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Abstract: The periodontal ligament is located between the bone (alveolar bone) and the cementum of
the tooth, and it is connected by tough fibers called Sharpey’s fibers. To maintain healthy teeth, the
foundation supporting the teeth must be healthy. Periodontal diseases, also known as tooth loss, cause
the alveolar bone to dissolve. The alveolar bone, similar to the bones in other body parts, is repeatedly
resorbed by osteoclasts and renewed by osteogenic cells. This means that an old bone is constantly
being resorbed and replaced by a new bone. In periodontal diseases, the alveolar bone around the
teeth is absorbed, and as the disease progresses, the alveolar bone shrinks gradually. In most cases,
the resorbed alveolar bone does not return to its original form even after periodontal disease is cured.
Gum covers the tooth surface so that it matches the shape of the resorbed alveolar bone, exposing
more of the tooth surface than before, making the teeth look longer, leaving gaps between the teeth,
and in some cases causing teeth to sting. Previously, the only treatment for periodontal diseases was
to stop the disease from progressing further before the teeth fell out, and restoration to the original
condition was almost impossible. However, a treatment method that can help in the regeneration
of the supporting tissues of the teeth destroyed by periodontal diseases and the restoration of the
teeth to their original healthy state as much as possible is introduced. Recently, with improvements
in implant material properties, implant therapy has become an indispensable treatment method in
dentistry and an important prosthetic option. Treatment methods and techniques, which are mainly
based on experience, have gradually accumulated scientific evidence, and the number of indications
for treatment has increased. The development of bone augmentation methods has contributed
remarkably to the expansion of indications, and this has been made possible by various advances in
materials science. The induced pluripotent stem cell (iPS) cell technology for regenerating periodontal
tissues, including alveolar bone, is expected to be applied in the treatment of diseases, such as tooth
loss and periodontitis. This review focuses on the alveolar bone and describes clinical practice,
techniques, and the latest basic research.

Keywords: periodontal tissue; periodontal disease; alveolar bone; alveolar surgery; alveolar bone
resorption; implant therapy

1. Introduction

To maintain healthy teeth, the structures that support the teeth must be healthy. One
of the most important of these structures is the alveolar bone (Figure 1). Periodontal
disease, a well-known cause of tooth loss, causes the alveolar bone to dissolve [1–4].
Periodontal diseases are said to be one of the two most common diseases in dentistry,
along with dental caries. Although periodontal diseases are caused by dental plaque
or dental biofilm adhering to the border between the teeth and gingiva, its prevalence
remains high worldwide, and it is the leading cause of tooth loss [5–9]. Periodontal
diseases are characterized by progressive destruction of periodontal tissues caused by
chronic inflammatory and immune responses induced by dental plaque, and recently, it
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has been strongly suggested to be closely related to various systemic conditions, including
diabetes [10–13].
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Figure 1. The alveolar bone. A diagram of a tooth cut vertically is shown. The alveolar bone is the 
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surface is made of soft “trabecular bone,” and this outer frame and cushioning make it resistant to 
impact. 

Recently, as the public’s knowledge of periodontal diseases has increased, an increas-
ing number of patients are presenting to the hospital with symptoms of periodontal dis-
eases as their main complaint. However, because periodontal diseases often progress 
slowly and do not cause pulpitis-like pain, they are easily overlooked, and detection is 
often delayed or treatment is neglected. Thus, understanding the actual condition of pa-
tients with periodontal diseases during clinic visits is very important for treatment [14–
17]. 

The alveolar bone, similar to bones in other body parts, is repeatedly resorbed by 
osteoclasts and renewed by osteogenic cells [18–25]. In other words, an old bone is con-
stantly being resorbed and replaced by a new bone. However, when there is an imbalance 
between the two, bone resorption progresses, and new bone formation cannot keep up. 
Periodontal diseases cause inflammation of periodontal tissues, and cytokines, which are 
substances produced during this inflammation process, promote the function of osteo-
clasts. 

Figure 1. The alveolar bone. A diagram of a tooth cut vertically is shown. The alveolar bone is the bone
that supports the tooth and is connected to the root of the tooth via the periodontal ligament, which
receives the force of the bite. The outer surface is made of hard “dense bone”, while the inner surface is
made of soft “trabecular bone”, and this outer frame and cushioning make it resistant to impact.

Recently, as the public’s knowledge of periodontal diseases has increased, an increas-
ing number of patients are presenting to the hospital with symptoms of periodontal diseases
as their main complaint. However, because periodontal diseases often progress slowly
and do not cause pulpitis-like pain, they are easily overlooked, and detection is often
delayed or treatment is neglected. Thus, understanding the actual condition of patients
with periodontal diseases during clinic visits is very important for treatment [14–17].

The alveolar bone, similar to bones in other body parts, is repeatedly resorbed by os-
teoclasts and renewed by osteogenic cells [18–25]. In other words, an old bone is constantly
being resorbed and replaced by a new bone. However, when there is an imbalance between
the two, bone resorption progresses, and new bone formation cannot keep up. Periodontal
diseases cause inflammation of periodontal tissues, and cytokines, which are substances
produced during this inflammation process, promote the function of osteoclasts.

The intrinsic alveolar bone is the portion of the cortical bone that forms the inner wall
of the alveolar bone, surrounds the tooth root, and contains Sharpey’s fibers, which have
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the important function of supporting the teeth. The supporting alveolar bone is the portion
of the alveolar process other than the intrinsic alveolar bone that supports the intrinsic
alveolar bone. Structurally, it is composed of cortical bone (the lateral surfaces of the buccal
and lingual surfaces of the alveolar process) and trabecular bone. The cancellous bone
has well-developed trabecular bone and bone marrow tissue, and when young, it is also
involved in hematopoiesis.

This review describes the clinical practice, mainly surgical procedures, and the latest
basic research on the alveolar bone, which plays an important role in supporting teeth and
periodontal tissues.

1.1. Alveolar Bone Resorption

Alveolar bone resorption can be physiological or pathological, and the most common
cause is chronic inflammation due to periodontal diseases [26–28]. Alveolar bone resorption
can be divided into three types [29–33]:

(1) Horizontal bone resorption. There is uniform horizontal resorption of the alveolar
bone that occurs extensively on multiple teeth, e.g., the line connecting the cement–
enamel border of the adjacent teeth is parallel to the alveolar crest.

(2) Vertical resorption. There is vertical resorption of the alveolar bone from the apex,
often confined to one or two teeth. The line connecting the cement–enamel border of
the adjacent tooth and the alveolar crest is not parallel.

(3) Mixed bone resorption. A combination of horizontal and vertical bone resorption occurs.

1.2. Alveolar Bone Surgery

Alveolar bone surgery is the general term for periodontal surgery aimed at removing
gingival or periodontal pockets, and alveolar bone surgery is the main surgical technique used.
Alveolar bone surgery includes alveolar osteoplasty, alveolar resection, and bone grafting,
and it is often performed simultaneously with other periodontal surgical procedures.

Alveolar bone reshaping is a surgical procedure that corrects alveolar bone morphol-
ogy to a physiological form without removing the native alveolar bone. Its indications
include thick shelf-like bone margins, exostosis, and bony prominences. Generally, it is
performed simultaneously with other periodontal surgical treatments.

1.3. Alveolar Osteotomy

In this surgical procedure, the alveolar bone is constructed closer to the physiological
morphology by removing it, including the intrinsic alveolar bone [34,35]. The amount
of alveolar bone to be removed must be determined so that the crown-to-root ratio does
not worsen and the roots and root bifurcations are not exposed when the height of the
alveolar bone is reduced. Indications include cratering bone defects in the interdental
space, submarginal pockets, and crown lengthening. As with alveolar bone reshaping, this
procedure is performed simultaneously with other periodontal surgical procedures [35–39].

2. Characteristics of Periodontal Treatment

Non-surgical treatments, including scaling and root planing, adjuvant treatments, includ-
ing antibiotics and disinfectants, and lifestyle modifications, including smoking cessation and
improvement of oral hygiene, play important roles in periodontal disease treatment.

Removing the cause of periodontitis improves or stops its progression. With basic peri-
odontal treatment, mainly consisting of root cause elimination methods, mild periodontitis
is restored to a healthy state, and progression is arrested [10,40,41]. However, moderate or
severe periodontitis requires a more complex periodontal treatment with frequent use of
periodontal surgery and restoration of oral function. It is difficult to achieve complete regen-
eration of lost periodontal tissue using current routine periodontal treatments, including
periodontal tissue regeneration therapy.
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As part of periodontal treatment, lifelong ongoing management using “Supportive
Periodontal Therapy (SPT), maintenance, and treatment for the prevention of severe peri-
odontal disease” are indispensable [42–44].

Periodontitis is highly likely to recur due to the constant presence of bacterial plaque
and traumatic factors in the oral cavity, deep periodontal pockets and root bifurcation
lesions that may persist despite appropriate periodontal treatment, and the influence of
systemic factors over time. Therefore, when basic periodontal therapy, periodontal surgery,
and oral function restoration therapy have “cured” or “stabilized” the disease, or when
inflammation is present in the gingiva even though the probing depth is <4 mm, SPT, which
is part of periodontal therapy, is used to maintain periodontal tissues for an extended
period, while maintenance therapy, as a preventive therapy and health care, is used to
prevent severe periodontal disease. SPT and periodontal disease severity prophylaxis
consist mainly of plaque control, scaling and root planing, and occlusal adjustment by a
dental healthcare professional. SPT and maintenance are essential because periodontal
disease can easily recur with inadequate plaque control. Additionally, these treatments
at appropriate intervals can preserve periodontal tissues, including the alveolar bone,
allowing them to function for an extended period.

Although periodontal treatment is vital to health care, it also has disadvantages. De-
pending on the periodontal disease progression, pain may be experienced during treatment.
When cleaning the grooves in the gums, which tend to be a breeding ground for periodontal
disease bacteria, the instruments will touch the gums. For those with particularly advanced
gum disease, the pain may also be more intense, and anesthesia may be necessary. Another
disadvantage of periodontal treatment is that it requires more frequent and time-consuming
visits. Periodontal disease treatment involves removing the tartar and plaque where the
causative bacteria live. However, the tartar and plaque in the hard-to-see areas deep in the
periodontal pockets may be missed. Consequently, due to care, such as brushing or lifestyle
slackness, the remaining causative bacteria in the oral cavity may become active, causing
periodontal disease recurrence. Therefore, early prevention must always be considered.

Periodontal patients with systemic or suspected systemic disease should be thoroughly
interviewed medically before periodontal treatment starts, and promptly referred to a
physician based on their symptoms [45–47]. Periodontal treatment may be possible with
adequate management of systemic disease. However, depending on the systemic disease
and its symptoms, periodontal and dental treatments may be difficult in some cases.
Therefore, the patient should be referred early to a medical institution specializing in that
systemic disease to provide the information necessary for the condition and treatment and
to request management of the systemic disease [48,49].

2.1. New Classification of Periodontal Disease (2018 American Academy of Periodontology and
European Federation of Periodontology)

Periodontal disease is a complex and multifactorial condition that requires a comprehensive
approach to diagnose and treat. In November 2017, the American Academy of Periodontology
(AAP) and the European Federation of Periodontology (EEP) co-sponsored the World Workshop
on the Classification of Periodontal and Peri-Implant Diseases and Conditions.

The workshop results were summarized in a consensus report and published as a new
classification of periodontal disease by the AAP/EFP during the EuroPerio9 in Amsterdam
in June 2018. The most significant change in the new classification is that of periodontitis.
The 1999 classification divided periodontitis into two major categories: invasive and chronic.
However, the new classification combines these two categories into a single periodontitis
and introduces a diagnostic framework of stages and grades. The severity and complexity
of periodontitis are divided into four stages (stage I is the mildest and stage IV is the most
severe), and the risk of periodontitis progression is divided into three grades (grade A is the
lowest and grade C is the highest). Factors including smoking and diabetes are considered
in determining the grade [50].
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2.2. Tissue Engineering for Periodontal Tissue Regeneration

Adherence to the basic flow of periodontal treatment (i.e., examination and diagnosis,
basic periodontal treatment, reevaluation, and maintenance or supportive periodontal
therapy) can prevent the progression of periodontal diseases, and periodontal tissue healing
can be promoted through the precise implementation of periodontal scaling and root
planning and other root cause elimination therapies. Environmental and acquired factors
that influence periodontal disease include stress stimuli. Stress stimuli are associated with
the severity of periodontal disease, and the state of mental tension (stress response) induced
by stress stimuli influences the immune response. European researchers have found a
relationship between gingivitis and depression. They published a study showing that
patients with gingivitis had 1.8 times higher rates of subsequent depression than those
without gingivitis, highlighting the importance of maintaining good oral health [51]. This
trend seems particularly high among young people. Immune inflammation is responsible
for the correlation between gingivitis and depression, and it has been reported that pain, bad
breath, prostheses, and poor oral hygiene can cause symptoms of depression. Along with
personal, genetic, and systemic factors, co-factors including chronic stress and depression
contribute to the development and progression of periodontal disease and peri-implantitis,
compounding the resulting impact on treatment responsiveness [52]. The neurobiological
and neurobehavioral pathogenic associations between chronic stress, depression, and
systemic disease are mainly related to necrotic periodontal disease. In cases of periodontitis
with severe alveolar bone resorption, periodontal pockets may remain even after a root
cause elimination therapy; even if the periodontal pockets disappear, the healing process
may be functionally and esthetically unacceptable, with significant gingival recession. In
other words, periodontal tissue regeneration with a new alveolar bone and cementum
formation cannot be expected, even with conventional cause elimination therapy and
periodontal surgery [53–55] (Tables 1 and 2). Therefore, there are great expectations for
periodontal tissue regeneration therapy based on tissue engineering (Tables 1 and 2).

Table 1. Types of Alveolar Bone Regeneration Treatment.

Type Summary Application Characteristics

Sinus lift

Sinus lift is a technique used to
place implants in the back teeth of
the upper jaw after the bone
thickness has been supplemented.

Sinus lift is an alveolar bone
regeneration technique performed
when the maxillary bone is not
thick enough. This technique is
performed to build a bone by
filling the space above the
alveolar bone, called the maxillary
sinus, with a bone filler or
other materials.

Advantages: Sinus lift is a
treatment method that allows
extensive bone creation so that
longer implants can be used. It is
a treatment method known
worldwide for its long-lasting
effects, and many articles have
been written about it.
Additionally, because the treated
area is visible, the risk is
relatively low.
Disadvantages: Extensive
osteogenesis means a larger
surgical area, and the treatment
period is longer if the sinus lift
and implant placement are done
separately as a two-stage
procedure. The use of expensive
bone replacement materials also
places a burden on the patient’s
body and finances.
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Table 1. Cont.

Type Summary Application Characteristics

Socket lift

Socket lift is a type of osteogenic
surgery applied to maxillary
implant treatment. The bottom of
the maxillary sinus is surgically
lifted to create a space, and a bone
replacement material (either your
own bone or artificial bone) is
grafted into the space to
regenerate the alveolar bone (the
bone that supports the teeth).
When an implant is placed in the
upper jaw, if the alveolar bone is
still thin, it is impossible to place
and settle the implant because of
the weak foundation. In such
cases, the socket lift regenerates
the alveolar bone through
regenerative surgery, allowing the
implant body to be placed in the
maxillary region.

Like sinus lift, socket lift is an
alveolar bone regeneration
technique performed when the
maxillary bone is not thick
enough. This technique is
performed to build a bone by
filling the space above the
alveolar bone, called the maxillary
sinus, with a bone filler and other
materials. It is performed when
the thickness of the maxillary
bone is generally 5 mm or more.

Advantages: It is a type of bone
regeneration surgery that involves
the grafting of bone augmentation
material, but the scope of the
surgical procedure can be
reduced. The surgical procedure
is less stressful on the body.
The procedures for placing the
implant body can be performed at
the same time. Therefore, the
overall treatment time can
be shortened.
Disadvantages: It is assumed
that a certain amount of alveolar
bone thickness (3–5 mm) remains.
If the alveolar bone is not more
than 5 mm, the treatment may not
be possible. Furthermore, the
scope of the surgical procedure is
narrow. It can reduce the burden
on the body, but the range of bone
that can be regenerated is also
narrower. The condition of the
maxillary sinus cannot be visually
confirmed during the surgery.
Therefore, there is a risk of
damage to the maxillary sinus,
resulting in sinusitis or sinusitis.

GBR (guided
bone
regeneration)

GBR is a method of regenerating
the alveolar bone when the bone
thickness or height is insufficient
for implant treatment. Once the
alveolar bone is lost due to bone
resorption caused by severe
periodontal disease or bone loss
after tooth extraction, it becomes
difficult to place an implant in
that area. In such bone-deficient
areas, “fibroblasts”, which do not
form bone, tend to proliferate
more easily than “osteoblasts”,
which form bone. Therefore, in
GBR, the area to be treated is
covered with a “membrane” to
prevent fibroblasts from invading
the area and filling it with
autologous bone or an artificial
bone replacement material to
promote the proliferation
of osteoblasts.

While sinus lift and socket lift are
performed to build bone inside
the alveolar bone (jaw bone), GBR
is performed to build bone
outside the alveolar bone (i.e., the
surface where the bone meets the
gums). It is performed when the
alveolar bone is not wide or
high ·enough.

Advantages: By increasing the
amount of bone, it is possible to
“secure the amount of bone”
necessary for implant placement
and to place the implant in the
appropriate position, which
results in “high stability”.
Disadvantages: When using
autologous bone, “bone
harvesting surgery” is required
separately from implant
placement, “treatment time is
long”, and “it is not suitable for
smokers and diabetics”.
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Table 1. Cont.

Type Summary Application Characteristics

Socket
preservation

Socket preservation is an alveolar
bone preservation technique used
to minimize bone resorption by
placing a bone filler in the
extraction socket and sealing the
gingiva at the time of tooth
extraction. This technique is
effective in cases of significant
alveolar bone resorption or when
a tooth is to be extracted, but an
implant is desired in the future.

Socket preservation is a
prophylactic technique to prevent
“bone resorption” after tooth
extraction. This technique is
performed in conjunction with
tooth extraction.

Advantages: The purpose of
extraction is to prevent bone
resorption after tooth extraction
and to preserve the alveolar crest
morphology rather than to
perform an osteogenic procedure.
If the alveolar crest is preserved, it
can be used to support later
dental implants or bridges.
Disadvantages: This technique is
not applicable if bone resorption
is severe during tooth extraction.

Table 2. Periodontal Tissue Regeneration Materials Used in Periodontal Tissue Regeneration Therapy.

Product Name Summary Characteristics

REGROTH®

(Active ingredient: Trafermin (genetical
recombination), 0.3% basic Fibroblast
Growth Factor: FGF-2, Kaken
Pharmaceutical Co., LTD., Tokyo, Japan)

An artificially purified basic fibroblast growth
factor, which is expected to regenerate lost
alveolar bone and periodontal ligament by
increasing the proliferation of periodontal
tissue cells.

It can regenerate bone, cementum, and
periodontal ligament of a tooth that is about to
fall out. It has a high ability to regenerate the
alveolar bone.

Emdogain®Gel
(Straumann, Basel, Switzerland)

A periodontal tissue regeneration material
containing enamel matrix protein, which plays
a vital role in tooth development. This protein
may be useful for periodontal
tissue regeneration.

Because of the large number of cases treated,
there is a wealth of evidence (e.g., papers) and
a relatively high degree of certainty. It is
compatible with various bone replacement
materials used as bone substitutes and can be
easily used in combination with bone
replacement materials.

Geistlich Bio-Oss® (Geistlich Pharma AG,
Wolhusen, Switzerland)

A bone grafting material, which is expected to
promote bone regeneration when applied to
bone defects caused by periodontal disease.

It is a natural bovine-derived porous bone
filler with excellent osteoconductivity. It
promotes growth and provides the bone
volume necessary for implant placement in
alveolar bone regeneration and augmentation.
It is also highly compatible with the human
body. It reduces the risk of infection.

Cytrans® Granules (Carbonated apatite
granules, GC Corporation, Tokyo, Japan).

A bone grafting material composed primarily
of carbonate apatite, which is expected to
promote bone regeneration when applied to
bone defects caused by periodontal disease.

The main component, carbonate apatite, has
the same composition as the bone, so it is
efficiently replaced by the patient’s own bone,
achieving strong osseointegration while
maintaining the target bone surface height.

Cytrans® Elashield (GC Corporation,
Tokyo, Japan).

An absorbable membrane prepared from a
chemically synthesized heavy polymeric
material, which is expected to promote bone
regeneration when applied to alveolar bone
defects along with bone grafting materials.

The raw material is a fully synthetic polymer
with a long absorption period suitable for GBR.
It is designed to be easy to use and prevent
postoperative gingival fissures because of its
moderate firmness, flexibility, and ability to
follow the shape of the bone. It can be used not
only with autologous bone but also with bone
replacement materials such as
Cystrans Granules.

Geistlich Bio-Gide® (Geistlich Pharma AG,
Wolhusen, Switzerland)

An absorbable collagen membrane, which is
expected to promote bone regeneration when
applied to alveolar bone defects along with
bone graft materials.

It has excellent tissue integration and strongly
promotes bone regeneration. Due to its natural
collagen structure, it is less prone to rupture
than other membranes, resulting in fewer
problems. The procedure is simple because
membrane removal is not required. The
burden on the patient is greatly reduced.

Langer et al. proposed a new concept of tissue engineering [56]. This concept is
based on the idea of constructing new tissues by combining the “cells” that make up
the tissue, the “scaffold” that arranges the cells in three dimensions and gives the tissue
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its shape, and the “signaling molecules” that control cell functions, such as proliferation
and differentiation [57–63]. This concept also promotes the development of regenerative
medicine for various tissues and organs.

Regarding periodontal tissue regeneration, periodontal ligament-derived cells are
selectively and preferentially induced on the root surface of periodontal tissue defects,
undifferentiated mesenchymal cells contained in periodontal ligament-derived cells pro-
liferate while retaining pluripotency and differentiate into hard tissue forming cells (i.e.,
osteoblasts and cementoblasts) and periodontal ligament fibroblasts in a site-specific man-
ner, and periodontal ligament fibroblasts are differentiated from periodontal ligament cells
in a site-specific manner [64–68]. To acquire new attachments, the collagen fiber bundles
produced by periodontal ligament fibroblasts must be embedded in the new bone tissue
and cementum created by osteoblasts and cementoblasts [69–71].

3. Guided Bone Regeneration (GBR)

GBR is a technique that applies the principles of guided tissue regeneration only
to bone tissue. It is a method of bone regeneration by covering the bone defect with a
membrane to prevent the invasion of epithelial cells and connective tissue-derived cells
and to provide time and space for osteogenesis by osteoblasts. This is a technique used to
achieve bone augmentation. GBR is also an integral component of today’s implant therapy.
The membrane must have the following characteristics: biocompatibility, cell blocking,
tissue integrity, space-making ability, and ease of use [72,73].

In several cases, autologous bone or various bone augmentation materials are grafted
for space creation and membrane retention, and bone augmentation is performed using
their osteoinductive or osteoconductive abilities.

Clinical Applications of Nonabsorbable and Resorbable Bone-Replacing Materials

In several cases, autogenous bone grafting was required for space making, but a
secondary wound had to be created for harvesting autogenous bone. The associated
prolongation of operative time and the risk of complications, such as bleeding, swelling,
pain, deformation of receptors, and nerve palsy, have made alternative materials desirable
and increasingly used. Initially, hydroxyapatite (HA) was used as a substitute material for
autologous bone [74].

Subsequently, various bone replacement materials, such as deproteinized bovine
bone mineral and β-tricalcium phosphate (β-TCP) were developed and clinically applied.
Among these, Bio-Oss, an inorganic bovine bone matrix, has become the most clinically
applied bone replacement material in the world, partly because it coincides with the
development of GBR.

Tricalcium phosphate (TCP) has been developed as a resorbable and bone replacement
material for hyaluronan, which is basically non-resorbable. TCP is a material that is highly
degradable and resorbable in body fluids compared with HA. β-TCP is stable at low
temperatures, whereas α-TCP is stable at high temperatures [75]. Among these, β-TCP is
currently the most widely used bone replacement material.

4. Clinical Applications of Membranes

Although the ePTEF membrane has been the gold standard in clinical applications since
the mid-1990s, absorbable membranes consisting primarily of bovine or porcine tendon and
skin-derived type I collagen have also been used [76,77]. In addition to conventional use,
dPTFE membranes have been applied as open barrier membranes for ridge resurfacing and
other applications [78]. The use of the GoreTex membrane was discontinued in 2012, after
which the development and clinical application of different membranes accelerated.

In addition to dPTFE membranes, titanium mesh and titanium membranes are clini-
cally applied as nonabsorbable membranes. Titanium micromesh was developed around
1990, and since then, various titanium meshes have been applied clinically. In the late 1990s,
GBR using thin plate-shaped titanium as a barrier membrane was reported [79], and it
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has been improved and clinically applied since then. The absorbable membrane has been
improved and applied clinically since then.

As absorbable membranes, both biologically derived collagen membranes and mem-
branes prepared from artificial materials have been used in clinical applications. The
membrane is made of two layers, and heparin sulfide and fibronectin are added to the
inner layer to increase its ability to inhibit epithelial penetration toward the root apex [80].
The sausage technique reported by Urban et al. in 2013 is now widely applied clinically as
a predictable bone augmentation method [81].

The goal of bone replacement materials is to achieve an osteogenic potential equiva-
lent to that of autogenous bone with osteoinductive potential. Future prospects include
the development of bone replacement materials that promote bone formation, such as
composites of growth factors and stem cells in artificial bone with interconnecting holes,
and membranes that have similar capabilities.

5. Implant Therapy

In implant therapy, the implant body is placed at the defective site in the jawbone [82–85].
A superstructure is attached to this artificial tooth root to restore masticatory function, pronunci-
ation, and esthetics. Given their excellent biocompatibility, titanium and titanium alloys are the
main materials used for implants, which are artificial tooth roots.

Natural teeth have cementum and periodontal ligaments, which are bound to the
alveolar bone by connective tissue attachments, whereas the implant body is bound to
the alveolar bone by osseointegration [86–88]. Therefore, in natural teeth, collagen fibers
run perpendicular to the root and are embedded in the cementum, whereas in the peri-
implant mucosa, they run parallel to the implant. In natural teeth, blood supply comes from
the periodontal ligament, alveolar bone, and gingiva, whereas in implants, blood supply
comes from the alveolar bone and gingiva. The spread of plaque-induced inflammation
differs between periodontal and peri-implant tissues. In peri-implantitis, the inflammatory
infiltrate can easily spread to the alveolar bone. Since periodontitis is considered a risk factor
for peri-implantitis, implant therapy should be initiated after periodontal therapy [89–91].
In addition, implants are considered less resistant to inflammation than natural teeth; thus,
regular management with attention to plaque control and occlusal control is important.
Peri-implantitis is a bacterial infection; thus, eliminating inflammatory lesions in the
affected area is prioritized when treating it [92–94]. It is necessary to simultaneously
diagnose and treat periodontal disease in the affected area and in the remaining teeth.
Whether conservative or surgical treatment is chosen, debridement of the bacterial biofilm
attached to the microstructure of the implant surface is considered extremely important for
successful treatment. First, treatment according to basic periodontal therapy is performed,
and after the resolution of inflammation is observed, the patient is reevaluated, and the
surgical procedure is chosen on the basis of the examination results. Periodontal histological
examination of the remaining teeth and treatment of periodontal disease are essential.

6. Bone Grafting

Bone grafting is a periodontal tissue regeneration therapy, either alone or in combi-
nation with guided tissue regeneration (GTR) or enamel matrix derivatives [95–98]. Bone
grafts are used to fill periodontitis-induced subgingival defects and improve bone mor-
phology to halt the progression and prevent the recurrence of periodontitis. Compared
with flap surgery, bone grafting may reduce probing depth, improve clinical attachment
levels, and regenerate periodontal tissues (neointegration) with bone formation, cementum,
and partially functional periodontal ligament formation in bone defects. Moreover, bone
grafting is used for bone building before or concurrent with implant placement [99,100].

Bone grafting has osteogenic potential, osteoinductive potential, and osteoconductive
potential. Osteogenesis is the formation of bone by preosteoblasts and mesenchymal cells
in the graft material (autologous bone) [101–103]. The bone-inductive capacity is defined
as bone formation by bone morphogenetic proteins (BMPs) in autologous or allogeneic
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bone [104–106]. The osteoinductive capacity is the ability of a bone graft material to
promote continuous bone formation from existing bone by providing a scaffold for cells
involved in bone formation and calcium and phosphorus for calcification.

6.1. Types and Characteristics of Bone Grafting Methods

Currently, four bone grafting methods for periodontal treatment use bone grafting ma-
terials: (1) autologous bone, (2) allogeneic bone (bone from other families), (3) heterologous
bone, and (4) artificial bone.

(1) Autologous bone grafting

Autologous bone grafting is a transplantation method in which the bone is harvested
from the patient’s body and transplanted into a bone defect [19,107–109]. The bone is har-
vested from both intraoral and extraoral sites. Intraoral sites for bone harvesting include the
vicinity of the graft site, buccal shelf, edentulous jaw crest, exostoses, maxillary tuberosity,
mandibular angle, mastoid, and extraction socket. Bone swaging is also used [110–112], in
which a slit is made in the bone adjacent to the bone defect using a rotary cutting instrument
to pull the bone into the defect. In contrast, extraoral bone is harvested from the bone
marrow and iliac bone.

Autogenous bone has osteogenic and osteoinductive potential and is said to be free
of immunogenic problems. Its advantages include complete resorption and replacement
with a new bone through bone remodeling. However, in some cases, surgical invasiveness
and restrictions on the site and amount of bone harvested make it difficult to obtain the
necessary amount of bone for transplantation.

(2) Allogeneic bone grafting

Allografts and heterogeneous bone grafts include freeze-dried bone allografts, which use
freeze-dried bone from a donor, and demineralized freeze-dried bone allografts [113–116].

(3) Bone xenografting

Bone xenografting is a bone grafting technique that uses non-human bone [117,118].
Currently, bovine bone is mainly used for periodontal treatment because it is similar in
structure to human bone, biocompatible, and bioabsorbable [119–122]. Heterologous bone
has an osteoconductive capacity and is readily available [123,124]. However, patients who
are concerned about the risk of infection must be fully informed, and consent must be
obtained before use.

(4) Artificial bone grafts

Synthetic grafting materials are used for artificial bone grafts [118,125,126]. These
synthetic grafting materials include bioceramics and bioactive glass. Artificial materials are
less surgically invasive, non-pathogenic, and non-infectious, with no limits on the supply
volume. Bone formation and periodontal tissue regeneration are negligible, and they work
primarily as filler spacers.

6.2. Indications

The indications are two- to three-walled, deep, and narrow bone defects in terms of
defect site and morphology. The treatment results are also good. Stable wound healing and
a secured space for tissue regeneration by sufficient coverage of the bone graft material
with a gingival valve are important. A thin gingiva, gingival retraction, and cratering of
the gingiva will negatively affect the treatment outcomes.

6.3. Key Points of the Procedure

(1) For preoperative preparation, thorough plaque control by the patient is important [127–129].
In the case of upset teeth, wound healing stability may be impaired, and the prognosis may
be poor; thus, occlusal adjustment and splint therapy should be used to reduce excessive
tooth movement and fremitus.
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(2) In bone grafting, the incision line and gingival valve should be preserved to ensure that
the bone graft material is completely covered by the gingiva and retained within the
bone defect [95,130]. Incisions close to or over the bone defect should be avoided. Soft
tissue involvement should be carefully minimized during gingival valve dissection.

(3) For receptor preparation, the root surface and bone defect, which is the graft bed,
should be debrided by hand or by a rotary cutting instrument, such as an ultrasonic
scaler or finishing bar. The cortical bone may be perforated using a round bar to
supply blood to the defect.

(4) Preparation of bone graft materials

For autogenous bone [131–133], cortical bone fragments are harvested from around
the surgical site using bone chisels or bone forceps, and bone aggregates are harvested
using rotary or ultrasonic cutting instruments. A bone blend of cortical and cancellous
bone is collected using a trephine bar. The bone graft material should not be in contact with
the saliva during collection and should not be dried until transplantation.

(5) Filling and suturing bone graft materials

Before use, the bone graft material should be infiltrated with saline solution, excess
water should be removed using gauze, the material should be brought into the bone
defect using an amalgam carrier or spatula, and the defect should be filled with a small
amount of bone graft material. At this time, a space is left for osteoblasts and mesenchymal
cells to infiltrate between bone graft materials. To achieve primary wound healing, the
wound should be sutured to ensure that a tension-relieving incision and secure gingival
valve reinstatement are possible, if necessary. The gingival valve should completely cover
the bone graft material and avoid excessive tension. Simple or mattress sutures with
monofilament or nylon thread should be used to avoid breaking the filled bone graft
material. Postoperative management, such as instructing the patient not to brush the
affected area for the first week after surgery, is essential.

7. New Findings from Clinical and Basic Research on the Alveolar Bone

Clinical and basic research on the alveolar bone is ongoing worldwide, and new
findings are reported continuously. This section discusses the most recent findings.

Periodontitis is a major cause of tooth loss, but no effective treatment has been estab-
lished to restore the inflammatory bone lost because of periodontitis. Exosomes are essential
for tissue regeneration, as paracrine factors of mesenchymal stem cells (MSCs) [134–136].
Lei et al. investigated whether exosomes secreted by periodontal ligament stem cells
(PDLSCs) could be therapeutic agents against bone loss in periodontitis [137]. Exosomes se-
creted from healthy periodontal ligament-derived PDLSCs (h-PDLSCs) and their functions
were evaluated against PDLSCs isolated from the inflammatory periodontium of patients
with periodontitis (i-PDLSCs) [137]. Mechanistically, h-PDLSC exosomes suppress the hy-
peractivation of canonical Wnt signaling and restore the osteogenic differentiation potential
of inflammatory PDLSCs [137]. These findings suggest that MSC-derived exosomes are an
effective and practical cell-free MSC therapy for periodontitis.

Ward focused on tissue engineering and periodontal tissue regeneration [55]. Tissue
engineering has the potential to restore the normal physiological function and health of
diseased sites. This paper focuses on the application of tissue engineering to periodontal
diseases in canines and other animal species, with potential applications in veterinary
medicine [55]. Key areas of tissue engineering include scaffolds, signaling molecules,
stem cells, and gene therapy. To date, the results are still unpredictable [55]. However,
tissue engineering has proven successful in regenerating lost periodontal tissue, and new
possibilities for treating this veterinary case are discussed.

Al-Sosowa et al. investigated alveolar bone density and thickness in Chinese partic-
ipants with and without periodontitis [138]. In a retrospective and cross-sectional study,
alveolar bone volume, bone density, and bone thickness in approximately 668 mandibular
molars (344 periodontally healthy teeth and 324 periodontally inflamed teeth) were eval-
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uated using cone-beam computed tomography [138]. Comparative statistical tests were
performed for age, sex, tooth type, tooth side, and degree of bone loss. The results revealed
that alveolar bone thickness and density decreased in teeth affected by periodontal diseases,
indicating that periodontal disease is still a factor that affects the alveolar bone [138].

Takedachi et al. evaluated the safety and efficacy of periodontal tissue regeneration
using adipose tissue-derived multilineage progenitor cell (ADMPC) autologous trans-
plantation [139]. Twelve patients with periodontitis enrolled in an open-label, single-arm,
exploratory phase I clinical trial in which ADMPC isolated from subcutaneous adipose
tissues were autologously transplanted [139]. Each patient underwent flap surgery, at
which time the autologous ADMPC was transplanted into the bone defect along with a
fibrin carrier. The results suggest that ADMPC autografting may be a treatment option for
severe periodontitis by inducing periodontal regeneration [139]. We predict that ADMPC
autografts have great potential as a new treatment for alveolar bone regeneration and will
continue to attract attention.

Bone MSC (BMSC) transplantation promotes bone repair and regeneration. BMSCs die
within a short period after transplantation, and they generate large amounts of apoptotic
cell-derived extracellular vesicles (Apo-EVs) during apoptosis in the craniofacial bone [140].
Li et al. evaluated the in vivo osteogenic potential of Apo-EVs in a rat critical-size bone
defect model to clarify the potential role of Apo-EVs in the repair and regeneration of
craniofacial bone defects [140]. They found that local transplantation of Apo-EVs enhanced
bone formation [140]. Apo-EVs promote bone regeneration of parietal bone defects and
may be a promising strategy for craniofacial bone repair and regeneration because they
avoid the side effects and limitations of BMSC therapy.

Phosphoinositide 3-kinase (PI3K) is found intracellularly and is involved in the reg-
ulation of cell survival, proliferation, apoptosis, and angiogenesis [141–143]. Wang et al.
investigated the role of PI3K in the bone-destructive process of periodontitis and provided
data that could be helpful in its treatment [144]. Relative mRNA expression levels of PI3K,
Acp5, and NFATc1 in the normal human periodontal ligament and chronic periodontitis
were analyzed by quantitative reverse-transcription polymerase chain reaction [144]. In a
mouse model of apical periodontitis with root canals exposed in the oral cavity and an in-
flammatory environment established at the osteoclast and osteoblast levels, the expression
of PI3K, Acp5, and NFATc1 genes in the chronic apical periodontitis group was significantly
increased (p < 0.05) compared with that in the healthy apical tissue group [144]. In the
Escherichia coli lipopolysaccharide (LPS)-mediated inflammatory microenvironment, the
gene and protein expressions of PI3K, TRAP, and NFATc1 in osteoclasts were significantly
increased compared with those of normal controls (p < 0.05). In contrast, the gene and
protein expressions of PI3K, BMP−2, and Runx2 in osteoblasts were significantly decreased
in the inflammatory microenvironment (p < 0.05) [144].

Marginal zone B and B−1 cell-specific protein (MZB1), a novel molecule associated
with periodontitis, is an endoplasmic reticulum-localized protein, and its increased expres-
sion has been associated with various human diseases [145–147]. However, a few studies
have examined the effect of MZB1 on human periodontal ligament cells (hPDLCs) in the
presence of periodontitis and the mechanisms underlying this effect. Li et al. performed
experiments to determine the role of hPDLCs in migration and alveolar bone organiza-
tion [148]. Bioinformatics analysis revealed that MZB1 is one of the most significantly
upregulated genes in patients with periodontitis. mZB1, as a target gene of miR-185-5p,
plays an important role in suppressing hPDLC migration through the NF-κB signaling
pathway and exacerbating alveolar bone loss [148]. Bioinformatics analysis was used in
this study [148]. This analytical method has attracted much attention in oral research, and
with this analysis, various mechanisms of alveolar bone will be revealed in the future.

Hou et al. explored the effect of A20 on macrophage polarization in periodontitis and
its underlying mechanisms [149]. A20 has been reported to be involved in inflammation
and bone metabolism in periodontitis, and the regulation of macrophage polarization
may be an effective target for periodontitis treatment [150–152]. They used an adeno-
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associated virus targeting A20 to knockdown or overexpress A20 in the periodontal tissues
of mice with experimental periodontitis [149]. A20 knockdown increased the expression of
the NLRP3 inflammasome pathway in mouse periodontal tissues and THP−1 cells [149].
Conversely, A20 overexpression inhibited the NLRP3 inflammasome pathway. MCC950
suppressed M1 macrophage polarity, which was exacerbated by A20 knockdown in LPS-
and IFN-γ-stimulated cells [149]. This finding suggests that A20 inhibits periodontal bone
resorption and NLRP3-mediated M1 macrophage polarization and may be a novel target
for the treatment of periodontitis.

Leptin is secreted by adipocytes and strongly inhibits feeding and increased energy
expenditure mainly through receptors in the hypothalamus, and its inaction is thought
to be important in the etiology of obesity [153–157]. Despite accumulating evidence that
leptin plays an important role in periodontal diseases, the mechanism by which it promotes
periodontitis development is unknown. Han et al. found elevated leptin expression
in periodontitis mouse serum compared with healthy controls, suggesting that leptin
exacerbates the ligature response of periodontal diseases by promoting polarization of M1
macrophages via the NLRP3 inflammasome from the Nlrp3-/- periodontitis model [158].
Moreover, they reported that leptin promoted the progression of periodontitis via the
polarization of inflammatory M1 macrophages. Periodontitis is characterized by alveolar
bone resorption [158]. In the future, targeting leptin/NLRP3 signaling may be applied to
elucidate the mechanisms of the alveolar bone and periodontal diseases. Furthermore, we
hope that it will be applied to alveolar bone treatment.

Porphyromonas gingivalis-derived LPS (Pg-LPS) promotes inflammation, osteoclastoge-
nesis, and alveolar bone resorption and is considered a major pathogenic factor in chronic
periodontitis [159–162]. The thrombomodulin (TM) lectin domain (TMD1) exerts an anti-
inflammatory function. Thus, Chang et al. examined the therapeutic effect of recombinant
TMD1 (rTMD1), which inhibits Pg-LPS-induced osteoclastogenesis and alveolar bone
loss [163]. They reported that rTMD1 inhibits Pg-LPS-enhanced M1 macrophage polariza-
tion, osteoclastogenesis, and periodontal bone resorption [163]. Since osteoclastogenesis is
a very important factor for the alveolar bone, rTMD1 will continue to be of interest.

Induced pluripotent stem (iPS) cells are pluripotent stem cells that can be produced
via the introduction of a few genes into somatic cells. The technology for regenerating
periodontal tissues, including alveolar bone, is expected to be applied in the treatment
of diseases, such as tooth loss and periodontitis [164–168]. Kawai et al. established a
method for inducing bone differentiation from iPS cells to form bone-like nodules in a
brief period [169]. The induced bonelike nodules contain osteoblast-like and osteocyte-like
cells, and their process of differentiation is similar to the process of in vivo differentiation,
which Kawai et al. reported could be applied to research on the differentiation process of
osteogenic cells [169]. It has been reported that bone formation ability (e.g., calcification)
increases when mesenchymal stem cells (MSCs) derived from iPS cells are cultured with
calcium phosphate. Thus, iPS cell-derived MSCs are expected to be applied in dental
regenerative medicine.

The newest research in the regenerative approach to alveolar bone regeneration with
3D printed and colonized scaffolds. For example, research has been conducted on the
fabrication and in vitro characterization of novel 3D-printed hydroxyapatite scaffolds.
Various proof-of-concept studies have been published on the biocolonization of 3D-printed
hydroxyapatite scaffolds using mesenchymal stem cells [170].

Regenerative medicine has recently been attracting attention. Methods for the creation
of induced pluripotent stem cells have been developed, and research on regenerative
medicine in various organs is becoming more active. Moreover, currently, bone and cartilage
regeneration, including dentistry, has most often been used in regenerative medicine in
clinical practice. Therefore, clinical and basic research on alveolar bone mechanisms,
especially alveolar bone regeneration, will become increasingly active in the future.
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8. Conclusions

This review acknowledges the limitation that only the MEDLINE database of PubMed
provides other sources of information, such as gray literature, conference proceedings, and
clinical practice guidelines. One limitation is the lack of previous research in our field.
Writing a literature review is an important task for scientific research because it helps us
determine the scope of the current research in our chosen field. Literature reviews provide
a source of information for researchers who need scholarly information to achieve a specific
goal or objective; however, when the focus is on a current and developing alveolar research
problem or a very narrow research question, it is possible that limited or no previous
research on the topic can be found and presented.

This review describes clinical practice, mainly surgical procedures, and the latest basic
research on the alveolar bone, which plays an important role in supporting teeth and periodon-
tal tissues. The oral cavity is the gateway to the body and shows a significant association with
various diseases. Similarly, the mechanism of the alveolar bone will continue to be elucidated
in more detail. Alveolar bone treatment methods, as described herein, are advancing annually,
and regenerative therapies will be the mainstay of treatment in the future. The relationship
among oral diseases, oral bacteria, systemic diseases, and alveolar bone is currently the sub-
ject of epidemiological studies; thus, elucidating the detailed mechanisms is necessary. The
acquisition and maintenance of a healthy oral environment and alveolar bone will have both
direct and indirect positive effects on overall health.
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