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Abstract: Bacterial DNA gyrase is a type II topoisomerase that can introduce negative supercoils to
DNA substrates and is a clinically-relevant target for the development of new antibacterials. DNA
gyrase is one of the primary targets of quinolones, broad-spectrum antibacterial agents and are used
as a first-line drug for various types of infections. However, currently used quinolones are becoming
less effective due to drug resistance. Common resistance comes in the form of mutation in enzyme
targets, with this type being the most clinically relevant. Additional mechanisms, conducive to
quinolone resistance, are arbitrated by chromosomal mutations and/or plasmid-gene uptake that
can alter quinolone cellular concentration and interaction with the target, or affect drug metabolism.
Significant synthetic strategies have been employed to modify the quinolone scaffold and/or develop
novel quinolones to overcome the resistance problem. This review discusses the development of
quinolone antibiotics targeting DNA gyrase to overcome bacterial resistance and reduce toxicity.
Moreover, structural activity relationship (SAR) data included in this review could be useful for the
development of future generations of quinolone antibiotics.
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1. Introduction

For over 100 years, antibiotics have been used to clinically treat diseases, beginning in
the 1910s with salvarsan, a drug designed by Paul Ehrlich to combat syphilis [1]. However,
over time, antimicrobial-resistant strains emerged and by 2019, antimicrobial-resistant
pathogens were responsible for more than 4.95 million deaths, including 1.27 million deaths
specifically attributable to bacterial antimicrobial resistance. This resistance is one of the
leading public health threats of the 21st century [2]. A study on antimicrobial resistance by
the UK government predicts that antimicrobial resistance could be responsible for killing
10 million people per year by 2050 [3]. Recently, the U.S. Center for Disease Control (CDC)
estimated that over 3 million Americans acquire an antimicrobial-resistant infection each
year [4]. Additionally, secondary bacterial infections are significantly more complicated
when the infection is associated with COVID-19 [5], resulting in higher mortality rates for
COVID-19 patients compared to non-COVID-19 patients [6]. Based on the critical need
to combat antimicrobial resistance, it is no surprise that as of 2020, the market size of
antibiotics was over USD 37 billion and is expected to cross USD 45 billion by 2028 [7].

Since the first use of salvarsan, the discovery of antibiotics derived from nature,
fungi, or bacteria, and the development of synthetic antibacterials, has paved the way for
modern medical revolution. A closer look at the mechanism of action of antibiotics derived
from nature reveals common molecular targets (Table 1). Beta-lactams, glycopeptides,
and other drugs, target disruption of the bacterial cell wall. Macrolides, oxazolidinones,
streptogramins, and lincosamides target protein synthesis at the level of the 50S ribosomal
subunit, while tetracyclines and aminoglycosides target the 30S small ribosomal subunit.
Ansamycins and lipiarmycins inhibit nucleic acid synthesis at the level of RNA polymerase.
While some synthetic antibacterial agents share similar targets with natural products, early
drugs like sulfonamides, salicylates, sulfones, and later diaminopyrimidines, expand the
list of molecular targets to include folate synthesis. Nitrofurans, azoles, and quinolones
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(the subject of this report) induce DNA damage, with quinolones specifically targeting the
topoisomerases DNA gyrase and topoisomerase IV [1].

Table 1. Classes of antibiotics with their mode of action.

Entry Class Structure/Scaffold * Examples Gram Coverage Target

1 Aminoglycosides
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Topoisomerases maintain the topological state of DNA that is constantly being manipu-
lated by cellular processes such as replication, transcription, and recombination. Eubacterial
DNA gyrase is a member of the type II subfamily of DNA topoisomerases. Topoisomerases
in the type II subfamily are characterized by the generation of a double-stranded break in
the DNA. DNA gyrase falls into the class of type IIA topoisomerases, as does eubacterial
topoisomerase IV (topo IV) and eukaryotic DNA topoisomerase II (topo II). Structurally
and mechanistically, DNA gyrase and topo IV are similar, however, DNA gyrase is unique
in its ability to generate negative supercoils driven by ATP hydrolysis [8], while the action
of topo IV results in the ATP-driven decatenation of DNA [9]. Topo II action leads to
ATP-dependent relaxation of DNA [10].

Drugs that target DNA gyrase and topo IV act to impede the catalytic activity of the
topoisomerase enzymes, which, in some cases, can lead to fragmentation of the genome.
When these drugs cause potentially lethal double-stranded DNA breaks, they are called
topoisomerase poisons. Quinolones are DNA gyrase and topo IV inhibitors, as they impair
the catalytic activity of the enzymes. In addition, because quinolone action can lead to
permanent double-stranded breaks in DNA, in this mode, they are also gyrase poisons,
which is the most effective among the modes of action [11–15]. In this review, we are
focusing on quinolone-based antibacterial agents.

2. DNA Gyrase Structure

DNA gyrase is a heterotetramer, consisting of 2 GyrA and 2 GyrB subunits, arranged
in a three-domain structure with two-fold symmetry. The B subunits of DNA gyrase
contain the ATP-binding and hydrolysis sites, whereas the A subunits are responsible for
the binding and wrapping of DNA [16]. Additionally, the A subunits contain the active-site
tyrosine residues, located in a helix turn helix (HTH) motif within a catabolite activator
protein (CAP)-like domain. Gyrase B contains a TOPRIM domain, that appears to play
a key role in catalysis, by providing a binding site for the divalent cations involved in
DNA cleavage and re-ligation. In generating the phosphodiester bond breakage, the 5′

end of DNA is covalently attached to the enzyme via the active site tyrosines, generating
a ‘cleaved complex’ [17].

3. DNA Gyrase Mechanism of Action

The mechanism of action of topo II enzymes involves a staggered double-stranded
break in duplex DNA. Three key structural features play important mechanistic roles: the
N-gate, DNA-gate and C-gate (Figure 1). At the DNA-gate, a gated segment of DNA
(commonly named the G-segment) binds, and both strands are cleaved and subsequently
pulled apart by a conformational change, creating an opening [16,17]. A second DNA
duplex, coming from the same or different strand (the transported, or T-segment) is trapped
by the closing of the N-gate when ATP binds. The opening of the DNA-gate allows the
T-segment to pass through the opening in the G-segment, moving the T-segment from
an upper to a lower cavity. Re-ligation of the G-segment, followed by the release of the
T-segment from the C-gate, completes the process. For the enzyme to turn over, ATP
hydrolysis is required, which re-opens the N-gate, and the product is released [16,17].

In order to not only relax DNA, but also create negative supercoils, the DNA bound
to gyrase is wrapped around the enzyme in a right-handed twist, a role played by the
C-terminal domains (CTDs) of the A subunit. In DNA gyrase, the CTDs extend out from the
body, binding and wrapping DNA in a positive manner. Based on the spatial relationship
between the T and G-segments and how they are crossed, a positive node is converted
into a negative node, with a decrease in the linking number by two [17]. At least one
CTD is required for the introduction of negative supercoils into DNA [18–20]. This role of
DNA gyrase is critical in reducing torsional stress, as a result of overwinding in front of
replication forks and transcription complexes [17,21–23].
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Figure 1. Proposed mechanism of action of DNA gyrase. Initially, DNA gyrase is bound to a
G-segment of DNA at the DNA gate, a region located at the interface between subunits A (purple and
pink) and B (blue and teal). The G-segment of DNA (light green) is wrapped around the C-terminal
domains (CTDs) of the A subunits. The mechanistic steps are as follows: (1) the T-segment of DNA
(dark green) enters the gyrase via the N-gate formed by the two B subunits. (2) When two ATP
molecules bind the B subunits, the N-gate closes, and the T-segment DNA is trapped in the upper
cavity of the gyrase. (3) The G-segment is cleaved, opening the DNA gate and allowing the T-segment
to pass through into the lower cavity. This step requires the hydrolysis of one ATP with the release of
Pi. (4) The C-gate opens, and the T-segment passes through with the release of ADP. The second ATP
is hydrolyzed. (5) The release of ADP and Pi, along with the closing of the C-gate and opening of
the N-gate, readies DNA gyrase for another cycle of supercoiling. The diagram is based on Soczek
et al. [24]. The structure of DNA gyrase was derived from PDB ID 6RKW [25]. Figure created by
medical illustrator Keri Leigh Jones, MSMI, CMI.

4. Targeting DNA Gyrase

Nalidixic acid, considered a founding member of the quinolone class of antibacterial
agents, was introduced to the market as an antibiotic in the year 1962 [26]. Quinolones are
broad-spectrum antibacterial agents that target DNA gyrase and topo IV [8]. Quinolones
have proven to be effective in combating a variety of infections, including, but not limited to,
urinary tract infections, sexually transmitted diseases, chronic bronchitis, and tuberculosis.
While DNA gyrase and topo IV are the targets of quinolones in different bacterial strains, the
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primary targeting is based on both the bacterial species and the quinolone drug [27]. Based
on an analysis of Escherichia coli strains carrying drug resistance mutations in both DNA
gyrase and topo IV enzymes, its study concluded that gyrase is the primary toxic target
for quinolones and that topoisomerase IV is a secondary drug target [28]. It appears that
in most cases, the primary target of fluoroquinolones in Gram-negative bacteria is gyrase,
whereas Topo IV is their preferential target in Gram-positive bacteria [29–33]. Figure 2
provides structural information for standard drugs S1–S9 that act against DNA gyrase by
forming multiple quinolone–enzyme–DNA complexes [34,35]. With the importance of the
quinolone scaffold on its antibacterial properties, here we focus on the impact of quinolones
on DNA gyrase.
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Figure 2. Quinolones (the scaffold colored in red): DNA gyrase poisons used as antibacterial agents.

Quinolones act by stabilizing the gyrase–DNA cleavage complex [36,37]. Quinolones
have both bacteriostatic and bactericidal actions [23]. The stabilization of gyrase–DNA
complexes stalls replication forks and slows bacterial growth. At higher concentrations,
quinolones become bactericidal as chromosomes are fragmented, and cells rapidly die [37].
Quinolones act by interacting with both the DNA and the gyrase. Two drugs bind to the
gyrase heterotetramer in a parallel fashion according to crystallographic data (Figure 3) [38].
Quinolones bind non-covalently to DNA gyrase in the active site and via stacking inter-
actions with the DNA bases on either side of the site to be cleaved [39]. These binding
events stabilize the gyrase–drug cleavage complex and ultimately inhibit the re-ligation
of the DNA [40]. As such, quinolones act as DNA gyrase poisons, in addition to acting as
catalytic inhibitors [41,42].
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Figure 3. Binding of quinolones to DNA gyrase. The quinolone ciprofloxacin is shown bound to
Mycobaterium tuberculosis DNA gyrase at the cleavage core in the dimer interface. Two quinolones
(shown as ball and stick, color cpk) intercalate into the G-segment DNA (green) near the cleavage site.
The noncatalytic Mg2+ ion that is coordinated by the keto acid group is shown in orange. The key
active site tyrosines in the A subunits are shown as ball and stick in pink and purple. The structure
shown on the right is adapted from PDB ID 5BTC. The color scheme is the same as in Figure 1.

Quinolone binding to DNA gyrase is mediated through a water–metal ion bridge in the
A subunit of DNA gyrase [40]. Specifically, the C-3/C-4 keto acid region of the quinolone is
chelated by a noncatalytic Mg2+ ion that is also coordinated by four water molecules. The
coordinated waters form hydrogen bonds with Ser83 and a nearby acidic residue, Asp87
(E. coli GyrA numbering) [43]. Not surprisingly, common mutations in DNA gyrase
observed in drug-resistant strains are found at residues forming part of the water–metal
ion ‘bridge’ between the enzyme and the drug [23,44,45]. In fact, the region between
amino acids 67–106 in GyrA is referred to as the quinolone resistance-determining region
(QRDR) [46]. Mutation of both the serine and the acidic residue renders the quinolone
ineffective in binding and/or inhibiting the enzyme, providing evidence that these residues
are crucial in forming the bridge between the quinolone and the enzyme [47]. In particular, a
mutation in GyrA(Ser83→Trp) gives ≈ 20-fold resistance to a wide range of quinolones [48].

Based on crystallographic studies, the C-7 ring system of quinolones extends into the
B subunit of DNA gyrase, where residues form a favorable, but non-specific environment
for the C-7 moieties [38]. Mutations in the B subunit of gyrase have also been associated
with drug resistance [37].

5. Synthetic 4-Quinolones Targeting DNA Gyrase

Quinolones are broad-spectrum antibiotics with a nitrogen-containing bicyclic scaffold,
modified by various substitutions which play a critical role in their antibacterial properties
(Figure 4). Various research and review articles have been published on quinolones and their
antibacterial, as well as other biological properties [49,50]. The previous review articles were
focused either on antimicrobial drugs/molecules with different targets [51–55], or molecules
effective against a specific target, such as protein synthesis [56,57], cell wall [58,59], and DNA
gyrase [60–63]. Although many have covered the breadth needed as well as the importance
of quinolones in drug discovery [64–68], we could not locate any reports which exclusively
focus on the DNA gyrase inhibitory properties of quinolone and the detailed insights. This
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review aims to provide in-depth details of reported quinolones targeting DNA gyrase, and
their relationship with structural activity. In addition, the emergence of bacterial resistance to
quinolone antibiotics (Table 1, Entry 8) and the synthetic strategies implemented to combat
this resistance, will be discussed.
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5.1. 4-Quinolones with Free -COOH Group at C-3

Nalidixic acid is generally considered to be the first quinolone antibiotic, however,
because of its narrow spectrum of activity, its use was limited to urinary tract infections [60].
Second-generation quinolones included fluorine at the C-6 position, which greatly increased
the drug’s activity [60]. Ofloxacin is a second-generation fluoroquinolone used for both
Gram-positive and Gram-negative bacterial infections. However, like other antibiotics,
several bacterial strains developed resistance to ofloxacin. In an attempt to develop new
drug candidates to combat resistant bacteria, a series of ofloxacin analogs were synthesized
and screened for in vitro and in vivo antimycobacterial activities against Mycobacterium
tuberculosis H37Rv (MTB), multi-drug-resistant Mycobacterium tuberculosis (MDR-TB), and
Mycobacterium smegmatis (MC2). From the synthesized series, compound 1 was identified
as the most potent analog with a MIC99 of 2.63 µM and 2.63 µM (MIC99 of ofloxacin is
2.16 µM and 34.59 µM) against MTB and MTR-TB, respectively. Additionally, compound
1 was found to be the most active in the inhibition of the supercoiling activity of DNA
gyrase with an IC50 of 10.0 µg/mL. However, another compound 2 from the series shows a
MIC99 of 0.19 µM and 0.09 µM against MTB and MTR-TB, respectively, but not inhibiting
the supercoiling activity of DNA gyrase. The potency of compound 2 is probably due to
another mechanism [69].
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To overcome the MDR problem, new derivatives of gatifloxacin have been synthesized

by Aubry et al. The newly synthesized 3′-piperazinyl derivatives of the 8-hydrogeno and
8-methoxy-6-fluoro-1-cyclopropyl-4-quinolone-3-carboxylic acids were screened against
pathogenic mycobacteria (M. leprae and M. tuberculosis), and wild-type strains. The MIC
and DNA gyrase data conclude any variation at the 3′-position of piperazine ring reduces
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antibacterial properties. However, among several 3′-piperazinyl derivatives, compound 3
(with a methoxy at R8 and a secondary carbamate at R3

′) and compound 4 (with hydrogen
at R8 and an ethyl ester at R3

′) showed comparable antibacterial activities as to ofloxacin [70].
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A set of benzimidazole quinolones were synthesized by Zhang et al., using a hybridiza-
tion approach. Most of the synthesized hybridized compounds show higher antimicrobial
potential, especially against MRSA (MIC: 0.125 µg/mL), even superior to the reference
drugs (chloromycin, norfloxacin, ciprofloxacin, and ciprofloxacin). Compound 5 was found
to be the most active among all the synthesized hybrids. In addition to antibacterial proper-
ties, compound 5 also inhibited the formation of biofilm and interrupted the established
Staphylococcus aureus and Escherichia coli biofilms. Compound 6 showed low toxicity toward
normal mammalian cells. Further, molecular docking studies suggest compound 5 binds
DNA effectively and forms a stable complex that might block DNA replication and exert
potent bioactivities [71].
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Fluoroquinolones are well known for their interaction with topoisomerase and DNA,
after the two DNA strands are cleaved and remain covalently attached to the active site tyro-
sine. The computer-aided drug design approach was considered by Towle et al., to develop
newer versions of fluoroquinolones. Their study demonstrates that regardless of potential
fit in the static structure, extended N-1 groups interfere with the cleaved complex formation
and poisoning. Several compounds were synthesized by extending the N1 position and
investigating the binding ability to the DNA. From this approach, compounds 6 and 7 were
identified as the most potent antibacterial agents with no poisoning effect, however, the
detailed mechanism was unclear [72].
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Arab et al. developed several 7-piperazinylquinolones containing a (benzo[d]imidazol-
2-yl) methyl scaffold, and studied their antibacterial properties against Gram-positive and
Gram-negative bacterial strains. Compound 8 proved to be the best compound of all
the synthesized compounds. Compound 8 showed the highest activity against Staphylo-
coccus aureus, Staphylococcus epidermidis, Bacillus subtilis, and Escherichia coli, with a MIC
value of 0.097 µg/mL. Computational studies indicate the docking poses of compound 8
against DNA gyrase, subunits A (PDB code: 2XCT) and subunit B (PDB code: 3TTZ), are
comparable with the reference standard [73].
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Carta et al. developed several F-triazolequinolones (FTQs) and alkoxy-triazolequinolones
(ATQs) targeting Mycobacterium tuberculosis (Mtb). The screening data suggest ATQs are better
antibacterial agents than FTQs. Compounds 9 and 10 were endowed with the anti-Mtb potency,
with MIC values of 6.9 and 6.6 µM, respectively, and without showing any toxicity to the Vero
cell line. Both compounds show M. tuberculosis DNA gyrase inhibition (IC50: 27–28 µM) in a
DNA supercoiling activity assay. Further molecular docking studies with a 3D model structure
of the Mtb DNA gyrase (PBD: 5BTC) confirm the interactions and formation of complex structure
with compound 9 is 4.5-fold better than the reference drug ciprofloxacin. Further structure–
activity relationship confirms the importance of methoxy and ethoxy groups for the potency.
Surprisingly, 6-fluoro substituted analogs do not show an increase in biological activity, but
rather a drastic decrease [74].
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A series of fluoroquinolone-safirinium dye conjugates were synthesized from proflu-
orophoric isoxazolones and antibiotics bearing a secondary amino group at position 7 of
the quinoline ring, using well-known Mannich-electrophilic amination reactions. Synthe-
sized conjugates were tested against several Gram-positive and Gram-negative bacterial
strains, and from them, compounds 11 (conjugate of lomefloxacin) and 12 (conjugate
of ciprofloxacin) were identified as the most effective ones. Having ideal lipophilicity
is always a challenging task in the drug development process. Even though the syn-
thesized zwitterionic conjugates did not show an appreciable increase in inhibition for
E. coli DNA gyrase compared to parent drugs, they were distinctly less lipophilic than
the parent quinolones in micellar electrokinetic chromatography (MECK) experiments.
Evidence from molecular docking studies showed that potential conjugates could bind in
the fluoroquinolone-binding mode of S. aureus DNA gyrase (PDB: 5CDQ) [75].
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To combat bacterial resistance, a set of norfloxacin–thiazolidinedione hybrid molecules
(13) were produced by Marc et al. The synthesized hybrids show direct activity against
Gram-negative strains, and antibiofilm activity against Gram-positive strains. The an-
tibacterial properties of the hybrids are comparable with the parent norfloxacin, however,
unlike norfloxacin, have various degrees of antibiofilm activity, which were more noticeable
against S. aureus. The MIC values against different bacterial strains are summarized in
Table 2. Computational studies with DNA gyrase isolated from Escherichia coli (PDB: 2XCT)
imply that the newly synthesized hybrids (13) strongly interact with both gyrase subunits
(A and B) in comparison to norfloxacin [76].

Table 2. MIC (µg/mL) values of compound 13a–f.

Entry Compd. E. coli S. typhimurium S. enteritidis P. aeruginosa

1 13a 0.5 2 1 2

2 13b 4 2 2 2

3 13c 4 8 4 16

4 13d 4 8 8 128

5 13e 2 16 8 128

6 13f 2 2 2 8

7 S2 0.125 0.125 0.0625 1
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Panda et al. synthesized several fluoroquinolone conjugates from fluoroquinolone
antibiotics, dichloroacetic acid (DCA), and amino acids, using a molecular hybridization
approach. Among all the synthesized conjugates, compounds 14 and 15 reveal antimicrobial
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properties against E. coli, S. aureus, and Enterococcus faecalis, with potency of 1.9, 61.9, 20.7,
and 2.4, 37.1, 8.3-folds, respectively, compared to the parent antibiotic (ciprofloxacin). The
E. coli DNA gyrase supercoiling bioassay data of compounds 14 and 15 (IC50: 3.25 and
9.80 µM) supports the potency and possible mode of action. Chirality plays an important
role in biological activity, as both compounds 14 and 15 are structurally similar, however
only different at one chiral center. One is a racemic mixture (14) and the other is an L-isomer
(16) [77].
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The approach of fusing two biologically active scaffolds into one heteromeric chemo-
type was adopted by Fan et al., to synthesize azithromycin with ciprofloxacin (16), and
azithromycin with gatifloxacin (17) hybrid conjugates. Both compounds 16 and 17 show
modest antibacterial properties in comparison to azithromycin, however, they show sig-
nificant activity against ciprofloxacin-resistant Staphylococcus aureus, with MIC values of
0.076 µM and 0.14 µM, respectively. The DNA supercoiling assay and the DNA cleavage
assay revealed that both compounds can poison E. coli DNA gyrase, although their IC50
values were higher than that of ciprofloxacin. The detailed experimental and computational
investigation concludes the mode of action of these hybrid conjugates is a combination of
the poisoning of DNA gyrase and an inhibition of protein synthesis [78].
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Fluoroquinolones (FQs) are considered first-line drugs for urinary tract infections
(UTIs) and have been used worldwide for several decades; however, at present, FQ resis-
tance (FQR) is a big challenge in drug development efforts. Several studies are on-going
throughout the world to overcome this problem, and recently Balasubramaniyan et al.
extensively utilized a 3D-QSAR approach to identify and develop potential FQ analogs
(18–27) which showed significant antibacterial activity against FQ-resistant bacterial strains,
especially FQR E. coli, as well as inhibitory properties against purified mutant DNA gyrase
(Table 3) [79].
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Table 3. Antibacterial and DNA gyrase inhibitory properties of compounds 28–37.

Entry Compounds
(MIC, µM) DNA Gyrase (IC50, mg/L)

FQR E. coli Wild-Type GyrA Mutant

1 18 1.93 0.26 0.26
2 19 1.78 0.24 0.24
3 20 1.48 0.16 0.16
4 21 1.12 0.06 0.4
5 22 1.03 0.12 1.2
6 23 3.19 0.12 0.8
7 24 3.59 0.18 1.8
8 25 2.05 0.18 2.0
9 26 2.67 0.08 0.6
10 27 1.85 0.22 2.2
11 S3 22.76 0.30 >200
12 S4 23.70 - -
13 S5 22.41 - -

S3–S5: Standard drugs (Figure 2).
Biomedicines 2023, 11, 371 15 of 29 
 

 

To overcome the resistance of quinolones, Chem et al. designed a new class of quin-

olones named 7-thiazoxime quinolones; these novel molecules contained the DNA gyrase 

target quinolone modified with a moiety known to disrupt the bacterial cell wall. Several 

analogs were synthesized and from them, compound 28 was found to be the most effec-

tive (32-fold) antibacterial agent for MRSA in comparison to ciprofloxacin. The combined 

use of 7-thiazoxime quinolone 28 and ciprofloxacin alleviates bacterial resistance. Mecha-

nistic experimental investigation and molecular docking studies with DNA gyrase B (PDB 

ID: 3U2K) confirm that compound 28 has the ability to insert into MRSA DNA to bind 

with DNA gyrase, then decrease the expression of gyrB and femB genes. In addition, com-

pound 28 is safer for mammalian cells [80]. 



Biomedicines 2023, 11, 371 14 of 27

To overcome the resistance of quinolones, Chem et al. designed a new class of
quinolones named 7-thiazoxime quinolones; these novel molecules contained the DNA
gyrase target quinolone modified with a moiety known to disrupt the bacterial cell wall.
Several analogs were synthesized and from them, compound 28 was found to be the most
effective (32-fold) antibacterial agent for MRSA in comparison to ciprofloxacin. The com-
bined use of 7-thiazoxime quinolone 28 and ciprofloxacin alleviates bacterial resistance.
Mechanistic experimental investigation and molecular docking studies with DNA gyrase
B (PDB ID: 3U2K) confirm that compound 28 has the ability to insert into MRSA DNA to
bind with DNA gyrase, then decrease the expression of gyrB and femB genes. In addition,
compound 28 is safer for mammalian cells [80].

Biomedicines 2023, 11, 371 16 of 29 
 

 

A set of water-soluble quinolones were prepared by conjugating fluoroquinolones 

with 4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA). Among the synthe-

sized water-soluble fluoroquinolones, compound 29 exhibited potent antimicrobial activ-

ities against MRSA and P. aeruginosa, with IC50 values of 1.56 µg/mL and 3.1 µg/mL, re-

spectively. Atomic force microscope (AFM)-imaging investigation confirms that com-

pound 29 could effectively destroy the MRSA bacterial membrane and cell wall. A cyto-

toxicity assay proved compound 29 had low toxicity to L-02, A549, and MCF-7 even at 100 

µmol/L. DNA gyrase binding affinity of compound 29 was demonstrated by molecular 

docking studies (PDB ID: 2XCT) [81]. 

 

5.2. 4-Quinolones Lacking Free-COOH Group at C-3 

Pucci et al. reported an isothiazoloquinolone (30) as a potential lead compound that 

shows significantly lower MIC50s and MIC90s against a panel of Gram-positive and Gram-

negative bacterial strains, including methicillin-resistant Staphylococcus aureus (MRSA), 

using both in vitro and in vivo assays compared to standard references. The exceptional 

broad antibacterial property of the potential isothiazoloquinolone (30) is due to the dual 

inhibition of DNA gyrase and topoisomerase IV at low concentrations (0.68 µM and 0.12 

µM) from wild-type resistant strains. Compound 3 also proved to be effective against an-

imal infection models. In fact, the compound was effective in treating animal bacterial 

infections, as efficacy was observed with murine sepsis, lung, and thigh infection models 

[82]. 

 

Jayagobi et al. synthesized several pyrroloquinolinone and pyrroloquinoline deriva-

tives utilizing intramolecular domino-Knoevenagel-hetero-Diels–Alder and intramolecu-

lar imino-Diels–Alder reactions. Among all the synthesized compounds, compounds 31 

A set of water-soluble quinolones were prepared by conjugating fluoroquinolones
with 4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA). Among the synthesized
water-soluble fluoroquinolones, compound 29 exhibited potent antimicrobial activities
against MRSA and P. aeruginosa, with IC50 values of 1.56 µg/mL and 3.1 µg/mL, respec-
tively. Atomic force microscope (AFM)-imaging investigation confirms that compound 29
could effectively destroy the MRSA bacterial membrane and cell wall. A cytotoxicity assay
proved compound 29 had low toxicity to L-02, A549, and MCF-7 even at 100 µmol/L. DNA
gyrase binding affinity of compound 29 was demonstrated by molecular docking studies
(PDB ID: 2XCT) [81].
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5.2. 4-Quinolones Lacking Free-COOH Group at C-3

Pucci et al. reported an isothiazoloquinolone (30) as a potential lead compound that
shows significantly lower MIC50s and MIC90s against a panel of Gram-positive and Gram-
negative bacterial strains, including methicillin-resistant Staphylococcus aureus (MRSA),
using both in vitro and in vivo assays compared to standard references. The exceptional
broad antibacterial property of the potential isothiazoloquinolone (30) is due to the dual in-
hibition of DNA gyrase and topoisomerase IV at low concentrations (0.68 µM and 0.12 µM)
from wild-type resistant strains. Compound 3 also proved to be effective against animal
infection models. In fact, the compound was effective in treating animal bacterial infections,
as efficacy was observed with murine sepsis, lung, and thigh infection models [82].
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Jayagobi et al. synthesized several pyrroloquinolinone and pyrroloquinoline deriva-
tives utilizing intramolecular domino-Knoevenagel-hetero-Diels–Alder and intramolecular
imino-Diels–Alder reactions. Among all the synthesized compounds, compounds 31 and 32
show potential antibacterial properties against various Gram-positive and Gram-negative
strains, with MIC values of 5 mM concentrations. These compounds also show strong DNA
gyrase inhibitory properties. Compounds 33 and 34, which are isomers of compounds 31
and 32, are less active due to the 2-quinolone structure instead of 4-quinolone [83].
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Bradbury et al. developed a series of 7-(3′-substituted) pyrrolidino-8-methoxyisothia
zoloquinolone (ITQ) analogs and investigated their antibacterial properties against methicillin-
sensitive Staphylococcus aureus (MSSA), methicillin-resistant Staphylococcus aureus (MRSA),
and Escherichia coli. The antibacterial data suggest that stereochemistry plays an important
role in selectivity, 7-(3′-aminomethylpyrrolidino) ITQs were generally more potent than
7-(3′-aminopyrrolidine) analogs, and that the R-isomer of the 3′-methylaminopyrrolidines
was more potent (up to 16-fold) than the corresponding S-isomer. 3′-R and 1”-S configurations
show higher antibacterial properties than other possible configurations. The illustration of
the structural–activity relationship is depicted in compound 35. Among all the synthesized
compounds, the 7-[(R)-3-((S)-1-aminoethyl) pyrrolidin-1-yl] analog (35) (with MIC 0.002 and
0.06 µg/mL against MSSA and MRSA, respectively) and the (R)-7-[3-(2-aminopropan-2-
yl)pyrrolidin-1-yl] analog (36) (with MIC 0.004 and 0.06 µg/mL against MSSA and MRSA,
respectively) were found to be the best ones. The synthesized potent compounds are >30
times more inhibitory against topoisomerase IV and DNA gyrase, from both wild-type (WT)
and multidrug-resistant (MDR) strains, than the fluoroquinolone moxifloxacin [84].
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Zhou et al. designed and synthesized a set of hybrid molecules using a quinolone
scaffold and 2-aminothiazole from clinical antibacterial cephalosporins to circumvent the
quinolone-resistance challenge. From the synthesized various 3-aminothiazolquinolones,
3-(2-aminothiazol-4-yl)-7-chloro-6-(pyrrolidin-1-yl) quinolone (37) showed potential an-
tibacterial activity against a broad antimicrobial spectrum, including multidrug-resistant
strains. Compound 37 shows low toxicity to hepatocyte cells and strong inhibitory potency
to DNA gyrase with an IC50 value of 11.5 µM in comparison to norfloxacin (IC50: 18.2 µM).
Structure−activity relationship (SAR) studies reveal the 2-aminothiazole fragment at the
3-position of quinolone plays a crucial role in enhancing antibacterial activity. Further,
molecular modeling and experimental data with DNA from a sensitive MRSA strain ex-
plain the possible antibacterial mechanism that might be associated with the formation of
a ternary complex from the compound 37−Cu2+−DNA, in which the Cu2+ ion acts as a
bridge between the backbone of 3-aminothiazolquinolone and the phosphate group of the
nucleic acid [85].
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Azad and Narula developed an efficient synthetic protocol to produce 3-tetrazolyl
bioisosteres (38) from 3-nitro derivatives of 4-quinolones, using Cu nanoparticles. Most
of the synthesized 3-tetrazolyl bioisosteres showed potential antibacterial activity against
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several pathogenic bacterial strains, including MRSA, ranging from 12.5 to 25 µM, in
comparison to ciprofloxacin (MIC: 100 µM). The observed experimental data was validated
by molecular docking studies with the co-crystallized structure of the protein (DNA gyrase)
in a complex with ciprofloxacin (PDB ID: 2XCT) [86].
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Pharmacokinetic properties are key in the drug development process. Ahmed and
Kelly synthesized a set of peptide−nalidixic acid conjugates using solid-phase peptide
synthesis, and investigated the role of hydrophobicity and molecular charge in improv-
ing biological activity. The peptide conjugate (39), with optimized hydrophobicity and
molecular charges, showed substantially superior antibacterial activity. The conjugate
containing cyclohexylalanine and arginine demonstrated efficient bacterial uptake and
specific inhibition of S. aureus DNA gyrase. An organized investigation of peptide and
nalidixic conjugates suggests a balance of cationic charge and hydrophobicity can overcome
the intrinsic resistance of S. aureus DNA gyrase to quinolone-based drugs [87].
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Xu et al. prepared twenty 2-sulfoether-4-quinolones using a free radical process.
Most of the synthesized compounds show selective antibacterial properties against Gram-
positive bacterial strains. Among all, compound 40 shows the lowest MICs against both
S. aureus and B. cereus (0.8 µM and 1.61 µM, respectively). Additionally, it showed a
potential inhibitory property with IC50 value of 0.71 µg/mL against S. aureus DNA gyrase.
In addition, molecular docking against the gyrase–DNA–ciprofloxacin complex structure
(PDB code: 2XCT) justifies the experimental data, as compound 40 docked well in the
complex via precise interactions, including conventional hydrogen bonds, halogen bonds,
and hydrophobic interactions. SAR suggested the introduction of a CF3 group enhances
the antibacterial activity [88].
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A set of multitargeting molecular hybridized aminothiazolquinolone oximes were
developed from quinolone, aminothiazole, piperazine, and oxime fragments. From the
synthesized hybrids, compound 41, a C-7 substituted O-methyl oxime derivative, showed
significant inhibitory efficacy against MRSA and S. aureus with MIC values of 0.009 mM
and 0.017 mM, respectively. Toxicity studies against BEAS-2B and A549 cell lines indicate
that compound 41 is safer and less likely to trigger the development of bacterial resistance.
Quantum chemical studies validate the experimental data and rationally explain the struc-
tural features essential for activity. Further docking with DNA gyrase (PDB code: 4DUH)
and molecular electrostatic potential (MEP) surface-studies explained the importance and
interaction of O-methyl oxime fragment, thiazole ring, and quinolone scaffold. Also, drug
combination studies of compound 41 with clinical antibacterial cefixime were investigated,
and the observed results reveal that combined drugs were more susceptible than their
individual use and their combined effects mainly exhibited synergistic and additive effects
with a low MIC value of 8.72 µM (enhanced by 4-fold) against S. aureus [89].
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6. Synthetic 2-Quinolones Targeting DNA Gyrase

4-Quinolone is a well-established scaffold for antibiotics and plays a crucial role in its
antibacterial properties. However, many 2-quinolones which are isomeric to 4-quinolones
and isosteric to coumarins, have been investigated for various pharmacological properties,
including antibacterial. The assumption is that 2-quinolone works in a similar mode of
action as 4-quinolones, but more mechanistic studies are needed to confirm the antibacterial
mechanism of action.

The development of non-fluoroquinolone inhibitors (4-quinolones) for bacterial in-
fections is another area of research interest. Reck et al. systematically optimized and
developed compound 42 as a potential antibacterial agent targeting quinolone-resistant
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isolates. One of the main goals of the development process was to enhance the IC50 value of
the hERG. Upon introduction of F on the piperidine ring and chirality to the molecule, this
increased the hERG IC50 value to 233 µM. The mode of action of the molecule is unclear,
however, the molecule shows effectiveness in a MRSA strain-infected mouse model [90].
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Shiroya and Patel synthesized several 2-quinolone analogs and among them, com-
pound 43 was the most active against S. aureus and E. coli, but not as effective as ciprofloxacin.
The computational study showed binding interactions within the active site of the DNA
gyrase B subunit (PDB ID: 3G75) [91].
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Several 2-quinolone thiosemicarbazone derivatives were prepared to start from quinolone
carbaldehyde. Compounds 44, 45, and 46 showed moderate antibacterial properties with
minimum bactericidal concentrations (MBCs) in the range of 0.80 and 36.49 mM against a broad
range of bacterial strains, including MRSA. Molecular docking studies suggest these compounds
are showing interactions at the active site of the DNA gyrase (PDB ID: 2XCT) [92].
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Wu et al. synthesized 37 N-thiadiazole-4-hydroxy-2-quinolone-3-carboxamides, and
investigated the bacterial activity against S. aureus. From the study, compound 47 stands
alone in terms of potency against several bacterial strains, including MRSA, by a 1 to 128-
fold improvement, compared with vancomycin. It also showed low toxicity. In addition,
the compound did not induce resistance development of MRSA over 20 passages, and it
has been validated as a bactericidal, metabolically-stable, orally-active antibacterial agent.
Further experimental (IC50: 0.15 µM) molecular docking (PDB ID: 4URO) data propose
S. aureus DNA gyrase B as its potential target [93].

Biomedicines 2023, 11, 371 22 of 29 
 

 

Several 2-quinolone thiosemicarbazone derivatives were prepared to start from quin-

olone carbaldehyde. Compounds 44, 45, and 46 showed moderate antibacterial properties 

with minimum bactericidal concentrations (MBCs) in the range of 0.80 and 36.49 mM 

against a broad range of bacterial strains, including MRSA. Molecular docking studies 

suggest these compounds are showing interactions at the active site of the DNA gyrase 

(PDB ID: 2XCT) [92]. 

 

Wu et al. synthesized 37 N-thiadiazole-4-hydroxy-2-quinolone-3-carboxamides, and 

investigated the bacterial activity against S. aureus. From the study, compound 47 stands 

alone in terms of potency against several bacterial strains, including MRSA, by a 1 to 128-

fold improvement, compared with vancomycin. It also showed low toxicity. In addition, 

the compound did not induce resistance development of MRSA over 20 passages, and it 

has been validated as a bactericidal, metabolically-stable, orally-active antibacterial agent. 

Further experimental (IC50: 0.15 µM) molecular docking (PDB ID: 4URO) data propose S. 

aureus DNA gyrase B as its potential target [93]. 

 

Saleh et al. synthesized several 6-hydroxyquinolinone derivatives, intending to de-

velop potential broad-spectrum antibacterial agents. Interestingly, the intermediate 48 

showed potential antibacterial properties against a broader range of bacterial strains than 

the final products and molecular docking studies indicate, binding to key amino acid res-

idues of microbial DNA gyrase B of Staphylococcus aureus (PDB ID: 4URO) [94]. 

 

Moussaoui et al. synthesized several 2-quinolone-based compounds, incorporating 

triazole moiety via click chemistry. Even though some of the molecules (49 and 50) 

showed potential antimicrobial activity against Escherichia coli, Staphylococcus aureus, Pseu-

domonas aeruginosa, and Bacillus subtilis, molecular docking studies (PDB ID: 5BS3) suggest 

that the function of the synthesized 2-quinolone-based compounds was not by inhibiting 

DNA gyrase [95]. 



Biomedicines 2023, 11, 371 20 of 27

Saleh et al. synthesized several 6-hydroxyquinolinone derivatives, intending to de-
velop potential broad-spectrum antibacterial agents. Interestingly, the intermediate 48
showed potential antibacterial properties against a broader range of bacterial strains than
the final products and molecular docking studies indicate, binding to key amino acid
residues of microbial DNA gyrase B of Staphylococcus aureus (PDB ID: 4URO) [94].

Biomedicines 2023, 11, 371 22 of 29 
 

 

Several 2-quinolone thiosemicarbazone derivatives were prepared to start from quin-

olone carbaldehyde. Compounds 44, 45, and 46 showed moderate antibacterial properties 

with minimum bactericidal concentrations (MBCs) in the range of 0.80 and 36.49 mM 

against a broad range of bacterial strains, including MRSA. Molecular docking studies 

suggest these compounds are showing interactions at the active site of the DNA gyrase 

(PDB ID: 2XCT) [92]. 

 

Wu et al. synthesized 37 N-thiadiazole-4-hydroxy-2-quinolone-3-carboxamides, and 

investigated the bacterial activity against S. aureus. From the study, compound 47 stands 

alone in terms of potency against several bacterial strains, including MRSA, by a 1 to 128-

fold improvement, compared with vancomycin. It also showed low toxicity. In addition, 

the compound did not induce resistance development of MRSA over 20 passages, and it 

has been validated as a bactericidal, metabolically-stable, orally-active antibacterial agent. 

Further experimental (IC50: 0.15 µM) molecular docking (PDB ID: 4URO) data propose S. 

aureus DNA gyrase B as its potential target [93]. 

 

Saleh et al. synthesized several 6-hydroxyquinolinone derivatives, intending to de-

velop potential broad-spectrum antibacterial agents. Interestingly, the intermediate 48 

showed potential antibacterial properties against a broader range of bacterial strains than 

the final products and molecular docking studies indicate, binding to key amino acid res-

idues of microbial DNA gyrase B of Staphylococcus aureus (PDB ID: 4URO) [94]. 

 

Moussaoui et al. synthesized several 2-quinolone-based compounds, incorporating 

triazole moiety via click chemistry. Even though some of the molecules (49 and 50) 

showed potential antimicrobial activity against Escherichia coli, Staphylococcus aureus, Pseu-

domonas aeruginosa, and Bacillus subtilis, molecular docking studies (PDB ID: 5BS3) suggest 

that the function of the synthesized 2-quinolone-based compounds was not by inhibiting 

DNA gyrase [95]. 

Moussaoui et al. synthesized several 2-quinolone-based compounds, incorporating
triazole moiety via click chemistry. Even though some of the molecules (49 and 50) showed
potential antimicrobial activity against Escherichia coli, Staphylococcus aureus, Pseudomonas
aeruginosa, and Bacillus subtilis, molecular docking studies (PDB ID: 5BS3) suggest that the
function of the synthesized 2-quinolone-based compounds was not by inhibiting DNA
gyrase [95].
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7. Drug-like Properties

Like the potency of a molecule, drug-like properties such as solubility, metabolic
stability, toxicity, bioavailability, etc., are also equally important in the drug development
process. If a molecule is potent and possesses drug-like properties (drug-likeness), then
the molecule could further be considered as a drug candidate. We used a computational
software “STARDROP” to determine the properties, such as molecular weight (MW),
lipophilicity (logP), hydrogen bond donor (HBD), hydrogen bond acceptor (HBA), topolog-
ical polar surface area (TPSA), rotatable bonds, hERG inhibition potential (hERG pIC50),
blood–brain–barrier ability (BBB), and human intestine absorption (HIA) of all molecules
discussed in this article [96].

A large molecular size/weight tends to decrease absorption and lead to a lower
volume of distribution. The ideal oral drug candidates should have a molecular weight
less than 500. Lipophilicity (logP) plays a crucial role in drug development, since this
value is directly related to absorption, distribution, drug-binding ability, bioavailability,
and drug clearance. The optimal value of logP is <5. Hydrogen-bond donors (HBD) and
hydrogen-bond acceptors (HBA) are important for the interaction of drugs with the active
site of the receptor. These interactions are critical for biological properties and toxicity. As
per the rule of five, the number of HBD should be <5 and HBA <10. The topological polar
surface area (TPSA) is a popular property of the drug development process, as this will
determine the permeability of the drug. The values are different depending on the target.
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For non-CNS drugs, the ideal TPSA value is less than 140 Å. The number of rotatable
bonds in a molecule determines its flexibility, as well as its selectivity. Generally, less than
10 rotatable bonds are most acceptable. The hERG pIC50 values are vital to consider, since
these values indicate possible cardiac toxicity (especially compounds with >5 hERG pIC50
value). High hERG toxicity values cannot be tolerated in antibacterial agents. Human
intestine absorption (HIA) and blood–brain–barrier ability (BBB) are considered to avoid
unwanted toxicity and improve bioavailability. If the drug is not designed for the CNS,
the drug should ideally not cross the BBB. The human intestine is large and a good site for
absorption of most oral drugs.

The violation of drug-likeness, or Lipinski’s rule of five, including oral bioavailability, could
be overcome by lead optimization/bioisosteric approaches to design and develop potential
drug candidates within the applicability domain of potency and all pharmacokinetic properties.
The predicted properties are listed in Table 4, and we believe these data will enable researchers
to wisely choose the scaffold, and possible substituents considering drug-like properties in
developing potential drug candidates to overcome the current challenges.

Table 4. Predicted drug-like properties of the quinolones in this study.

Entry Compds. MW logP HBD HBA TPSA Rotatable
Bonds

hERG
pIC50

BBB HIA

1 S1 331.3 −1.08 2 6 74.6 3 4.44 − +

2 S2 319.3 −1.03 2 6 74.6 3 4.25 − +

3 S3 375.4 −0.74 2 7 83.8 4 4.41 − +

4 S4 361.4 0.6296 1 7 83.8 4 4.74 − +

5 S5 361.4 0.55 1 7 75.0 2 4.76 − +

6 S6 401.4 −0.45 2 7 83.8 4 4.67 − +

7 S7 389.4 −1.12 2 9 123 5 3.92 − +

8 S8 440.8 1.65 3 8 121.7 3 4.52 − +

9 1 593.0 4.51 1 10 120.8 6 5.85 − +

10 2 473.4 1.28 2 13 172.7 4 3.87 − +

11 3 361.4 −1.11 2 7 83.8 4 4.41 − +

12 4 433.4 −0.73 2 9 110.1 7 4.29 − +

13 5 620.5 5.4 1 8 83.6 7 6.65 − +

14 6 500.6 2.95 2 6 94.5 7 5.00 − +

15 7 474.5 2.71 2 6 94.5 6 5.16 − +

16 8 461.5 3.25 2 8 94.5 5 5.58 − +

17 9 288.3 1.28 1 8 99.2 2 4.10 − +

18 10 302.3 4.67 1 8 99.2 3 4.23 − +

19 11 528.5 2.27 2 10 115.4 4 4.03 − +

20 12 508.5 1.74 2 10 115.4 4 4.05 − +

21 13 564.6 2.45 1 10 120.2 7 4.58 − +

22 14 459.5 2.44 1 8 99.9 8 4.91 − +

23 15 459.5 2.44 1 8 99.9 8 4.95 − +

24 16 1081 4.38 4 20 243.2 16 5.29 − +

25 17 1125 4.52 4 21 252.4 17 5.16 − +
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Table 4. Cont.

Entry Compds. MW logP HBD HBA TPSA Rotatable
Bonds

hERG
pIC50

BBB HIA

26 18 472.9 4.48 2 7 99.7 8 4.69 − +

27 19 486.9 4.99 2 7 99.7 9 4.84 − +

28 20 456.5 3.68 2 7 99.7 7 4.83 − +

29 21 470.5 4.04 2 7 99.7 8 4.63 − +

30 22 484.5 4.60 2 7 99.7 9 4.79 − +

31 23 416.4 2.18 4 8 130.9 3 3.77 − +

32 24 400.4 2.51 3 7 110.7 3 3.81 − +

33 25 490.5 3.97 2 7 99.7 6 4.52 − +

34 26 444.4 2.70 3 8 119.9 5 3.97 − +

35 27 442.5 3.32 2 7 99.7 6 4.33 − +

36 28 542.6 2.81 1 10 114.2 10 5.62 − +

37 29 747.8 0.09 4 18 219.9 13 2.69 − +

38 30 432.5 2.52 2 7 93.4 4 5.60 − +

39 31 466.6 4.28 0 6 68.6 3 6.12 − +

40 32 514.6 4.69 0 6 68.6 4 6.45 − +

41 33 466.6 4.28 0 6 68.6 3 6.15 − +

41 34 514.6 4.64 0 6 68.6 4 6.48 − +

43 35 432.5 2.94 2 7 79.4 5 5.98 − +

44 36 432.5 2.52 2 7 93.4 4 5.60 − +

45 37 374.9 3.63 1 5 64.2 3 5.67 − +

46 38a 293.7 1.51 0 6 65.6 2 5.33 − +

47 38b 307.7 1.95 0 6 65.6 2 5.45 − +

48 38c 321.7 2.34 0 6 65.6 4 5.64 − +

49 38d 321.7 2.31 0 6 65.6 3 5.52 − +

50 39 1159 1.51 16 26 438.3 41 1.39 − +

51 40 369.3 3.88 1 3 49.9 4 5.18 + +

52 41 457.6 3.11 1 7 76.6 6 6.61 − +

53 42 463.5 1.77 1 8 92.4 7 6.71 − −
54 43 294.3 2.67 3 5 82.1 3 4.55 − +

55 44 335.4 2.91 3 4 56.9 5 5.23 + +

56 45 400.3 3.41 3 4 56.9 5 5.36 + +

57 46 355.8 3.16 3 4 59.9 5 5.25 + +

58 47 399.4 2.92 2 8 110 5 4.68 − −
59 48 177.2 0.54 3 4 73.3 0 4.24 − +

60 49 546.5 1.25 2 13 163.5 13 4.21 − +

61 50 595.6 2.51 1 13 145 8 4.71 − −

When developing potential oral antibacterial drug candidates, drug-like properties, includ-
ing Lipinski’s rule of five, should be one of the key criteria in addition to the rationale of the drug
design approach and synthesis. We have generated data on common drug-like properties of the
quinolones discussed in this article. Most of the potential compounds have the required/desired
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parameter. However, some compounds (highlighted in red) do have antibacterial properties,
but violate the recommended values of critical drug-like properties.

8. Methodology

The references considered for this review article were retrieved from PubMed, SciFinder,
Springer, ScienceDirect, ACS, Google Scholar, and Wiley databases within the last two decades,
and the search keywords used “DNA gyrase” combined with “quinolones” and further filtered
by synthesis. Both experimental and computational studies for DNA gyrase investigations
were reported in this review. We also used the terms “fluoroquinolone”, “gyrase inhibitor”,
“quinolone-resistant”, etc., to identify missing relevant articles for inclusion in the review. The
search strategy identified 582 publications, and patents were excluded from the search. We have
also searched current clinical trials on quinolones as a potential therapy for bacterial infections
using www.clinicaltrials.gov (accessed on 30 December 2022) [97]. Currently, there are no new
molecules under the category of quinolones in the process of clinical trials.

9. Conclusions

Quinolones are one of the most important classes of antibiotics, however, in recent
years the clinical use of these drugs is being impacted due to the growing number of
resistant bacterial strains. With drug resistance emerging as a major public health concern,
much drug development effort has been centered around the challenge of developing
new effective drug candidates. Modifications of the quinolone scaffold have proved to
overcome the resistance and enhance the potency of the drug against resistant bacterial
strains. The quinolone scaffold can be modified at the N1, C3, C6, C7, and C8 (and less
commonly, C5) positions to improve activity and pharmacokinetics, and reduce toxicity.
Based on an analysis of the data presented in this study, the best possible substituents at
each position of the quinolone are a cyclopropyl/ethyl group at N1, a fluorine/methoxy
at C6, a piperazine/pyrrolidine/alkylpyrroline group at C7, and a methoxy group at C8.
Fluorine at C6 was found in most of the quinolone-based compounds, as it significantly
improves the activity; however, current research suggests the fluorine atom is responsible
for genotoxicity.

We believe that improvements in the activity and development of potential drug can-
didates for resistant bacterial strains are still possible, and new generations of quinolones
can still contribute to the effective treatment of bacterial infections. We hope this com-
piled information on quinolones can be used in the development of a new generation of
quinolones with higher potency against resistant bacterial strains.
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