stabilise the ac- larisation
. KCNH2 [79]
tive PKA-phosphorylated (Ala561Thr)
state of hERG p-laa
Change the voltage de- LQT L .
NS1643 pendence of inactivation KCNH2 Reductions in Alizfi’lt‘;imo and triangu- /o,
of hERG p.(Ala561Thr)
LQT
Q Trafficking variants
KCNH2 .
Traffickin Increased membrane localisation, reduced
5 cFPD and APD90, increase in Ik current
p-(Ala561Val), .. . . .
densities, reduced calcium transient irregu-
_— (IVS9-28A/G), Y
Trafficking chaperone larities and frequency
Lumacaftor ) ) i p-(Asn633Ser), ) [80,81]
during protein folding (Arg685Pro) p-(Gly604Ser): increased membrane expres-
PAATE ’ sion, no effect on APD90
p-(Gly604Ser) .
. Other variants
Synthesis . S s
Reduced calcium transient irregularities
p-(Serd28X), and frequency, no effect on cFPD
p-(Arg366X)
Increased Ikr, shortening APD/cFPD in pa-
. . LQT . . .
Type II Ixr activator (im- KCNH2 tient and control, shortened calcium transi-
ICA-105574 pairs transition to the in- p.(Thro83le) ent, at higher concentrations (10-30puM): [11,82]
activated state) p.( Alad22Thr) cessation of the spo.ntaneous calcium tran-
sients
BrS
Unknown mu-  No difference between patient and control (83]
tation
Aimaline Class IA anti-arrhythmic BrS
J drug inhibits Ina, Ito Or Ixr SCN10A Prolonged APD50 and APD90, reduced [84]
p.(Argl1268GIn)/ APA and Vmax
p-(Argl1250GIn)
BrS Reduced APA and Vmax [85]
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SCN1B
p-(Leu210Pro)/
p.
(Pro213Thr)
Cilostazol Phosphodiesterase III in- BrS Reduction in I, decreased arrhythmic
o ’ hibitors, increase Ica and SCN5A beating, no EAD- or EAD-triggered activi- [17]
Milrinone .
suppress Lo p-(Ser1812X) ties
BrS Reduced arrhythmic events and reduced
Bisoprolol Beta blocker CACNB2 variation in the beat-to-beat interval time at [15]
p-(Ser142Phe) 30nM
BrS
CACNB2 Reduced arrhythmic events [15]
p.(Ser142Phe)
BrS
SCN5A Elimination of arrhythmic events (EAD, [16]
. . p-(Vall405Met) DAD), Vmax, APA, and RMP reduced in
o Class I antiarrhythmic S
Quinidine nt blocking I SCN1B control and patients’ groups
agent, bIocking fo p.(Ala197Val)
SQT
KCNH2 Prolonged APD [20]
p.(Thr618lle)
SQT o
Reduced Vmax, prolonged APD, elimina- [18]
KCNH2 tion of arrhythmic events
p.(Asn588Lys) Y
. SQT
Toxin .
Selective Ixr blocker KCNH2 Prolonged APD [20]
BmKKx2
p.(Thr618lle)
Ivabradine, Inhibitor of the pace-
maker funny current SQT
Ajmaline, Class IA anti-arrhythmic KCNH2 Prolonged Af}? ?[ﬁ,nrl?;i:ss:trsmmber of ar- [86]
drug, inhibits Ina, Ito or Ik p.(Asn588Lys) y
Mexiletine Class 1B antiarrhythmic
drug
MiCUps ?{I;Yg Reduced number of cells displaying Ca?* [87]
1 2+
(efsevin, Mitochondrial Ca® up- p.(Ser406Leu) waves and reduced frequency of Ca
kaempferol, take enhancers waves
ezetimibe, di- CPVT
sulfiram) unknown muta- Reduced Ca?* waves [88]
tion
CPVT
A ide- 2/cal lin- - RYR2
utocamtl.de Car/ea mod.u o depend Reduced abnormal Ca? transients, reduced
2-related in- ent protein kinase II p-(Serd404Arg)/p
. N frequency of Ca? sparks, restored regular [89]
hibitory pep-  (CaMKII) inhibitory pep- .(Asn658Ser), and spontaneous Ca transients
tide (AIP) tide p.(Gly3946Ser)/ p
p.(Gly1885Glu)
. e CPVT Reduced the Ca?* spark frequency, pre-
Tetracaine de- Targeted inhibition of RYR2 vented pacing-evoked Ca?* oscillations [24]

rivative EL20

RyR2

p.(Argl76GIn)
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Nadolol,

Flecainide

Class IC anti-arrhythmic p-(Leul4Pro), sparking activity, decreased irregularities

CPVT
Non-selective beta RYR2 Reduced Ca? transient amplitude, reduced
blocker p-(Phel3Leu), spontaneous Ca? release, reduced Ca?*

[26]

agent inhibits Ina and Ik p-(Argl5Pro), in beat period and spontaneous beat rate

p.(Argl76GlIn)

Several LQT2 models, with pathogenic variants in the KCNH2 (hERG channel) have
also been used to test drugs. Telmisartan and GW(0742 are agonists of the PPAR® pathway,
which helps hERG to stabilise the PKA-phosphorylated active state of the channel open-
ing at more negative potentials. Duncan et al. tested these agonists in a patient iPSC-CM
model harbouring a KCNH2 p.(Ala561Thr) variant and found a 20% reduction in APD for
both compounds, which is comparable to the observed effect of NS1643 (also 20% APD
shortening), a known compound that reduces inactivation of the hERG channel [79]. Me-
hta et al. created iPSC-CMs of five patients with either disrupted KCNH2 trafficking
(p.(Alab61Val), (IVS9-28A/G)) or synthesis (p.(Ser428X), p.(Arg366X)) to test the use of
lumacaftor as a treatment option as the drug acts as a chaperone during protein folding.
As predicted, they found higher KCNH2 expression and shortened field potentials after 7
days of treatment with lumacaftor in patients with trafficking defect mutations but not in
patients with disrupted synthesis of the hERG channel [80]. Two of the patients received
treatment with lumacaftor and Ivacaftor and indeed showed a shorter QTc, however this
shortening was not as pronounced as in the in vitro model indicating that the translation
from in vitro to in vivo is not straightforward [90]. Another study also tested lumacaftor
on three LQT2 (KCNH2) patient iPSC-CM lines with different pathogenic variants and
found rescued phenotypes in two (p.(Asn633Ser), p.(Arg685Pro)) of the three lines. For
the third one (p.(Gly604Ser)), on the other hand, they saw a prolongation of the AP after
administration of the compound, which could be explained by the dominant-negative ef-
fect that was observed next to the trafficking defect caused by the third variant [81]. An-
other compound (ICA-105574, a type II Ixr activator) was used by two groups and tested
both on VUS (p.(Thr983lle)) and pathogenic (p.(Ala422Thr) LQT2 iPSC-CM models. They
both saw a shortening of the action potential, field potential or calcium transient but with
the risk of overcorrection at higher concentrations which might induce arrhythmic events
[11,82].

Ajmaline is a class IA anti-arrhythmic drug that can be used to diagnose BrS patients.
Studies have already shown that ajmaline can inhibit various currents, including Ina, I or
Ix: [83]. In the iPSC-CM of a BrS patient without a known genetic cause ajmaline had the
same blocking effect on both the repolarisation and depolarisation caused by an inhibition
of both Ina and Ixras observed in the control iPSC-CMs. In an iPSC-CM model harbouring
two SCN10A (p.(Argl268Gln)/p.(Argl1250Gln) variants there was a more pronounced re-
duction in APA and Vmax compared to control iPSC-CMs [84]. The same was observed
ina SCN1B (p.(Leu210Pro)/p.(Pro213Thr)) iPSC-CM model [85]. Cilostazol and milrinone,
two phosphodiesterase III inhibitors, increased Ica and suppressed Iw by increasing the
heart rate [91]. These were tested on BrS iPSC-CM models from two patients carrying a
SCN5A p.(Ser1812X) variant, which resulted in a reduction in I and arrhythmic beating
[17]. Bisoprolol, a beta blocker, was recently tested in a CACNB2 p.(Ser142Phe) iPSC-CM
model and reduced variation in beat-to-beat interval time as well as arrhythmic events.
Quinidine, a class I antiarrhythmic agent, on the other hand, only reduced arrhythmic
events [15]. The same anti-arrhythmic effect of quinidine was observed in a SCN5A
(p.(Vall405Met)) and SCN1B (p.(Ala197Val)) iPSC-CM model [16].

Guo et al. tested quinidine in an iPSC-CM model of a SQT (KCNH2, p.(Thr618lle))
patient who was already receiving quinidine treatment. The cell model confirmed the ben-
eficial effect of quinidine as APD was prolonged, comparable to the APD of the isogenic
control. Next to quinidine, a short peptide derived from a scorpion, BnKKx2, prolonged
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the APD by targeting the KCNH2 gene [20]. In another model (KCNH2 p.(Asn588Lys)),
quinidine reduced Vmax, prolonged APD and abolished arrhythmic events while sotalol
and metoprolol did not have an effect [18]. Ivabradine, ajmaline, and mexiletine pro-
longed APD and reduced arrhythmic events in the same iPSC-CM model [86].

One way to prevent arrhythmias in CPVT is to upregulate the calcium uptake by the
mitochondria by, for example, mitochondrial Ca* uptake enhancers (MiCUp) such as ef-
sevin and kaempferol [87]. These MiCUps were tested both in mice and RYR2 (p.
(Ser406Leu)) patient iPSC-CMs and were able to reduce episodes of stress-induced ven-
tricular tachycardia in mice and reduce arrhythmogenic Ca?* waves in iPSC-CMs [87].
Two other MiCUps, ezetimibe and disulfiram, suppressed arrhythmogenesis in patient
iPSC-CMs [88] (genetic variant not specified). Another way to modulate calcium is by in-
hibiting the Ca?*/calmodulin-dependent protein kinase II (CaMKII) with a CaMKII inhib-
itory peptide, which is successful in reducing the abnormal Ca? release events and fre-
quency of Ca?* sparks in two CPVT RYR2 (p.(Ser404Arg)/p.(Asn658Ser),
p-(Gly3946Ser)/(p.(Gly1885Glu)) iPSC-CMs [89]. EL20, a tetracaine derivative and RYR2
inhibitor, decreased spark activity in iPSC-CMs of a CPVT patient harbouring a RYR2
(p-(Argl76Gln)) mutation without negatively affecting the Ca?* transient amplitude [24].
Stutzman et al. created four iPSC-CM lines of CPVT patients with RYR2 mutations,
(p.(Phel3Leu), p.(Leul4Pro), p.(Argl5Pro) and p.(Argl76Gln)), and treated them with
nadolol and flecainide. Both were able to decrease the Ca? transient amplitude and spark
activity [26].

All these reports confirm the great potential of iPSC-CM arrhythmia models to test
novel and existing therapies, and also for personalised medicine. In both 2D and 3D, they
could also be effectively used for larger drug-library screening experiments.

4.3. Gene Therapy Testing

Inherited cardiac arrhythmia iPSC-CM models have also been used to test novel gene
therapies, acting straight on the nucleic acid molecular/genetic level.

One way to perform gene therapy is by patient-specific targeting the causal mutation.
Matsa et al. used an allele-specific small interfering RNA to knock down the mutated
KCNH2 mRNA in LQTS (KCNH2 p.(Ala561Thr)) patient iPSC-CMs thereby preventing
the dominant negative-trafficking defect. This resulted in a shortening of the AP, increase
in K* current and rescue of the arrhythmogenic phenotype [92]. A more general gene ther-
apy approach was published by Dotzler et al. They developed a novel method with a dual
mode of action called suppression-and-replacement (SupRep) KCNQI gene therapy. As
the name indicates, first the endogenous alleles were suppressed by short hairpin RNA
(shRNA) and in the next step, the KCNQ1 gene was replaced by expression of a shRNA-
immune (shIMM) KCNQ1 cDNA immune for breakdown by the shRNA. This method
was tested in four LQT1 (KCNQ1 p.(Tyrl71X), p.(Val254Met), p.(Ile567Ser) and
p-(Ala344Ala/splice variant)) patient iPSC-CM models and showed a shortening of the
APD in all 2D patient models. As a proof-of-concept, a 3D cardiac organoid of one of the
patient lines (p.(Tyr171X)) was created and here as well, an APD shortening was observed
after treatment [93]. The same treatment approach was used for KCNH2 variants, in iPSC-
CM models of two LQT2 (p.(Gly604Ser), p.(Asn633Ser)) patients as well as in one SQT
(p-(Asn588Lys) patient and resulted in a normal APD90 for both the LQT2 and SQT pa-
tients [94].

5. Discussion and Conclusions

With the advent of iPSC creation, major steps have been taken to differentiate these
stem cells into several cell types including iPSC-derived cardiomyocytes. Using this
model in inherited cardiac arrhythmia research has increased knowledge on the underly-
ing disease mechanisms and creates opportunities to functionally characterise and inter-
pret the pathogenicity of patient-specific genetic variants and to perform (personalised)
drug testing. As a proof-of-concept of this more ‘personalised’ drug testing, a few “clinical
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trials in a dish” have been performed where healthy control individuals and their iPSC-
CMs were challenged with known QT-prolonging drugs to compare the effect on the in
vitro model to the in vivo situation. Using sotalol, a correlation was found between the in
vivo QT interval and in vitro FPD results [95]. One study also found such a positive cor-
relation for moxifloxacin [96] while another did not find a correlation between the APD
response slopes and clinical QT response to moxifloxacin or dofetilide [97]. Using (subject-
specific) iPSCs for research and drug testing also requires the use of a comprehensive in-
formed consent explaining future use of created iPSCs and derivatives. The reported 2D
iPSC-CM disease models recapitulate the patients” phenotype at the cellular level, how-
ever, if the specific tested characteristics are compared over several iPSC-clones or several
different papers, quite some variability can be observed [98]. In addition, for example, the
iPSC-CM models of BrS patients with an unknown genetic cause did not show any elec-
trophysiological differences compared to healthy control iPSC-CMs [99]. The known im-
mature phenotype of iPSC-CMs with immature ion channel expression most likely plays
a role in these observations and small changes in ionic currents might not be picked up.
More in-depth analysis of the iPSC-CM cellular disease phenotype including tran-
scriptomics or proteomics approaches could be useful to further characterise these mod-
els.

In addition, efforts have been made to improve the maturity of iPSC-CMs, with one
important strategy to culture them in 3D models such as microtissues, organoids and en-
gineered heart tissue. Amongst others, Kerr et al. showed that iPSC-CM in 3D cultures
showed a higher similarity to human adult myocardial transcriptome compared to 2D
models and had enhanced cell-cell communication, ECM organisation and vascularisa-
tion capacity [100]. The addition of other (iPSC-derived) cell types that are present in heart
tissue further improves the physiological relevance and maturation state of the model.
Use of these 3D models will certainly increase the suitability for disease modelling and
drug testing. It should be taken into account, though, that they are more complex at the
culture level — complicating the high-throughput needed for larger screenings, so that ex-
tra variability is introduced to an already variable model [98] and the complexity of the
analysis is also increased. Light for microscopy, fluorescent dyes and drugs need to pen-
etrate deeper and evenly into the 3D culture to reach all cells, more computational power
might be needed and more expensive single-cell analysis approaches such as scRNA-seq
could be necessary. Indeed, Feng et al. already performed single cell analysis on cardiac
organoids and found more differentially expressed genes in iPSC-CMs compared to other
cell types present in the organoid between Ebstein’s anomaly patients and healthy con-
trols [101].

Despite the immense progress that has been made in iPSC-CM generation and appli-
cation potential, some limiting factors such as immaturity, genetic and phenotypic heter-
ogeneity and variability still have an impact on their usability and should be kept in mind
when translating the results in vivo [98]. For clinical application in regenerative medicine
the arrhythmogenic potential, immunogenicity, tumorigenicity and heterogeneity of the
iPSC-CMs should be taken into consideration. In conclusion, iPSC-CMs have been instru-
mental in modelling inherited cardiac arrhythmias, small-scale testing of disease-specific
drugs or gene therapies and cardiotoxicity testing. The transition from 2D to 3D models
has improved cellular maturity and physiological relevance, but also increases the com-
plexity of the model and its analysis. Large-scale drug library screenings have not yet been
performed, but further automation and high-throughput analysis methods will certainly
pave the way for this application. Further evolution of both 2D and 3D iPSC-CM model-
ling and analysis techniques will allow the discovery of new treatment options for cardiac
arrhythmias in general as well as for personalised medicine.

Supplementary Materials: The following are available online at https://www.mdpi.com/arti-
cle/10.3390/biomedicines11020334/s1, Table S1: overview of previously published 2D iPSC-CM car-
diac arrhythmia disease models. References [102-128] are cited.
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