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Abstract: Pathogenic forms of α-synuclein (α-syn) are transferred to and from neurons, astrocytes,
and microglia, which spread α-syn pathology in the olfactory bulb and the gut and then throughout
the Parkinson’s disease (PD) brain and exacerbate neurodegenerative processes. Here, we review
attempts to minimize or ameliorate the pathogenic effects of α-syn or deliver therapeutic cargo
into the brain. Exosomes (EXs) have several important advantages as carriers of therapeutic agents
including an ability to readily cross the blood–brain barrier, the potential for targeted delivery of
therapeutic agents, and immune resistance. Diverse cargo can be loaded via various methods, which
are reviewed herein, into EXs and delivered into the brain. Genetic modification of EX-producing
cells or EXs and chemical modification of EX have emerged as powerful approaches for the targeted
delivery of therapeutic agents to treat PD. Thus, EXs hold great promise for the development of
next-generation therapeutics for the treatment of PD.

Keywords: exosomes; extracellular vesicles; Parkinson’s disease; pathogenesis; therapeutics; α-synuclein;
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1. Introduction

Extracellular vesicles (EVs) are membrane-enclosed particles released by cells into
the extracellular space [1,2]. EVs can be classified as exosomes (EXs), microvesicles, or
apoptotic bodies based on their origin and size [1–3]. EXs are enclosed within a single
phospholipid bilayer, secreted by all cell types, formed by the inward invagination of the
endosomal membrane and fusion of the multivesicular body (MVB), and are typically
30–150 nm in diameter [1,3–5]. Microvesicles are EVs that form from direct outward bud-
ding from the cell’s plasma membrane and are typically 100 nm to 1 µm in diameter [1–5].
Although the route of microvesicle formation is not fully understood, it is thought to
require cytoskeleton components, molecular motors, and fusion machinery [6]. Apoptotic
bodies are EVs formed during apoptosis and released into the extracellular space; they
range in diameter from 50 nm to 5 µm [3]. Apoptotic bodies form through the separation
of the cell’s plasma membrane from the cytoskeleton due to increased hydrostatic pressure
after the cell contracts [7]. EVs contain thousands of different biologically active molecules,
including nucleic acids, proteins, lipids, and metabolites [8–11]. Here, we focus on the
most extensively studied EVs, typically designated as EXs, which play key roles in inter-
cellular communication by delivering biologically active cargo to recipient cells, thereby
altering the recipient cell’s functions [12,13]. Thus, EXs hold great promise for developing
next-generation delivery vehicles of therapeutic agents.

2. Role of EXs in the Pathogenesis of Parkinson’s Disease

Parkinson’s disease (PD) is the second most common neurodegenerative disease in the
world after Alzheimer’s disease, affecting 1–2% of the population over the age of 65 [14].
There are approximately seven million PD cases in the world; approximately one million
of those cases are in the United States [15]. As the population ages, the burden on society
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attributable to PD is expected to increase substantially. The main pathological changes in
PD are a progressive loss of dopamine (DA)-secreting neurons in the substantia nigra, a
significant decrease of DA in the striatum, and the appearance of eosinophilic inclusions
in the cytoplasm of DA neurons in the substantia nigra, namely Lewy bodies (LBs) [16].
The progressive loss of nigrostriatal neurons leads to the appearance of classical parkinso-
nian motor symptoms (e.g., bradykinesia, tremor, and rigidity) and numerous non-motor
symptoms (e.g., depression, constipation, pain, gastrointestinal dysfunction, and sleep
problems) [17,18]. The presence of α-synuclein (α-syn) aggregates in LBs [16], approxi-
mately 90% of which are phosphorylated on serine residue 129 [19], and the finding that
mutations in the α-syn gene, SNCA, cause familial PD [20–23] and accelerate the pathogenic
aggregation of α-syn [24,25], strongly suggested a role for α-syn in the pathogenesis of PD.

Prions are infectious agents in which the conformationally altered protein, PrPSc,
recruits and corrupts its counterpart protein, PrPC, generating self-propagating, misfolded
species that spread from cell to cell [26]. According to the prion hypothesis of PD [27], like
prion proteins, misfolded α-syn is transmitted from diseased cells to healthy cells, thereby
spreading α-syn pathology in the PD brain [28,29]. The notion that EXs can be used as
a carrier of toxic, misfolded proteins, such as α-syn, is an important tenet of the prion
hypothesis of PD and is well supported by evidence. In vitro experiments provided the
first evidence that newly synthesized monomeric and aggregated α-syn was released into
the extracellular environment [30–32], a finding consistent with the presence of α-syn in
human cerebrospinal fluid and blood plasma in both PD and normal human subjects [33,34].
Interestingly, EXs provide an environment conducive to α-syn aggregation [35]. In vitro
studies have demonstrated α-syn release in EXs from donor neurons, uptake by recipient
neurons, and subsequent cell death of recipient neurons [36–38]. When EXs harvested from
the brain tissue of dementia with Lewy bodies patients were injected into the brains of mice,
α-syn was taken up by neurons and astrocytes, and intracellular α-syn accumulation was
observed [39]. Additional support for the prion hypothesis of PD comes from a study that
examined the EXs isolated from the serum of PD patients, which contained a higher content
of α-syn phosphorylated at serine residue 129 and oligomeric and monomeric α-syn than
controls. In vitro studies demonstrated that the PD EXs, which contained an abundant
amount of toxic, misfolded α-syn, were taken up by recipient cells, and acted as a seed or
template to induce the aggregation of endogenous α-syn in recipient neurons. Interestingly,
in human midbrain DA neuron cell cultures, pathogenic, misfolded α-syn was secreted in
EXs via an autophagic secretory pathway [40]. Moreover, PD EX administration to mice
resulted in DA neuron degeneration, microglial cell activation, and motor deficits [41].
Notably, neuron-to-neuron, neuron-to-microglia, microglia-to-neuron, neuron-to-astrocyte,
and astrocyte-to-neuron transfer of α-syn has been demonstrated (Figure 1) [42–46].
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Figure 1. The transfer of α-syn to and from neurons, astrocytes, and microglia. The transfer of α-syn
to astrocytes and microglia results in their activation. Activated astrocytes and microglia release
ROS, pro-inflammatory cytokines and chemokines, which contribute to the neurodegenerative
processes in PD. The figure was created with BioRender.com https://app.biorender.com/ (accessed
on 24 March 2023).

3. Role of Microglia in the Pathogenesis of PD

Microglia, the main resident immune cells in the brain, can have beneficial and harm-
ful effects on PD depending, in part, on their activation state. Concerning their harmful
effects on PD, microglia have been implicated in the pathogenesis of PD. Positron emission
tomography imaging demonstrated microglia activation in the substantia nigra and stria-
tum of PD patients [47]. Increased microglia activation in the midbrain was correlated with
a loss of DA-secreting nerve terminals in the striatum [48]. In addition, activated microglia
were more frequently observed near LBs containing α-syn and near dying neurons [49].

Concerning their beneficial effects, microglia can enhance neuronal survival by re-
leasing trophic factors, clearing debris, dead cells, and misfolded α-syn aggregates in
PD [50–53]. However, α-syn activates microglia (Figure 1) [53,54]. Activation of microglia
induces an oxidative stress response, including the release of reactive oxygen species (ROS)
and nitric oxide, the production of NADPH oxidase, and the release of pro-inflammatory
cytokines and chemokines (Figure 1) [55–57]. Inflammation and oxidative stress can lead to
neuron dysfunction and cell death (Figure 1) [58,59], effects that have been linked to the
pathogenesis of PD [60], and it is known that microglia release EXs [61]. There is evidence
to support the notion that α-syn can be transferred from microglia to neurons via EXs and
induce α-syn aggregation in the recipient neurons (Figure 1), an effect that is exacerbated
by microglia-derived pro-inflammatory cytokines. In addition, microglial EXs isolated
from PD patients induced α-syn aggregation and cell-to-cell transfer of α-syn, DA neuron
degeneration in the substantia nigra, and motor deficits in mice [45].

https://app.biorender.com/
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4. Role of Astrocytes in the Pathogenesis of PD

In common with microglia, astrocytes have beneficial and harmful effects on PD.
Astrocytes can enhance neuronal survival by releasing trophic factors, antioxidants, and
other factors that protect against oxidative stress [62–64]. Although a consensus has
not been reached on the degree of astrocyte activation in the PD brain [65,66], α-syn
aggregates have been observed in human astrocytes [67], and there is considerable evidence
suggesting that α-syn activates astrocytes that, in turn, result in the astrocytic release of
pro-inflammatory cytokines, chemokines, and ROS, microglial cell activation, and neuronal
cell death (Figure 1) [53,68,69].

5. Pathogenic α-Syn-Containing EXs as Therapeutic Targets

Given the abundance of evidence implicating α-syn-containing EXs in the pathogene-
sis of PD, a logical therapeutic approach for PD is to minimize or eliminate the pathogenic
effects of α-syn-containing EXs. This could be accomplished by decreasing EX biogenesis
in parent cells, removing pathogenic EXs from circulation, and inhibiting EX uptake by the
recipient cells (Figure 2A–D).
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Figure 2. Approaches to minimize or eliminate the pathogenic effects of α-syn-containing EXs in PD.
(A). The major steps in the biogenesis of α-syn-containing EXs. Therapeutic approaches may target
key proteins involved in each of these steps. (B). An EX that contains pathogenic, misfolded α-syn
and expresses the tetraspanins, CD9 and CD63, is sequestered by antibodies directed against CD9
and CD63 and then cleared from circulation. (C). α-Syn-containing EXs are taken up by recipient
cells by clathrin-mediated endocytosis. Therapeutic approaches may target proteins involved in EX
uptake. Note that there are numerous ways that EXs can be taken up by recipient cells including
caveolin-mediated endocytosis, lipid raft-mediated endocytosis, micropinocytosis, phagocytosis, and
membrane fusion [70]. (D). There are numerous ways to load therapeutic cargos into EXs and deliver
them to target cells in the brain, as described in the text. The figure was created with BioRender.com
https://app.biorender.com/ (accessed on 24 March 2023).
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5.1. Decreasing EX Biogenesis

Several proteins responsible for EX biogenesis have been identified as targets to de-
crease pathogenic EX formation. EXs are formed by the invagination of the MVB system and
their fusion with the plasma membrane [71]. As EX formation requires either endosomal
sorting complexes required for transport (EXCRT)-dependent or ESCRT-independent cargo
sorting at the MVB and MVB-plasma membrane fusion, related proteins can be regarded
as potential therapeutic targets (Figure 2A) [72]. Two extensively studied proteins are the
ALG-2-interacting protein X (ALIX) and the Rab protein [73–75]. During EX biogenesis,
ALIX proteins are associated with the invagination of the MVB membrane by recruiting
ESCRT proteins. Treatment with ALIX small interfering RNA (siRNA) and siRNA directed
against the ALIX ligand, syntenin, suppressed ALIX function, resulting in reduced EX
biogenesis [73]. Rab27a and Rab27b are notable as they are involved in the process of
MVB fusion with the plasma membrane [71,76]. Knockdown or silencing of Rab27a and
Rab27b reduced the number of EXs released [77]. In addition, the inhibition of two Rab27
effectors, Slp4 and Slac2b, also reduced the number of EXs released [76]. GW4869 is a
potent neutral sphingomyelinase inhibitor that blocks EX production by preventing the
formation of intraluminal vesicles (ILVs) (Figure 2A) [78]. Pretreatment of α-syn-activated
microglia with GW4869 decreased the release of cathepsin L-containing EXs from microglia,
which prevented neuronal death [79]. Similarly, treatment with GW4869 decreased EX
release by activated microglia and prevented the death of DA neurons in midbrain slice
cultures [80]. Systemic administration of DDL-112, an inhibitor of neutral sphingomyeli-
nase, decreased EX biogenesis, reduced the number of α-syn aggregates in the substantia
nigra, and improved motor function in an α-syn mouse model of PD [81].

5.2. Depleting Circulating Pathogenic EXs

After EXs are released from parent cells, they are either taken up by neighboring
cells or travel to distant recipient cells to deliver their cargo. One interesting strategy
to deplete pathogenic EXs from circulation is to use EX-specific antibodies so that EXs
can be removed by the immune system (Figure 2B). The administration of anti-CD9 and
anti-CD63 antibodies resulted in phagocytosis of the antibody-bound EXs by macrophages
(Figure 2B) [82].

5.3. Inhibiting EX Uptake by Recipient Cells

In an attempt to ameliorate EX-mediated pathogenic cell-to-cell communication, re-
searchers have inhibited EX uptake by recipient cells (Figure 2C) [83,84]. Endocytosis in-
hibitors have been heavily studied as potential therapeutics, as EXs are primarily taken up
by recipient cells via endocytosis [70]. Cytochalasin D inhibits phagocytosis and endocyto-
sis by blocking actin polymerization and inducing depolymerization of actin filaments [83].
Cancer-associated fibroblast-derived EXs were not effectively taken up by cancer cells in
the presence of cytochalasin D [83]. Dynasore blocked the uptake of cancer cell-derived EXs
due to an endocytosis-inhibiting effect [84]. In addition, the destabilization of lipid rafts in
the plasma membrane is another strategy for inhibiting EX uptake (Figure 2C) [85,86].

6. The Therapeutic Effects of Stem Cells Are Mediated by EXs

In recent years, some non-pharmacological methods, such as gene therapy and stem
cell therapy, have been considered potential therapeutics for neurodegenerative diseases
including PD [87,88]. Mesenchymal stem cells (MSCs) are multipotent progenitor cells that
can be isolated from a wide variety of tissues (e.g., bone marrow, adipose tissue, dental
tissues, skin, salivary gland, and limb buds) [89]. MSCs are considered therapeutic agents
due to their effects on several biological processes, such as immune regulation, oxidative
stress, and cytokine secretion [90]. For example, MSCs exert significant antioxidant effects in
neurodegenerative diseases [91,92]. While MSC transplantation has been employed in the
treatment of several diseases, such as cancer, nerve injury, and neurodegeneration [93–95],
several studies have shown that MSC transplantation may cause tumors, embolisms, and
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abnormal cell differentiation [96], limiting the clinical translation of MSC transplantation
as a therapy for PD. Importantly, MSCs exert their biological effects mainly by the secretion
of EXs. Thus, the use of EXs derived from MSCs retains the therapeutic potency of MSCs,
while preventing the possible damage caused by MSCs [97].

Bone marrow-derived stem cells (BMSCs), in common with other stem cells, can be
differentiated into different cells under different physiological conditions. BMSCs can
selectively migrate to a site of damage, and interact with neurons and glia, where they
stimulate the production of growth factors, such as brain-derived neurotrophic factor
(BDNF) and nerve growth factor [98,99]. BMSCs have beneficial effects in models of
neurodegenerative diseases [100]. For example, the injection of BMSC-derived EXs into the
DA-depleted striatum improved parkinsonian behavior, tyrosine hydroxylase expression,
and decreased protein levels of interleukin-6, interleukin-1β, tumor necrosis factor-α, and
ROS in the substantia nigra in a rat PD model [101]. It is known that BMSCs mediate their
effects through paracrine activities [102]. Importantly, the paracrine activities of BMSCs are
mediated through EXs [103].

7. EXs as Therapeutic Delivery Systems in PD

The first-line treatment for PD is the administration of DA and/or by administering
agents that increase DA in the brain, specifically, the striatum. Although DA-replacement
therapy benefits many PD patients, its therapeutic window is limited due to its decreasing
efficacy and increasing side effects, such as dyskinesias [104,105]. Importantly, delivering
DA to the brain or agents that increase DA in the brain is difficult due to the blood–brain
barrier (BBB). For example, although L-3,4-dihydroxyphenylalanine (L-DOPA) is the most
effective treatment for PD symptoms, approximately 1% of the L-DOPA administered
systemically reaches the brain [106]. After L-DOPA has reached the brain, it must be
converted to DA by DOPA decarboxylase, which is less active in the brains of patients with
PD [107]. Moreover, long-term administration of L-DOPA is marred by the emergence of
abnormal involuntary movements called L-DOPA-induced dyskinesias [106].

EXs have the potential to serve as carriers of therapeutic agents into the diseased
PD brain, in part, due to their ability to readily cross the BBB [108,109], the potential for
targeted delivery of exosomal cargo over long distances, and immune resistance [110]. The
intravenous administration of DA-encapsulated blood EXs readily crossed the BBB and
delivered DA to the brain, including the striatum and substantia nigra. DA-encapsulated
EXs increased brain DA content by greater than fifteen-fold and resulted in motor behav-
ioral improvements and increases in DA synthetic enzymes and enzymes against oxidative
stress in a 6-hydroxydopamine (6-OHDA) model of PD. Importantly, compared to the
intravenous administration of free DA, DA-encapsulated EXs had greater therapeutic
efficacy and lower toxicity [111]. Intranasal administration of catalase-loaded EXs was
neuroprotective in a 6-OHDA model of PD [112]. The administration of MSC-derived
EXs rescued DA neurons in a 6-OHDA model of PD [113]. Stem cell-derived EXs carry
beneficial microRNAs (miRNAs) that reduce neuroinflammation in animal models of PD.
For example, miR-133b, one of the miRNAs downregulated in PD, can promote neurite
outgrowth in both in vitro and in vivo models of PD [114]. In addition, EXs isolated from
human neural stem cells (NSCs) exerted a protective effect on PD pathology in a 6-OHDA
in vitro and an in vivo mouse model of PD by reducing intracellular ROS and counteracting
the activation of apoptotic pathways. NSC-derived EXs carry anti-inflammatory factors and
specific miRNAs (i.e., has-miR-182-5p, has-miR-183-5p, has-miR-9, and has-let-7) involved
in cell differentiation that contributed to decreased cell loss [115].

8. Strategies to Load EXs with Therapeutic Cargo

After EXs are isolated from tissues, body fluids, or cell culture medium by differential
or gradient ultracentrifugation, co-precipitation, size exclusion chromatography, or field
flow fractionation [116] then purified to remove unwanted material, they can be loaded
with cargo. Notably, EXs are endowed with an aqueous core and a lipid bilayer that allow
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both hydrophilic and lipophilic cargo to be loaded [117]. In addition to the delivery of small
therapeutic compounds, EXs have a natural capacity to transport siRNA, short hairpin
RNA (shRNA), miRNA, and proteins [118]. Strategies for loading cargo into EXs include
incubation, transfection, and physical treatments.

8.1. Incubation
8.1.1. Incubation of Desired Cargo with EXs

The simplest way to load cargo into EXs is to incubate the desired cargo with EXs or
EX-secreting cells to allow the cargo to diffuse into the EXs, following its concentration
gradient. Several types of cargo, such as small molecule drugs, nucleic acids, proteins,
and peptides have been loaded into EXs using this method [119–121]. Notably, BDNF
has been loaded into macrophage-derived EXs and delivered into the brain [120] while
the anti-inflammatory and anti-oxidative stress agent, co-enzyme Q10, has been loaded
into EXs obtained from adipose-derived stem cells [121]. The strength of the incubation
strategy is that it is technically easy and has minimal effects on the structural integrity
of the EXs. However, the loading efficiency is low, and the amount of cargo loaded is
difficult to control due to the physical and chemical properties of the cargo and EX. For
example, hydrophilic drugs tend to reside in the aqueous phase of the interior of EXs, while
hydrophobic drugs are more stable in the EX lipid bilayer [122,123]. In addition, pH can
influence loading efficiency. When the hydrophilic compound, doxorubicin, was loaded
into macrophage-derived EXs, a pH of 8.0 facilitated the diffusion of the compound across
the EX lipid bilayer [124].

8.1.2. Incubation of Desired Cargo with EX-Secreting Cells

Drugs and nanomaterials were incubated with EX-secreting cells to generate cargo-
loaded EXs. Some small molecule drugs directly pass across the lipid bilayer of parent
cells, are packaged into ILVs, and then secreted as EXs. For example, macrophages were
incubated with curcumin to generate curcumin-loaded EXs, which were able to cross the
BBB and enter the brain [125]. In addition, nanomaterials were incubated with EX-secreting
cells to generate cargo-loaded EXs. Although they may induce autophagy and may be
destroyed in lysosomes, undegraded nanomaterials are exocytosed within EXs [126]. For
example, doxorubicin-loaded silicone nanoparticles were incubated with cancer cells to
obtain nanoparticle-loaded EXs for the treatment of lung cancer [126].

8.2. Transfection or Transduction

Transfection or transduction is the most common strategy for stably loading nucleic
acids, proteins, and peptides into EXs. Using transfection reagents, specific plasmids
are transduced into cells to ectopically express the desired nucleic acids, proteins, or
peptides that are later packaged into EXs. For example, MSCs have been transfected
with a miR-122-expressing plasmid using a Lipofectamine-based protocol to generate
miR-122-enriched EXs [127]. HEK293 cells have been transduced with designed plasmids
to generate catalase mRNA-loaded EXs that target the brain to treat PD [128]. HEK293
cells were transfected with lentivirus to generate EXs loaded with translocase of the outer
mitochondrial membrane 40 (Tom40). EX-mediated delivery of Tom40 protected cells
against hydrogen peroxide-induced oxidative stress [129]. Other types of cells can be
transfected with vectors that express proteins and peptides to generate protein- or peptide-
loaded EXs [130,131]. In addition, EXs can be directly transfected with nucleic acids by
chemical treatment. HEK293 cells have been transfected with siRNA by a heat-shock
protocol [132] and cell-derived EXs have been transfected with miR-497 and miR-126 by
commercially available kits [133,134]. Although transfection is a common strategy for
loading nucleic acids, proteins, or peptides into EXs, the loading efficiency is low [135] and
direct chemical transfection of EXs introduces impurities [136].
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8.3. Physical Treatments

Physical treatments produce micropores in the EX membrane or membrane recom-
bination that promotes the entry of cargo into EXs to achieve cargo-loaded EXs. Physical
treatments include sonication, electroporation, extrusion, the freeze-thaw method, incuba-
tion with membrane permeabilizers, and dialysis.

8.3.1. Sonication

Sonication is a physical strategy that applies an extra mechanical shear force to weaken
the EX membrane, which promotes the loading of EX cargo [137]. Cancer cell-derived EXs
incubated with the anti-cancer drug, gemcitabine, were sonicated. The loading capacity of
gemcitabine-loaded EXs was more than four times greater than that of those obtained using
the incubation approach [137]. Other researchers have reported that the sonication method
results in a higher loading capacity than the incubation approach (e.g., [124]). In addition,
nanoparticles and catalase have been loaded into EXs via sonication [112,138]. Note,
however, that the sonication method has the potential to produce significant membrane
damage. For example, a significant decrease in EX membrane microviscosity was observed
after sonication, an effect that was completely reversed after incubating the EXs for 1 h at
37 ◦C after sonication [139]. Thus, sonication is a simple and effective method for loading
cargo into EXs with high loading capacity.

8.3.2. Electroporation

Electroporation is a strategy for loading cargo into EXs through the use of an ex-
tra electrical field that produces micropores on the EX membrane to increase perme-
ability. Drugs, nucleic acids, and nanomaterials have all been loaded into EXs using
electroporation [139–141]. Although drugs can diffuse, in accordance with their concentra-
tion gradient, into EXs via the incubation method, the use of electroporation can signifi-
cantly increase drug loading efficiency. Researchers have developed modified dendritic
cell-derived EXs, which specifically target the brain, by introducing a brain targeting pep-
tide, rabies virus glycoprotein (RVG), on the exterior surface of the EX. An anti-α-syn short
hairpin RNA-minicircle (shRNA-MC) construct was loaded into RVG EXs via electropora-
tion. Intravenous administration of shRNA-MC-loaded EXs decreased α-syn aggregation,
attenuated the loss of DA-secreting neurons, and improved clinical symptoms in an α-syn
preformed fibril model of PD [142].

8.3.3. Extrusion

Extrusion is a physical procedure that utilizes a syringe-based extruder and mechan-
ical force. In this approach, the cargo and EXs are loaded into the extruder equipped
with a porous membrane. The extrusion process causes the EXs membrane to collapse
and blend with cargo to form cargo-loaded EXs after repeated extrusions under specific
parameters [143]. This approach has been taken to load the antioxidant, catalase, into EXs
and then deliver the catalase-loaded EXs to the brain as a potential anti-PD therapeutic.
The extrusion method resulted in high loading efficiency, sustained release of catalase,
and protection of the catalase cargo from degradation by proteases. When administered
to mice intranasally, a considerable amount of catalase was detected in the brain and the
catalase-loaded EXs had a neuroprotective effect in a 6-OHDA model of PD [112].

8.3.4. Freeze-Thaw Method

The first step of this method is to incubate the isolated EXs with the to-be-loaded
cargo for a specific amount of time at room temperature. Next, the EX and cargo solution is
rapidly frozen at −80 ◦C or below, then the solution is thawed at room temperature [112].
For better cargo loading, the aforementioned process is repeated for at least three cycles.
Although the freeze-thaw approach is simple and effective to load various cargo (e.g., drugs,
proteins, and peptides) into EXs, it has a lower cargo-loading capacity than the sonication
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and extrusion methods [144] and multiple freeze-thaw cycles could inactivate proteins and
induce EX aggregation.

8.3.5. Incubation with Membrane Permeabilizers

Saponin is a surfactant molecule that can form complexes with cholesterol in cell mem-
branes and generate pores, thus leading to an increase in membrane permeabilization [145].
Membrane permeabilizers significantly increase the loading capacity of a variety of cargo
into EXs, at least compared to the incubation method [144]. Incubation with saponin
resulted in an eleven-fold greater loading of a hydrophilic compound compared to the
incubation method [122]. Given the concerns about the hemolytic activity of saponin [145],
the concentration of saponin during drug loading should be low, and the EXs should be
purified after incubation with saponin.

8.3.6. Dialysis

This method involves placing a mixture of cargo and EXs onto dialysis membranes,
which are dialyzed by stirring to obtain cargo-loaded EXs. Compared to the incubation
approach, the dialysis procedure has increased the amount of cargo loaded into EXs more
than eleven-fold [122]. In addition, the dialysis system can be used to reduce the intra-
exosomal pH gradient to generate a pH gradient between the inside and the outside of the
exosomal membrane [146]. Although the pH gradient modification increases the loading of
miRNA and siRNA into EXs, it may induce the degradation of proteins and peptides [146].
Whereas some studies have reported good cellular uptake of cargo-loaded EXs obtained via
the dialysis method [147], others have reported poor cellular uptake [122]. Although the
dialysis method appears to be a relatively simple and effective EX-cargo loading technique,
researchers should carefully consider the type of loading cargo and whether to use a pH
gradient modification.

8.3.7. Comparing Different Loading Methods

The advantages and disadvantages of the different loading approaches are given in
Table 1. Note that loading compounds in EXs, regardless of the loading method, may
result in greater stability, increased bioavailability, and reduced immunogenicity, as well as
preserving the activity of the cargo (as the cargo is protected from degradation) [112,148].
The packaging of the hydrophobic compound, curcumin, in EXs substantially increased its
stability in aqueous solutions. The solubility of curcumin-loaded EX was five-fold higher
than free curcumin.

Although studies directly comparing exosomal loading by the different loading meth-
ods are sparse, the exosomal loading efficiency and cellular uptake of catalase across
different loading methods have been assessed. The loading efficiency of catalase into EXs
by incubation, the freeze-thaw method, incubation in the presence of saponin, sonication,
and extrusion were 4.9%, 14.7%, 18.5%, 22.2%, and 26.1%, respectively. The uptake of
catalase-loaded EXs by PC12 cells by incubation, the freeze-thaw method, and sonica-
tion were 10%, 15%, and 40%, respectively [112]. Interestingly, regardless of the loading
method, the cellular uptake of catalase-loaded EXs was substantially greater than that of
poly(lactic-co-glycolic acid) nanoparticles [112], which have been used for the delivery
of L-DOPA to the brain to treat PD [149]. The loading efficiencies of the small molecule,
porphyrin, into EXs by incubation, electroporation, extrusion, incubation in the presence of
saponin, and dialysis were compared. Compared to the loading efficiency of porphyrin into
EXs by incubation, the loading efficiency of porphyrin into EXs was increased more than
eleven-fold by incubation in the presence of saponin and dialysis but not by electroporation
or extrusion [122]. These researchers also observed a four-fold increase in drug uptake by
breast cancer cells for EXs loaded by incubation in the presence of saponin and electropora-
tion compared to the uptake of drugs not loaded into EXs [122]. When electroporation and
sonication were used to load the highly hydrophobic compound, paclitaxel, into EXs, more
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than 3 times and more than 19 times, respectively, of paclitaxel was loaded into EXs than
when the incubation method was used [139].

Table 1. Advantages and disadvantages, type of cargo that can be loaded, and whether a therapeutic
cargo has been used to treat PD for each loading method.

Loading Method Advantages Disadvantages Type of Cargo Loaded Therapeutic Cargo for PD

Incubation
Simple
Minimal effects on EX
structure

Low loading capacity
Hard to control the
amount of cargo loaded

Small drugs, nucleic
acids, proteins,
peptides

BDNF, co-enzyme Q10,
curcumin, DA

Transfection Easy
Low loading efficiency
Possible introduction of
impurities

Nucleic acids, proteins,
peptides Catalase mRNA, Tom40

Sonication Simple
High loading capacity

Produces damage to EX
membrane

Small drugs, proteins,
peptides None

Electroporation High loading efficiency

Produces damage to EX
membrane
Potential to induce EX
aggregation

Small drugs, nucleic
acids, nanoparticles shRNA-MC

Extrusion High loading capacity Produces damage to EX
membrane

Small drugs, proteins,
peptides Catalase

Freeze-Thaw
Method Simple and effective

Potential to inactivate
proteins
Potential to induce EX
aggregation
Potential for
liposome-EX fusion

Small drugs, proteins,
peptides None

Incubation with
Membrane
Permeabilizers

Easy
High loading capacity

Hemolytic activity of
saponin

Small drugs, proteins,
peptides None

Dialysis Simple
High loading capacity

Cellular uptake of
dialysis-loaded EX is
variable
Potential to degrade
proteins and peptides

Small drugs, nucleic
acids, proteins,
peptides

None

9. Strategies to Target EXs to the Brain
9.1. Exploit EX Homing/Tropism

Cells of different origins are known to home in on specific locations in vivo. For
example, immune cells preferentially target sites with immunological activity, such as the
spleen, to a greater extent than control cells [150]. There is support for the idea that EXs
possess intrinsic tropisms based on their cells of origin [151], an attribute that decreases
the probability of off-target effects and can be exploited for organ-targeted delivery of
EX cargo. For example, EXs secreted from cortical neurons preferentially bind and are
endocytosed by neurons [152]. In addition, systemic administration of NSC-derived EXs
resulted in preferential brain targeting whereas systemic administration of MSC-derived
EXs did not [153]. Notably, brain endothelial cell-derived EXs crossed the BBB and delivered
anti-cancer drugs to brain tumors [154].

The currently available methods for EX engineering can be classified into two main
approaches: (1) genetic engineering, and (2) chemical modification. Genetic engineering is
effective for displaying genetically engineered proteins on the surface of EXs, although it is
limited to genetically encodable peptides and proteins. The chemical modification approach
can be used to functionalize EXs with a wide range of molecules by using noncovalent or
covalent interactions. However, this approach is challenging because of the complexity of
the EX membrane and the issues associated with separating unreacted chemicals from the
EXs [155].
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9.2. Genetic Engineering

One interesting approach to target EXs to the brain has been to genetically modify
EX-producing cells by transfecting genes expressing a targeting moiety (e.g., peptides, re-
ceptors) with exosomal membrane components, such as tetraspanins, lysosomal membrane-
associated protein 2B (LAMP2B), or the C1C2 domain of lactadherin [156,157]. The cells
transfected with these vectors generate surface-modified EXs that express the targeting
moieties via the natural EX biogenesis process. The EXs produced from genetically engi-
neered cells stably display the introduced target moiety on their surface [158]. For example,
cells were transfected with a fusion protein comprised of LAMP2B and RVG, and the cells
generated EXs with RVG embedded in the exosomal membrane. These RVG-expressing
EXs more readily localized to the brain due to the cell surface expression of receptors
for RVG by neurons and glia [159]. Intravenous administration of RVG-expressing EXs
resulted in a two-fold greater accumulation of EXs in the brain and a substantial accumula-
tion of EXs in the heart and muscle, which also express receptors for RVG (i.e., nicotinic
acetylcholine receptors) [151]. Notably, intravenous administration of a slightly modified
RVG peptide, RVG-9R, has been used to transport siRNA to neurons to produce a neuron-
specific knockdown [160]. In addition, intravenous administration of RVG-expressing
EXs loaded with GAPDH siRNA specifically delivered the siRNA to neurons and glial
cells in the brain, resulting in an approximately two-fold knockdown of GAPDH mRNA
compared to non-treated mice [141]. In an attempt to reduce the expression of mutant
huntingtin (mHTT) protein, the root cause of Huntington’s disease, mice received tail
vein injections of a plasmid containing an RVG, LAMP2B, and mHTT siRNA under the
control of a cytomegalovirus promoter. When the plasmid was taken up by hepatocytes,
the cytomegalovirus promoter directed the localization of the RVG tag to the EX surface.
The RVG-tagged, mHTT siRNA penetrated the BBB, was delivered to the cerebral cortex
and striatum, decreased levels of mHTT protein and toxic aggregates in the cerebral cortex
and striatum, and ameliorated behavioral deficits in three mouse modes of Huntington’s
disease [161].

9.3. Chemical Modification

The surface of EXs can be directly engineered via chemical modifications for induc-
ing targetability of therapeutic EXs. One approach is to use covalent attachments of
targeting moieties, such as click chemistry, and the other approach uses non-covalent
modifications [162].

9.3.1. Covalent Modification of the Surface of EXs

Click chemistry utilizes covalent interactions between an alkyne and azide residue
to form a stable triazole linkage, which can be applied to attach targeting moieties on the
surface of EXs [162,163]. One of the most common examples of a chemical conjugation
method that uses covalent attachments is the modification of the EX’s surface with branched
polyethylene glycol (PEG), termed PEGylation [164]. Interestingly, to target sigma receptor
overexpressing lung cancer cells, EXs were modified with an aminoethylanisamide-PEG
moiety, which served as a targeting ligand for the sigma receptor [165]. In addition,
c(RGDyK), a peptide that has a high affinity for integrin αvβ3, which is expressed in
reactive cerebral vascular endothelial cells after ischemia, was conjugated to the surface of
MSC-derived EXs via click chemistry [166]. c(RGDyK)-labeled EXs exhibited an eleven-fold
tropism to the lesioned region of the ischemic brain compared to scrambled c(RGDyK)
peptide-labeled EXs [166]. We are not aware of the use of a covalent modification of the
surface of EXs for the targeted delivery of therapeutic EXs to the brain to treat PD.

9.3.2. Non-Covalent Modification of the Surface of EXs

The exosomal membrane can also be engineered via non-covalent methods, such
as receptor–ligand binding, electrostatic interaction, and hydrophobic insertion [167,168].
Transferrin was used to conjugate superparamagnetic magnetite colloidal nanocrystal clus-
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ters to the surface of EXs by binding to transferrin receptors expressed on the EXs [169].
The electrostatic interaction approach to conjugate targeting moieties to EXs involves
interactions of cationic species with negatively charged functional groups on the EX mem-
brane [168]. This method has been used to attach cationic lipids and a pH-sensitive
fusogenic peptide to the negatively charged membrane of EXs [170]. These fusogenic
peptide-expressing EXs exhibited increased binding to the endosomal membrane after
endocytosis, which facilitated the intracellular delivery of cargo [170]. The substance
1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-hydroxysuccinimide (DOPE-NHS) is
a hydrophobic chemical that can be used to conjugate targeting peptides into exosomal
membranes. For targeting EXs to the heart, stem cell-derived EXs were conjugated with
cardiac homing peptide via a DOPE-NHS linker, which resulted in EX accumulation in the
heart [171]. We are not aware of the use of receptor-ligand binding, electrostatic interaction,
and hydrophobic insertion methods for the targeted delivery of therapeutic EXs to the
brain to treat PD.

10. Conclusions

EXs play key roles in intercellular communication by delivering biologically active
cargo to nearby or distant recipient cells. The cargo delivered by EXs can have a harmful
or beneficial effect on the recipient cell. EXs spread α-syn pathology in the olfactory bulb
and the gut, then throughout the PD brain, by transferring pathogenic, misfolded forms
of α-syn from diseased cells to healthy cells. Pathogenic, misfolded forms of α-syn are
transferred via EXs to and from neurons, astrocytes, and microglia. This sets in motion a
cascade of events whereby astrocytes and microglia are activated and then secrete ROS and
pro-inflammatory cytokines and chemokines into the extracellular space, which contributes
to the degeneration of neurons (Figure 1). Researchers have attempted to minimize or
ameliorate the pathogenic effects of α-syn-containing EXs by (a) targeting proteins that play
a role in EX biogenesis; (b) developing methods aimed at the removal of α-syn-containing
EXs from circulation; (c) inhibiting EX uptake by recipient cells; and (d) loading EXs with
therapeutic cargo and delivering them to the brain (Figure 2). Advantages of EXs as
carriers of therapeutic agents into the diseased brain include their ability to readily cross
the BBB, their potential for targeted delivery of therapeutic cargo over a long distance,
and their immune resistance. In addition, a wide variety of cargo, including hydrophilic
and lipophilic small therapeutic compounds, siRNA, miRNA, and proteins can be loaded
into EXs. The choice of loading method depends on the objective of the study and an
assessment of the advantages and disadvantages of each (Table 1). Regardless of the
loading method, the loading of therapeutic agents into EXs often results in greater stability,
increased bioavailability, protection (e.g., from degradation), and reduced immunogenicity.
Genetic modification of EX-producing cells and/or EXs and chemical modification of
EXs have emerged as powerful approaches for the targeted delivery of therapeutics to
neurons and/or glia. Thus, EXs hold great promise for the development of next-generation
therapeutics for the treatment of PD.
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