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2 Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences,
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Abstract: Curcumin and oleanolic acid are natural compounds with high potential in medicinal
chemistry. These products have been widely studied for their pharmacological properties and have
been structurally modified to improve their bioavailability and therapeutic value. In the present
study, we discuss how these compounds are utilized to develop bioactive hybrid compounds that
are intended to target cancer cells. Using a bifunctional linker, succinic acid, to combine curcumin
and triterpenoic oleanolic acid, several hybrid compounds were prepared. Their cytotoxicity against
different cancer cell lines was evaluated and compared with the activity of curcumin (the IC50 value
(24 h), for MCF7, HeLaWT and HT-29 cancer cells for KS5, KS6 and KS8 compounds was in the
range of 20.6–94.4 µM, in comparison to curcumin 15.6–57.2 µM). Additionally, in silico studies were
also performed. The computations determined the activity of the tested compounds towards proteins
selected due to their similar binding modes and the nature of hydrogen bonds formed within the
cavity of ligand−protein complexes. Overall, the curcumin-triterpene hybrids represent an important
class of compounds for the development of effective anticancer agents also without the diketone
moiety in the curcumin molecule. Moreover, some structural modifications in keto-enol moiety have
led to obtaining more information about different chemical and biological activities. Results obtained
may be of interest for further research into combinations of curcumin and oleanolic acid derivatives.

Keywords: curcumin; oleanolic acid; hybrid compounds; cytotoxic activity; in silico studies

1. Introduction

The contemporary strategy to fight cancer is a consequence of the rapid development of
knowledge about the molecular basis of cancerous diseases [1,2]. Current anticancer drugs
have multidirectional mechanisms of action. They inhibit cell division, cause DNA damage,
block transcription and translation, contribute to the induction of tumor cell apoptosis in the
final stage and the inhibition of pro-angiogenic factors and their receptors [3]. Many new
anticancer drugs targeting angiogenesis are identified in the literature. The results of the
in vitro and in vivo evaluation of these drugs show that, apart from inhibiting angiogenesis,
they also affect cancer cell proliferation and tumor growth [4].

A number of limitations must be overcome for the treatment of cancer, such as the
unselective targeting of cells, multi-drug resistance, relapse of the cancer and poor out-
comes. Chemotherapeutic agents target rapidly dividing cancer cells to suppress tumor
progression; however, their non-specific cytotoxicity often leads to significant side effects,
e.g., neurotoxicity, gastrointestinal toxicity, hematological toxicity, cardiotoxicity, hepatotox-
icity and nephrotoxicity [5]. These limitations force scientists to constantly search for new
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substances and modify existing compounds in order to use them in targeted anticancer
therapies [6].

Medicinal plants have been an excellent source of pharmaceutical agents for a long
time. About 60% of newly approved small molecule drugs were derived from natural
compounds of their derivatives from 1981 to 2019 [7]. The development of integrated
research systems and advanced screening procedures for plant bioactive components
has ushered in a new era of phytochemical discoveries for the prevention and treatment
of complex diseases such as cancer. Bioactive compounds such as berberine, curcumin,
crocetin, colchicine, gingerol, lycopene, kaempferol, resveratrol, vincristine, and vinblastine
have demonstrated remarkable anticancer potential [8,9].

Curcumin is the most important component of the rhizomes of Curcuma longa and was
extracted from the turmeric plant in a pure crystalline form for the first time in 1870; the
feruloylmethane skeleton of curcumin was confirmed and synthesized by Polish chemists:
Kostanecki, Miłobędzka and Lampe in 1910 [10,11]. A wide variety of cellular properties
of curcumin have been demonstrated, including antiproliferative [12], pro-apoptotic, anti-
cancer [13], antioxidant, anti-inflammatory [14] and antibacterial activities [15]. The main
mechanisms of action by which curcumin exhibits its unique anticancer activity include
inducing apoptosis and inhibiting proliferation and invasion of tumors by suppressing
a variety of cellular signaling pathways. Several studies reported curcumin’s antitumor
activity on breast cancer, lung cancer, head and neck squamous cell carcinoma, prostate
cancer, and brain tumors, showing its capability to target multiple cancer cell lines [13]. The
anti-inflammatory effect of curcumin is based on its ability to inhibit COX-2, lipoxygenase
(LOX), inducible nitric oxide synthase (iNOS), arachidonic acid metabolism, cytokines
(interleukins), and tumor necrosis factor NF-κB and the release of steroid hormones [14].
The antioxidant property is attributed to the presence of various functional groups, in-
cluding methoxy, phenoxy, and carbon–carbon double bonds in its structure. Curcumin
can inhibit oxidative damage caused by stress in the brain, liver and kidneys of rats [16].
Lipid peroxidation is significantly reduced in rats treated with curcumin before applying
γ-radiation [17]. Curcumin increases enzymatic antioxidant activity by increasing the
expression of methionine sulfoxide reductase (MSRA) and increasing the levels of the
enzymes MSRA, SOD, CAT and GPx [18], and may act as an antioxidant against oxidative
stress in rats with diabetes mellitus by increased SOD expression in cochlear fibroblasts [19].
This compound can be considered as a promising antibacterial agent, but with very selec-
tive activity towards individual species and strains. Adamczak et al. tested its efficacy
against over 100 strains of pathogens belonging to 19 species and confirmed the much
greater sensitivity of Gram-positive than Gram-negative bacteria. Curcumin exhibited
strong antibacterial properties in the in vitro tests, and it was very effective against some
species and strains: Streptococcus pyogenes, methicillin-sensitive S. aureus, Acinetobacter
lwoffii, and individual strains of Enterococcus faecalis and Pseudomonas aeruginosa [15].

Oleanolic acid (OA) is a pentacyclic triterpenoid isolated from a plethora of plants
and herbs. In the last decade, the major international databases have recorded several
thousand publications dealing with oleanolic acid, reflecting the great interest of the
scientific community [20]. Apart from its ecological roles in plants, some pharmacological
activities such as antitumor, anti-inflammatory, antioxidant, anti-diabetic, and antimicrobial
effects have been attributed to oleanolic acid in different models of diseases [21]. OA has
been found to be active at various stages of tumor development, including the inhibition
of tumor promotion, invasion and metastasis; its cytotoxic effects have been reported on
several cancer lines, suggesting its antitumor activity [22]. In vitro studies have shown
several mechanisms of the anti-inflammatory effect of triterpenes. Their activity consists
mainly in inhibiting the activity of enzymes involved in the inflammatory reaction, such
as phospholipase A2, cyclooxygenase, lipoxygenase, nitric oxide synthase and elastase.
They can also reduce the production of prostaglandins and pro-inflammatory cytokines:
TNF-α, IFN-γ, IL. In addition, the inhibition of the transcription factor NF-kB, which plays
a role in inflammatory processes and tumor progression, was observed [23]. Pentacyclic
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triterpenes have shown promising results in studies on animal models of diabetes. The
observed hypoglycemic and hypolipemic effects are related to the stimulation of insulin
secretion by oleanolic acid [24]. Oleanolic acid and other triterpenes also exhibit a broad
spectrum of antimicrobial activity, mainly against Gram-positive bacteria. There have been
reports of research into prototype drugs that can be derived from triterpenes that can be
used against infections caused by drug-resistant bacterial species [25].

By taking into account the knowledge about the pharmacological, structural, and
molecular interaction profiles of anticancer drugs, hybrid molecules, called molecular
consortia in general [26], are designed by chemical hybridization, wherein two or more
drugs having different activities can be co-formulated by connection through a stable or
metabolizable linker, allowing simultaneous delivery. Hybrid molecules based on natural
products can be generated naturally or synthetically by combining entire or partial natural
scaffolds [27].

Curcumin has been employed as a promising lead compound for structural modifi-
cation to develop novel anticancer agents by medicinal chemists worldwide [28]. Litera-
ture [29] about the creation of analogs of curcumin affecting its better bioavailability due to
the improvement of physicochemical properties and improving biological activity includes:
modifications within the alkyl unit between the aromatic rings, especially in the central
diketone/enol moiety (at the C-3, C-4, C-5 position), modifications using double bonds
(C-1, C-6), the introduction or exchange of substituents into the aromatic rings and the
formation of complexes of curcumin and its derivatives with metal ions. A very important
modification of the structure of curcumin is the use of reactive phenolic groups at the C-4′

positions, for example, by its esterification (Figure 1). There is also a lot of literature [7] on
the naturally abundant OA that served as scaffolds for chemical modifications to improve
their aqueous solubility, bioavailability and selectivity, and therapeutic potential. These
structural modifications were principally introduced at the C-3, C-12 and C-28 positions of
the oleanolic acid scaffold (Figure 1).
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Figure 1. The most frequently modified units of chemical structures of curcumin (in yellow): chemical
groups at carbons C-1, C-4, C-6, and C-4′ and oleanolic acid (in blue): chemical groups at carbons C-3,
C-12, and C-28.

Previously, we reported compounds containing curcumin or oleanolic acid skeleton
with selected NSAID derivatives [30,31]. Conjugation with anti-inflammatory drugs is
justified by the fact that hybridization is considered a leading synthetic trend in medicinal
chemistry strategy on the one side, and the inflammatory background of many types of
cancer treatment, such as hepatocellular carcinoma (HCC) on the other. We also synthesized
and described the linked triterpene-phenolic hybrids and their molecular parameters,
and the preliminary anti-inflammatory and antinociceptive activity characterizing these
molecules as potential drugs were calculated and predicted [32]. In the literature, we
find several pyrimidino-, pyridazino- and curcumin-steroid derivatives; cytotoxic effects
versus human breast cancer cells (MCF7) [33] were shown; and potent antibacterial hybrid
compounds containing oleanolic acid and curcumin [34].

In this work, we synthesized several derivatives based on curcumin or its heterocyclic
analogs (with the pyrazole or isoxazole system instead of the curcumin central diketone
system) and oleanolic acid using succinic acid moiety as a bifunctional linker (Figure 2).
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In the next stage of the research, the obtained hybrid individuals were assessed for their
cytotoxicity effect against HeLaWT, HT-29 and MCF7 cells.
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2. Materials and Methods
2.1. Chemical Synthesis
2.1.1. General

All commercially available solvents and reagents used in our experiments were graded
“pure for analysis” (Aldrich®, Germany, Fluka®, USA, Chempur®, Poland and POCh®,
Poland). The solvents were dried according to the usual procedures. Products were purified
by column chromatography using 70–230 mesh silica gel (Merck, Germany). The progress
of reactions and purity of products were checked using the TLC method on silica gel
plates (DC-Alufolien Kieselgel 60 F254, Merck, Germany). The 1H- and 13C-NMR spectra
were recorded using a Bruker Advance 600 MHz spectrometer. Chemical shifts (δ) were
expressed in parts per million (ppm), relative to tetramethylsilane (TMS) as an internal
standard, using CDCl3 as a solvent. Coupling constants (J) are expressed in Hertz (Hz).
Signals are labeled as follows: s, singlet; d, doublet; dd, double doublet; t, triplet; and m,
multiplet. MS spectra were recorded on electrospray ionization mode (ESI-MS) (QTOF
mass spectrometer—Impact HD, Bruker, USA).

2.1.2. Synthesis of Compounds

Oleanolic Acid Methyl Ester; Methyl 3β-hydroxyolean-12-en-28-oate
Synthesis of oleanolic acid methyl ester from oleanolic acid was performed accord-

ing to the literature protocol [22]. Yield: 96%; m.p. and spectral data agreed with the
literature [22].
Mono-Oleanoyl hydrogen succinate (KS1),4-{[(3β)-28-hydroksy-28-oxoolean-12-en-3-yl]oxy}-4-
oxobutanoic acid

Oleanolic acid (0.94 g, 2 mmol) and DMAP (2.44 g, 20 mmol) were added to a solution
of succinic anhydride (2.0 g, 20 mmol) in dry pyridine (10 mL), and the mixture was heated
under reflux for 8 h. The solution was left overnight and poured into water (100 mL). The
obtained precipitate was filtered off, washed with 5% HCl, dried and crystallized from
ethanol. Yield: 90%; m.p. and spectral data agreed with the literature [35].
Mono-oleanoyl hydrogen succinate methyl ester (KS1a); 4-{[(3β)-28-Methoxy-28-oxoolean-12-en-
3-yl]oxy}-4-oxobutanoic acid

Oleanolic acid methyl ester (0.91 g, 2 mmol) and DMAP (2.44 g, 20 mmol) were added
to a solution of succinic anhydride (2.0 g, 20 mmol) in dry pyridine (10 mL), and the
mixture was heated under reflux for 8 h. The solution was left overnight and poured into
water (100 mL). The obtained precipitate was filtered off, washed with 5% HCl, dried and
crystallized from ethanol. Yield: 90%; m.p. and spectral data of compound KS1a agreed
with the literature [35].
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Curcumin isoxazole (KS2a); 3,5-Bis[β-(4-hydroxy-3-methoxyphenyl)-ethenyl]isoxazole
A mixture of curcumin (1 mmol) and hydroxylamine hydrochloride (1 mmol) was

refluxed at about 80 ◦C in ethanol (5 mL) for 16 h. TLC monitored the progress of the
reaction. After completion, water and ethyl acetate were added to the reaction mixture,
and the organic layer was washed with brine and dried over anhydrous MgSO4. After
removal of the drying agent and solvent evaporation, the crude product was purified with
column chromatography on silica gel using a chloroform/methanol (9:1, v:v) mixture as
eluent. The product was obtained as an orange-yellow solid. Yield: 78%; m.p. and spectral
data of compound KS2a agreed with the literature [36].
Curcumin pyrazole (KS2b); 3,5-Bis[β-(4-hydroxy-3-methoxyphenyl)-ethenyl]-1H-pyrazole

A mixture of curcumin (1 mmol) and hydrazine dihydrochloride (1 mmol) was refluxed
at about 80 ◦C in ethanol (10 mL) for 48 h. TLC monitored the progress of the reaction. After
completion, the reaction mixture was cooled to room temperature. The precipitate was
filtered under reduced pressure and dried. The crude product was purified with column
chromatography on silica gel using a chloroform/methanol (9:1, v:v) mixture as eluent. The
product was obtained as a red solid. Yield: 79%. The m.p. and spectral data of compound
KS2b agreed with the literature [36].
General procedure for the synthesis of compounds KS3 and KS4

Curcumin (0.5 mmol) and DCC (0.8 mmol) were dissolved in chloroform (20 mL), and
then KS1 or KS1a (0.6 mmol) and DMAP (0.4 mmol) were added. The reaction mixture was
stirred at room temperature for 24 h. TLC monitored the reaction. After completion, hexane
(8 mL) was added, and the precipitated dicyclohexylurea was filtered. The organic phase
was washed with 5% HCl, 5% NaHCO3, and water and dried over anhydrous MgSO4.
After removal of the drying agent and solvent evaporation, the crude product was purified
with column chromatography on silica gel using a chloroform/methanol (20:1, v:v) mixture
as eluent.
Curcumin mono-oleanoyl hydrogen succinate methyl ester (KS3)

The product was obtained as a yellow solid. Yield: 62%, Rf = 0.67 (chloroform/methanol
20:1); 1H-NMR: δ 15.84 (bs, 1H); 9.94 (s, 1H); 7.62 (d, J = 15.8 Hz, 2H); 7.16 (dd, J = 10.8,
9.3 Hz, 4H); 7.11 (d, J = 1.5 Hz, 1H); 7.07 (d, J = 3.6 Hz, 1H); 6.56 (d, J = 15.8 Hz, 2H); 5.85
(s, 1H); 5.28 (t, J = 3.7 Hz, 1H); 4.55 (m, 1H); 3.86 (s, 3H); 3.72 (s, 3H); 3.62 (s, 3H); 2.91 (dd,
J = 7.0, 5.6 Hz, 1H); 2.75–2.72 (m, 4H); 2.01–1.97 (m, 1H); 1.90–1.86 (m, 2H); 1.72–1.20 (m,
16H); 1.13 (s, 3H); 1.06–1.00 (m, 2H); 0.93 (s, 3H); 0.91 (s, 3H); 0.89 (s, 3H); 0.86 (s, 3H); 0.85
(s, 3H); 0.82–0.76 (m, 1H); 0.72 (s, 3H); 13C-NMR: δ 183.08; 181.58; 178.28; 171.66; 170.27;
151.36; 150.28; 143.81; 141.26; 139.96; 133.96; 124.26; 123.24; 122.25; 121.05; 111.48; 101.66;
81.49; 55.98; 55.31; 51.50; 47.54; 46.71; 45.84; 41.63; 41.29; 39.28; 38.08; 37.75; 36.92; 33.81;
33.09; 32.58; 32.36; 30.68; 29.54; 29.07; 28.06; 27.67; 25.89; 23.63; 23.49; 23.06; 18.20; 16.82;
15.34; ESI-MS, m/z: 922.1643 [M+H]+ (C56H72O11).
Curcumin mono-oleanoyl hydrogen succinate (KS4)

The product was obtained as a yellow solid. Yield: 60%, Rf = 0.74 (chloroform/methanol
20:1); 1H-NMR: δ 15.86 (bs, 1H); 9.93 (s, 1H); 7.61 (d, J = 15.3 Hz, 1H); 7.54 (d, J = 15.8 Hz,
1H); 7.15–7.11 (m, 4H); 7.06 (d, J = 8.1 Hz, 1H); 6.93 (d, J = 7.6 Hz, 1H); 6.56 (d, J = 15.3 Hz,
1H); 6.49 (d, J = 15.7 Hz, 1H); 5.85 (s, 1H); 5.28 (t, J = 3.7 Hz, 1H); 4.54 (m, 1H); 3.94 (s, 3H);
3.85 (s, 3H); 2.93 (dd, J = 15.9; 8.9 Hz, 1H); 2.75–2.73 (m, 4H); 2.04–1.97 (m, 1H); 1.89–1.84
(m, 2H); 1.70–1.20 (m, 16H); 1.14 (s, 3H); 1.07–1.00 (m, 2H); 0.93 (s, 3H); 0.92 (s, 3H); 0.91
(s, 3H); 0.87 (s, 3H); 0.86 (s, 3H); 0.85–0.81 (m, 1H); 0.76 (s, 3H); 13C-NMR: δ 184.49; 181.83;
172.92; 171.71; 170.30; 151.37; 148.03; 146.84; 144.63; 141.26; 139.97; 133.98; 124.27; 123.28;
122.38; 121.89; 121.07; 114.88; 111.49; 101.80; 81.48; 55.94; 55.34; 55.24; 48.36; 47.55; 45.71;
41.78; 41.25; 39.44; 38.14; 37.77; 36.92; 33.64; 33.00; 32.55; 31.44; 30.66; 29.55; 29.08; 28.09;
27.46; 25.83; 23.62; 23.51; 22.97; 18.19; 17.16; 16.77; 15.34; ESI-MS, m/z: 908.1443 [M+H]+

(C55H70O11).
General procedure for the synthesis of compounds KS5 and KS7

Curcumin isoxazole (KS2a, 0.5 mmol) and DCC (0.8 mmol) were dissolved in dioxane
(20 mL), and then KS1 or KS1a (0.6 mmol) and DMAP (0.4 mmol) were added. The reaction
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mixture was stirred at room temperature for 24 h. TLC monitored the reaction. After com-
pletion, hexane (8 mL) was added and the precipitated dicyclohexylurea was filtered. The
organic phase was washed with 5% HCl, 5% NaHCO3 and water, and dried over anhydrous
MgSO4. After removal of the drying agent and solvent evaporation, the crude product was
purified with column chromatography on silica gel using a chloroform/methanol (20:1, v:v)
mixture as eluent.
Curcumin isoxazole mono-oleanoyl hydrogen succinate (KS5)

The product was obtained from KS2a and KS1 as a yellow solid. Yield: 61%, Rf = 0.86
(chloroform/methanol 9:1); 1H-NMR: δ 9.94 (s, 1H); 7.61 (d, J = 15.7 Hz, 1H); 7.32 (d,
J = 16.4 Hz, 1H); 7.15–7.03 (m, 4H); 6.90 (d, J = 16.2 Hz, 2H); 6.56 (d, J = 15.7 Hz, 2H); 6.48
(s, 1H); 5.28 (t, J = 3.7 Hz, 1H); 4.60–4.48 (m, 1H); 3.87 (s, 3H); 3.86 (s, 3H); 2.95 (dd, J = 15.6;
9.3 Hz, 1H); 2.85–2.65 (m, 4H); 2.07–1.91 (m, 1H); 1.84–1.80 (m, 2H); 1.67–1.20 (m, 16H); 1.14
(s, 3H); 1.09–1.04 (m, 2H); 0.93 (s, 3H); 0.92 (s, 3H); 0.88 (s, 3H); 0.86 (s, 3H); 0.84 (s, 3H);
0.83–0.79 (m, 1H); 0.76 (s, 3H); 13C-NMR: δ 176.29; 172.87; 171.68; 168.06; 161.82; 154.00;
151.30; 144.60; 143.60; 143.19; 141.22; 140.47; 135.08; 124.24; 123.24; 122.91; 121.85; 121.04;
116.32; 111.45; 110.63; 110.14; 98.59; 81.43; 55.90; 55.61; 55.30; 48.32; 47.51; 45.67; 41.74; 41.21;
39.40; 38.10; 37.73; 36.87; 33.59; 32.96; 32.59; 31.40; 30.62; 29.53; 29.04; 28.05; 27.42; 25.80;
24.62; 23.58; 22.93; 18.15; 17.12; 16.73; 15.29; ESI-MS, m/z: 905.1465 [M+H]+ (C53H71NO9).
Curcumin isoxazole mono-oleanoyl hydrogen succinate methyl ester (KS7)

The product was obtained from KS2a and KS1a as a yellow solid. Yield: 51%, Rf = 0.72
(chloroform/methanol 15:1); 1H-NMR: δ 9.83 (s, 1H); 7.61 (d, J = 7.5 Hz, 1H); 7.59 (d,
J = 7.5 Hz, 1H); 7.13–7.06 (m, 4H); 6.94 (d, J = 8.2 Hz, 2H); 6.54 (d, J = 9.1 Hz, 1H); 6.49 (d,
J = 15.8 Hz, 1H); 5.83 (s, 1H); 5.28 (t, J = 3.7 Hz, 1H); 4.58–4.50 (m, 1H); 3.95 (s, 3H); 3.86
(s, 3H); 3.68 (s, 3H); 2.96–2.91 (m, 4H); 2.86 (dd, J = 13.8; 4.1 Hz, 1H); 2.77–2.70 (m, 1H);
2.00–1.75 (m, 2H); 1.72–1.49 (m, 16H); 1.13 (s, 3H); 1.07–1.00 (m, 2H); 0.93 (s, 3H); 0.92 (s,
3H); 0.88 (s, 3H); 0.86 (s, 3H); 0.85 (s, 3H); 0.83–0.80 (m, 1H); 0.72 (s, 3H); 13C-NMR: δ 178.28;
173.25; 171.61; 170.29; 163.29; 154.03; 151.34; 147.99; 146.80; 143.82; 141.10; 139.40; 134.01;
128.46; 127.68; 124.27; 122.24; 121.79; 120.94; 114.85; 111.45; 109.65; 101.49; 81.63; 58.51; 56.01;
55.32; 51.51; 49.80; 47.55; 46.72; 45.85; 41.63; 41.29; 39.28; 38.08; 37.76 36.92; 33.84; 33.09;
32.58; 30.76; 30.68; 29.87; 28.06; 27.68; 26.21; 25.90; 24.64; 23.62; 18.43; 18.19; 16.82; 15.33;
ESI-MS, m/z: 919.1613 [M+H]+ (C56H71NO10).
General procedure for the synthesis of compounds KS6 and KS8

Curcumin pyrazole (KS2b, 0.5 mmol) and DCC (0.8 mmol) were dissolved in dioxane
(20 mL) and then KS1 or KS1a (0.6 mmol) and DMAP (0.4 mmol) were added. The reaction
mixture was stirred at room temperature for 24 h. TLC monitored the reaction. After com-
pletion, hexane (8 mL) was added, and the precipitated dicyclohexylurea was filtered. The
organic phase was washed with 5% HCl, 5% NaHCO3, and water and dried over anhydrous
MgSO4. After removal of the drying agent and solvent evaporation, the crude product was
purified with column chromatography on silica gel using a chloroform/methanol (20:1, v:v)
mixture as eluent.
Curcumin pyrazole mono-oleanoyl hydrogen succinate (KS6)

The product was obtained from KS2b and KS1a as a yellow solid. Yield: 61%, Rf = 0.86
(chloroform/methanol 25:2); 1H-NMR: δ 9.95 (s, 1H); 7.85 (d, J = 8.4 Hz, 1H); 7.83 (d,
J = 9.0 Hz, 1H); 7.17–6.99 (m, 4H); 6.97 (d, J = 16.3 Hz, 2H); 6.87 (d, J = 7.7 Hz, 1H); 6.82 (d,
J = 15.8 Hz, 1H); 6.56 (s, 1H); 5.29 (t, J = 3.7 Hz, 1H); 4.59–4.47 (m, 1H); 3.87 (s, 3H); 3.69 (s,
3H); 2.97–2.78 (m, 4H); 2.83 (dd, J = 13.8; 4.1 Hz, 1H); 2.77–2.70 (m, 1H); 2.05–1.73 (m, 2H);
1.68–1.40 (m, 16H); 1.39–1.19 (m, 2H); 1.14 (s, 3H); 0.93 (s, 3H); 0.92 (s, 3H); 0.91 (s, 3H); 0.88
(s, 3H); 0.86 (s, 3H); 0.80 (s, 3H); 13C-NMR: δ 176.81; 173.02; 171.61; 153.84; 153.40; 148.87;
148.35; 147.10; 143.60; 141.45; 138.20; 137.90; 136.90; 129.80; 127.70; 124.60; 122.21; 121.85;
120.70; 113.80; 111.45; 110.90; 99.00; 81.69; 56.16; 55.52; 55.22; 49.80; 48.35; 47.54; 45.71; 41.77;
41.24; 39.43; 38.13; 37.77; 36.91; 33.63; 32.99; 32.62; 31.43; 30.66; 29.69; 28.08; 27.45; 26.22;
25.83; 24.65; 18.18; 17.15; 16.73; 15.31; ESI-MS, m/z: 904.1573 [M+H]+ (C55H70N2O9).
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Curcumin pyrazole mono-oleanoyl hydrogen succinate methyl ester (KS8)
The product was obtained from KS2b and KS1a as a yellow solid. Yield: 58%, Rf = 0.86

(chloroform/methanol 9:1); 1H-NMR: δ 9.93 (s, 1H); 7.80 (d, J = 8.4 Hz, 1H); 7.78 (d,
J = 8.9 Hz, 1H); 7.17–7.02 (m, 4H); 6.93 (d, J = 16.2 Hz, 2H); 6.87 (d, J = 7.5 Hz, 1H); 6.83 (d,
J = 15.8 Hz, 1H); 6.54 (s, 1H); 5.29 (t, J = 3.7 Hz, 1H); 4.56–4.45 (m, 1H); 3.88 (s, 3H); 3.69
(s, 3H); 2.98–2.75 (m, 4H); 2.83 (dd, J = 13.8; 4.1 Hz, 1H); 2.79–2.70 (m, 1H); 2.05–1.71 (m,
2H); 1.68–1.41 (m, 16H); 1.37–1.19 (m, 2H); 1.13 (s, 3H); 0.93 (s, 3H); 0.92 (s, 3H); 0.91 (s,
3H); 0.88 (s, 3H); 0.86 (s, 3H); 0.78 (s, 3H); 13C-NMR: δ 178.16; 173.10; 171.60; 153.93; 151.80;
148.80; 148.30; 147.05; 143.53; 141.16; 138.20; 137.90; 136.91; 129.80; 127.24; 122.60; 122.38;
121.80; 121.04; 115.10; 111.52; 109.87; 109.73; 98.90; 81.89; 55.90; 55.67; 55.31; 51.51; 49.80;
47.54; 46.72; 41.66; 41.27; 39.27; 38.08; 37.77; 36.91; 33.86; 33.08; 32.53; 32.35; 30.65; 29.86;
28.05; 27.66; 26.20; 25.92; 23.62; 23.52; 23.04; 18.18; 16.81; 16.69; 15.35; ESI-MS, m/z: 918.1866
[M+H]+ (C56H72N2O9).

2.2. Biological Activity Assays
2.2.1. Cell Culture

Three human cancer cell lines and one non-tumorigenic mammary epithelial cell
line were used in this study. All cell lines were purchased from the American Type Cell
Culture Collection (ATCC, Manassas, VA, USA). The breast adenocarcinoma cell line
MCF7 (ATCC® HTB-22™) was maintained as a monolayer in a complete growing medium
RPMI-1640 (Biowest, Nuaillé, France), supplemented with 10% (v/v) of fetal bovine serum
(FBS) (Sigma-Aldrich, Burghausen, Germany). The colorectal adenocarcinoma cell line
HT-29 (ATCC® HTB-38™) was cultured in McCoy’s 5A medium (Biowest, Bradenton, FL,
USA) with 10% (v/v) FBS (Sigma-Aldrich, Burghausen, Germany) addition. The human
cervical carcinoma HeLaWT (ATCC® CCL-2TM) was maintained in Dulbecco’s Modi-
fied Eagle Medium (DMEM) with 10% (v/v) FBS (Sigma-Aldrich, Burghausen, Germany)
addition. The epithelial cell line MCF-12A (ATCC® CRL-10782™) was maintained in
DMEM-F12 medium (Biowest, Bradenton, FL, USA) supplemented with hydrocortisone
(0.5µg/mL), insulin (10.0µg/mL), human epidermal growth factor (hEGF) (20.0 ng/mL),
cholera toxin (0.1 µg/mL), and 5% (v/v) horse serum (all purchased from Sigma-Aldrich,
Schnelldorf, Germany).

All cell lines were grown near confluence in 100 × 15 mm cell culture Falcon® Petri
dishes (Corning, Warsaw, Poland) at 37 ◦C in an atmosphere containing 5% (v/v) of CO2 at
95% (v/v) of relative humidity. The absence of mycoplasma was checked routinely using
the Mycoplasma Stain Kit (Sigma-Aldrich, Schnelldorf, Germany).

2.2.2. Cell Viability Assay

The cytotoxicity of the studied compounds was assessed on a broad spectrum of men-
tioned cell lines using the MTT test. The assay was performed as previously described [34].
Briefly, a total of 5× 103 cells were seeded into each well of 96-well plates in a total medium
volume of 100 µL/well. The cells were treated with various concentrations (0.5–100 µM)
of KS1, KS2, KS3, KS4, KS5, KS6, KS7, KS8, and 0.25% DMSO (control group) or Dox-
orubicin (positive control). All tested compounds were dissolved in DMSO with the final
solvent concentration of 0.25% (v/v), which did not affect cell viability. Cells were incubated
with studied compounds for 24 h, 48 h and 72 h. Subsequently, 10 µL of MTT solution
(5.0 mg/mL) (Sigma–Aldrich, Schnelldorf, Germany) was added to each well. The cells
were incubated at 37 ◦C for 4 h, followed by 100 µL of solubilization buffer (10% SDS in
0.01 M HCl) addition. Finally, the absorbance at 570 nm was measured using a Microplate
Reader Multiscan FC (Thermo Scientific, Waltham, MA, USA), with a reference wavelength
of 630 nm. Relative cell viability was determined using the following formula: Relative
cell viability = (mean A570 of experimental groups/mean A570 of control groups) ×100%.
Three separate experiments were performed, with three repeats for each concentration.
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2.2.3. Cell Cycle Analysis

To analyze the influence of the chosen compounds on the cell cycle, a flow cytometry
analysis using propidium iodide was performed as previously described [37]. The HT-29,
MCF7 and HeLaWT cells (3 × 105 cells) were incubated overnight to reach sedimentation
and then were treated with 0.5 and 1 × IC50 of KS1, KS2, KS5, KS6, KS7 and KS8, or
Doxorubicin (positive control). Cell cycle analysis was performed after incubation for
24 h. Then, cells were harvested, washed twice with phosphate-buffered saline (PBS), and
incubated with a solution of 1% saponin, 50 µg/mL propidium iodide and 10 mg/mL of
RNase A (Sigma-Aldrich, Schnelldorf, Germany) in PBS for 1 h at 37 ◦C. DNA content was
analyzed by flow cytometry at the emission wavelength of 488 nm using FACScan (Becton–
Dickinson, Franklin Lakes, NJ, USA). The relative proportions of cells in the G1/G0, S and
G2/M phases of the cell cycle were determined from the obtained data. Three separate
experiments in triplicates were performed for each cell line.

2.2.4. TUNEL Assay

To determine the percentage of apoptotic cells, the TUNEL assay was performed as
described elsewhere [38]. TUNEL staining for the detection and quantification of apoptosis
at the single-cell level was performed using an in situ cell death detection kit (Roche,
Mannheim, Germany) according to the manufacturer’s protocol. Briefly, HT-29, HeLaWT
and MCF7 cells (5× 105/well) were seeded into 6-well plates and cultured overnight before
exposure to different concentrations of tested compounds for 24 h. For TUNEL labeling,
cells were harvested, fixed, permeabilized and labeled with the TUNEL reaction mixture
(enzyme and label solutions) for 1 h at 37 ◦C in the dark. Negative controls were created
by omitting the terminal deoxynucleotidyl enzyme and adding the same volume of the
label solution. The cells were analyzed using a FACScan flow cytometer (Becton–Dickinson,
Franklin Lakes, NJ, USA).

2.2.5. Statistical Analysis

The obtained data were expressed as the mean ± SD of at least three separate ex-
periments. All statistical analyses were carried out using GraphPad Prism (GraphPad
Software, College Station, TX, USA). Differences were assessed for statistical significance
using repeated-measures ANOVA. For the MTT assay the threshold for significance was
defined as p < 0.05, the symbols *, #, �, ◦, •, ∇ were used for p ≤ 0.05, and the symbols
**, ##, ��, ◦◦, ••, ∇∇ for p ≤ 0.01. The IC50 values were obtained using the nonlinear
regression program CompuSyn software version 2022 (ComboSyn Inc., Parammus, NJ,
USA) and are presented as estimate ± SE. The viability assessment was calculated using
Excel software (Microsoft, St. Louis, MO, USA).

For cell cycle analysis, the threshold for significance was p < 0.05, the symbols *, **
were used for p < 0.05, and p < 0.005, respectively.

For the TUNEL assay, the threshold for significance was p < 0.05, the symbols *, **, ***
were used for p < 0.05, p < 0.005, and p < 0.001, respectively.

2.3. Computational Details

The optimization of the ligands was performed using the Gaussian 16 C.01 program [39]
and density functional theory (DFT) formalism with the B3LYP/6–31G(d,p) (very tight
criteria) [40] approximation. The crystal structure of the human I kappa B kinase beta
(asymmetric dimer; PDB entry: 4kik.pdb), CDK4 in complex with a D-type cyclin (PDB entry:
2w96.pdb [41–43]), human ERα LBD (PDB entries: 3dt3.pdb or 1l2j.pdb for ERα or ERβ,
respectively) [41,42,44] with the resolution: 2.3000 (2w96.pdb), 2.8300 (4kik.pdb), 2.400 Å
(ERα) or 2.950 Å (ERβ) were selected as the biological targets as one of the most used for
docking PDB versions of the investigated proteins. To carry out docking simulations (using
the AutoDock Vina package [45]), a grid box was defined: 4kik.pdb protein: center_x = 4.584,
center_y = 2.443, center_z = 55.258; 2w96.pdb protein: center_x = 4.584, center_y = 2.443,
center_z = 55.258; ERβ: center _x = 31.926, center_y = 82.682, center_z = −11.054; ERα:
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center_x = 41.526, center_y = 1.476, center_z = 15.981; ERβ: center _x = 31.926, center_y = 82.682,
center_z =−11.054. In the docking procedure, we considered a distance of d≤ 4.0 Å between
a proton and a heteroatom of the adjacent molecule. The outputs (Figures S1–S35 given in
the Supplementary Material) after the docking procedure (the projections of the 1st poses)
were visualized using the LigPlot + v.2.2 software (EMBL-EBI) [46,47].

3. Results and Discussion
3.1. Chemistry

In this study, the synthesis of the hybrids began with obtaining compounds: mono-
oleanoyl hydrogen succinate (KS1) and mono-oleanoyl hydrogen succinate methyl ester
(KS1a), meaning the reaction oleanolic acid or oleanolic methyl ester with succinic anhy-
dride in the presence of 4-(dimethylamino)pyridine (DMAP). The use of a succinyl linker
has been successfully applied to the synthesis of biologically active triterpene carboxylic
acid derivatives [35]. The presence of the C-28 carboxyl group within the molecule of
triterpene increases the polarity of such a derivative, but at the same time decreases the
solubility in organic solvents, and in those applied in cytotoxic tests. For this reason, we
decided to obtain a group of compounds with esterified carboxyl functions, which make
them generally more soluble in many organic solvents than compounds with free carboxyl.
To obtain the esters derivatives, the carboxylic group of oleanolic acid in position C-28
was converted into the methyl ester by use of dimethyl sulfate in an ethanolic solution of
sodium hydroxide as a methylation agent (Scheme 1) [22].
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Scheme 1. Oleanolic acid transformations. Reagents and conditions: (a) (CH3)2SO4, NaOH, EtOH,
reflux; (b) succinyl anhydride, pyridine, DMAP, reflux.

Earlier reports established the improved pharmacological activity of curcumin when its
1,3-dicarbonyl moiety was replaced by isosteric isoxazoles and pyrazoles [48]. In a structure-
activity relationship analysis of the β-diketone chain of curcumin, it was postulated that
the introduction of a hydrazine fragment to curcumin leads to derivatives where the
central 1,3-diketo-enol is masked or made rigid, which in turn improves the anti-tumor
activity. The literature also pointed out that the incorporation of the pyrazole ring enhances
the antiproliferative activity [49]. The heterocyclic pyrazole and oxazole derivatives of
curcumin were obtained using the methods known in the literature [36,50]. Isoxazole
(KS2a) and pyrazole (KS2b) derivatives were prepared by heterocyclization of a diketone
system with hydroxylamine hydrochloride and hydrazine dihydrochloride, respectively.
Equimolar amounts of curcumin (KS2) and hydrazine or hydroxylamine salts were reacted
in boiling ethanol solution for 24 h until complete conversion was obtained (Scheme 2).
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Synthesis of monoesters of curcumin and oleanolic acid has been carried out by a
reaction of the curcumin’s phenolic group with a free carboxylic function of a succinyl
linker of oleanoyl hydrogen succinate or its C-28 methyl ester. Curcumin (KS2) and its
heterocyclic analogs (KS2a,KS2b) were reacted, respectively, with appropriate succinic
derivatives of oleanolic acid (KS1,KS1a) in the presence of dicyclohexylcarbodiimide (DCC)
and 4-(dimethylamino)pyridine (DMAP) reagents. DCC is a carboxylic acid activating and
coupling agent, while strongly nucleophilic DMAP acts as an acyl transfer in the Steglich
esterification reaction, which is a very useful process in converting sterically-demanding
substrates. The water resulting from a DCC-mediated reaction reacts immediately with the
carboimide applied and forms dicyclohexylurea (DHU), which is insoluble in a reaction
medium and precipitates as a white solid. It is, therefore, essential to carry out the reaction
in anhydrous conditions [30]. The molar ratio of curcumin or its heterocyclic derivatives,
oleanoyl hydrogen succinate or its methyl ester, DCC, and DMAP reagents used in the
reaction process are in the sequence 1:1.2:1.6:0.8, and this ratio was optimized during our
numerous experiments. Reactions were carried out in an anhydrous chloroform or dioxane
solution. The reagents were mixed and then stirred at room temperature for up to 24 h. As
a result of synthesis, six hybridized structures with the formulas shown in Figure 3 were
produced. Further isolation and purification by column chromatography resulted in the
desired pure esters with yields ranging from 51 to 62%.

The structure of hybrid compounds KS3–KS8 was confirmed by 1H- and 13C-NMR
and ESI-MS data. The NMR proton and carbon signals were assigned to the curcumin and
oleanolic acid structures, respectively.

The curcumin moiety showed signals for two aromatic rings (7.18–6.90 ppm), two pairs
of olefin protons (~7.60 and ~6.50 ppm), the central proton at C4 carbon atom in the seven
carbon linker fragment (5.85 ppm for KS3/KS4, ~6.50 ppm for KS5–KS8) and two methoxy
groups in aromatic rings (3.95–3.69 ppm). Both methoxy groups were observed at different
chemical shifts, suggesting that only one phenolic group was esterified with the oleanoyl
hydrogen succinate. A broad signal at 15.84/15.87 ppm corresponds to the hydroxyl proton
of enolic form observed in the spectrum of compounds KS3/KS4. 13C NMR spectra of
hybrids showed signals around 56, 153, 167, 170, 181 and 184 ppm, corresponding to -OCH3
(x2), C-NH, C=N, C-OH and C=O, respectively.

The analysis of the spectra of the obtained compounds showed characteristic signals
for the oleanolic acid moiety observed as a triplet at ~5.28 ppm (H-12), a multiplet at
~4.50 ppm (H-3), a multiplet in the range of 2.90–2.70 ppm (-CH2-CH2-), and seven singlets
(~1.14, 0.93, 0.92, 0.91, 0.88, 0.80 and 0.76 ppm) for protons from the -CH3 groups. 13C-NMR
spectra of the final compounds contain the groups of signals, typical for the oleanolic acid
system, observed at 178–170 ppm (C=O), ~143 ppm (C-13), ~122 ppm (C-12) and ~51 ppm
for the carbon of its methyl ester.
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Figure 3. Formulas of the final hybrid derivatives obtained.

3.2. Biological Activity

Curcumin has shown considerable anticancer effects against several different types of
cancer, including breast [51], cervical [52], colon adenocarcinoma [53,54], prostate [55], col-
orectal cancer [56], pancreatic [57], and head and neck cancer both [58] in vitro and in vivo.
Furthermore, its efficacy and safety in cancer patients, either alone or in combination with
other anticancer agents, has been proven in several clinical studies with human subjects [13].
Studies have also shown that oleanolic acid can be used to treat various tumor cell lines,
such as MCF7 and MCF7/ADR human breast cancer cells, 1321N1 astrocytoma cell line,
hepatocellular carcinoma, HCT-116 colorectal cancer cells and others [59,60]. In addition,
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OA and its derivatives have been found to be involved in a variety of anticancer signal
transduction pathways, including cell proliferation, apoptosis, autophagy, angiogenesis,
migration and invasion [60].

3.2.1. Effects of Mono-oleanoyl Hydrogen Succinate, Curcumin, and Their Derivatives on
Cells Viability

MTT assay was performed to assess the cytotoxic effect of mono-oleanoyl hydrogen
succinate, curcumin and their derivatives on HeLaWT, HT-29 and MCF7 cancer cells, and
non-tumorigenic MCF-12A cells. A well-designed cytotoxicity assay should include a non-
cancer cell line to check for compound specificity. The MCF-12A cell line was developed
from breast tissue with non-malignant fibrocystic disease. It was chosen as the control since
it is non-tumorigenic. All of the cell lines were treated with eight compounds (KS1–KS8)
in the concentration range of 0.1–100 µM for 24, 48 and 72 h. Doxorubicin (DOX) was used
as a positive control. The obtained results are expressed as a percentage of the untreated
cells (Figures 4–7).

The half-maximal inhibitory concentrations (IC50) of the tested compounds are shown
as estimate ± SE in Table 1. In this experiment, the maternal compound KS1 (mono-
oleanoyl hydrogen succinate) in cancer cells decreased the viability of MCF7 cells only,
after treatment for 48 and 72 h (IC50 = 34.4 and 22.5 µM, respectively). However, the second
initial for new hybrids compound KS2 (curcumin) revealed the highest activity in all of the
studied cells, with the highest effect observed in MCF7 cells (15.6 µM for 24 h). Among
all of the cancer cells, the activity of compounds corresponding to the IC50 value also
revealed new hybrids of curcumin and mono-oleanoyl hydrogen succinate, KS5, KS6 and
KS8 compounds. The KS5 and KS8 were the most effective in HT-29 cells (IC50 = 29 µM
and 20.6 µM, respectively); however, KS6 was the most active in MCF7 breast cancer cells
(69.1 µM for 24 h). Compounds KS3, KS4 and KS7 did not decrease the viability of all
studied cells in the applied concentration range (IC50 > 100 µM) (Table 1).

Table 1. Cytotoxic efficacies of tested compounds against HeLaWT, HT-29, MCF7 and MCF-12A cells
expressed as IC50 value. IC50 represents the concentration at which a substance exerts half of its
maximal inhibitory effect. Results from the three independent experiments ± SD are presented.

Time Cell Line
IC50 [µM]

KS1 KS2 KS3 KS4 KS5 KS6 KS7 KS8

HeLaWT
24 h >100 57.2 ± 2.2 >100 >100 70.1 ± 3.5 77.1 ± 3.8 >100 53.4 ± 2.7
48 h >100 28.7 ± 1.1 >100 >100 51.2 ± 2.5 45.0 ± 2.3 >100 36.9 ± 1.8
72 h >100 16.2 ± 0.65 >100 >100 27.3 ± 1.4 25.9 ± 1.3 >100 25.6 ± 1.2

HT-29
24 h >100 25.2 ± 1.3 >100 >100 29.0 ± 1.4 94.4 ± 4.7 >100 20.6 ± 1.0
48 h >100 13.9 ± 0.7 >100 >100 23.2 ± 1.2 51.9 ± 2.6 >100 17.9 ± 0.9
72 h >100 11.1 ± 0.6 >100 >100 21.5 ± 1.1 26.0 ± 1.3 >100 17.3 ± 0.9

MCF7
24 h >100 15.6 ± 0.8 >100 >100 80.8 ± 4.0 69.1 ± 3.4 >100 44.3 ± 2.2
48 h 34.4 ± 2.2 14.6 ± 0.6 >100 >100 45.6 ± 2.3 25.9 ± 1.3 >100 33.2 ± 1.7
72 h 22.5 ± 0.9 7.5 ± 0.4 >100 >100 37.8 ± 1.9 20.2 ± 1.0 >100 29.9 ± 1.5

MCF-12A
24 h >100 75.6 ± 2.5 >100 >100 83.2 ± 3.1 >100 >100 62.7 ± 3.1
48 h 47.7 ± 2.1 46.4 ± 2.0 >100 >100 68.7 ± 2.4 54.3 ± 2.7 >100 43.4 ± 2.2
72 h 42.1 ± 1.9 42 ± 1.6 >100 >100 49.9 ± 1.6 44.6 ± 1.9 >100 42.3 ± 2.5
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was assessed using the MTT proliferation assay, as described in the Materials and Methods section. 
The cell viability is expressed as a percentage of the non-treated control cells. The final concentration 
of the solvent (DMSO) was 0.25%. The mean of three experiments ± SD is shown. The symbols *, #, 
♦, °, ●, ∇ are for p < 0.05 vs. Control group; **, ##, ♦♦, °°, ●●, ∇∇, for p < 0.01 vs. Control group. 

Figure 4. Viability assessment of HeLaWT cells after treatment with mono-oleanoyl hydrogen
succinate, curcumin and their derivatives for 24, 48 and 72 h. The cytotoxicity of tested compounds
was assessed using the MTT proliferation assay, as described in the Materials and Methods section.
The cell viability is expressed as a percentage of the non-treated control cells. The final concentration
of the solvent (DMSO) was 0.25%. The mean of three experiments ± SD is shown. The symbols *, #,
�, ◦, •, ∇ are for p < 0.05 vs. Control group; **, ##, ��, ◦◦, ••, ∇∇, for p < 0.01 vs. Control group.
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Figure 5. Viability assessment of HT-29 cells after treatment with mono-oleanoyl hydrogen succinate,
curcumin and their derivatives for 24, 48 and 72 h. The cytotoxicity of tested compounds was
assessed using the MTT proliferation assay, as described in the Materials and Methods section. The
cell viability is expressed as a percentage of the non-treated control cells. The final concentration of
the solvent (DMSO) was 0.25%. The mean of three experiments ± SD is shown. The symbols *, #, �,
◦, •, ∇ are for p < 0.05 vs. Control group; **, ##, ��, ◦◦, ••, ∇∇ for p < 0.01 vs. the Control group.
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Figure 6. Viability assessment of MCF7 cells after treatment with mono-oleanoyl hydrogen succinate,
curcumin and their derivatives for 24, 48 and 72 h. The cytotoxicity of tested compounds was
assessed using the MTT proliferation assay, as described in the Materials and Methods section. The
cell viability is expressed as a percentage of the non-treated control cells. The final concentration of
the solvent (DMSO) was 0.25%. The mean of three experiments ± SD is shown. The symbols *, #, �,
◦, •, ∇ are for p < 0.05 vs. Control group; **, ##, ��, ◦◦, ••, ∇∇ for p < 0.01 vs. the Control group.
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Figure 7. Viability assessment of MCF-12A cells after treatment with mono-oleanoyl hydrogen
succinate, curcumin and their derivatives for 24, 48 and 72 h. The cytotoxicity of tested compounds
was assessed using the MTT proliferation assay as described in the Materials and Methods section.
The cell viability is expressed as a percentage of the non-treated control cells. The final concentration
of the solvent (DMSO) was 0.25%. The mean of three experiments ± SD is shown. The symbols *, �,
◦, ∇ are for p < 0.05 vs. Control group; ##, ��, ◦◦, ••, ∇∇ for p < 0.01 vs. the Control group.

All of the studied compounds in non-cancerous breast MCF-12A cells revealed weaker
activity than in the MCF7 breast cancer cell line. Moreover, the viability of this cell line
was decreased after the treatment of cells with KS2, KS5 and KS8 for 24 h, and also after
cells treatment with KS1 and KS6 in longer terms (48 and 72 h) (Figure 7). Compounds
KS3, KS4 and KS7 did not show any effect on studied non-cancerous cells in the applied
concentration range (IC50 > 100 µM).

3.2.2. The Effect of Studied Compounds on Cell Cycle in Cancer Cells

To verify if the observation in the MTT assay of the decrease of the viability of cancer
cells after treatment of cells with KS2, KS5, KS6 and KS8 is linked with the cytostatic or
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cytotoxic activity of the studied compounds on cell cycle, the induction of apoptosis was
investigated. As KS1 is a maternal compound for the synthesis of the studied derivatives,
its activity was also studied. Because of the weak activity of the studied compounds
on non-cancerous MCF-12A cells, the cell cycle analysis was performed only in cancer
cells. HelaWT, HT-29 and MCF7 cells were treated with KS1, KS2, KS5, KS6 and KS8 in
concentrations corresponding to 0.5 × IC50, and 1 × IC50 values. As a positive apoptosis
control, doxorubicin (DOX) was applied (15 µM). The results after 24 h treatment of cells
are shown in Figure 8.
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Figure 8. Cell cycle analysis of HeLaWT, HT-29 and MCF7 cells. Cells were treated with different
concentrations of tested compounds for 24 h. Untreated cells were considered as control samples.
Doxorubicin (DOX) was used as a positive control. Alterations in the cell cycle were detected by flow
cytometry, as described in the Materials and Methods section. Data represent mean ± SD (n = 3).
* p < 0.05 vs. Control group, ** p < 0.005 vs. Control group.

Cell cycle analysis showed that in all of the studied cancer cells, only the KS2 com-
pound revealed a decrease in the G0/G1 phase, and an increase in the G2/M phase,
observed in HeLaWT in a concentration corresponding to 0.5 × IC50, and in both applied
concentrations of the compound in HT-29 and MCF7 cells. Moreover, in HeLaWT cells,
KS2 revealed a decrease in the number of cells in the G0/G1 phase in the concentration
of compound corresponding to 1 × IC50, with an increase of apoptotic cells (up to 10%).
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An increase of apoptotic cells was also observed in HT-29 cells (7%) in comparison to the
control, untreated cells. The rest of the studied compounds in all of the cancer cell lines did
not alter significantly the number of cells in particular phases of the cell cycle.

3.2.3. Verification of Apoptosis Induction by Studied Compounds—TUNEL Assay

To verify the induction of apoptosis in studied cells treated with KS1, KS2, KS5, KS6
and KS8 compounds, the TUNEL assay was performed. As a positive apoptosis control,
doxorubicin was applied (15 µM). In HeLaWT cells treated with KS2 in a concentration
corresponding to 0.5 × IC50 and 1 × IC50, the number of apoptotic cells increased (30 and
80%, respectively, ** p < 0.005; *** p < 0.001). However, in HT-29 cells, a slight increase
of apoptosis in cells treated with 1 × IC50 of KS2 compound were observed (10%, non-
statistically significant). None of the rest of the compounds revealed proapoptotic activity
in studied cancer cells (Figure 9).
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Figure 9. Apoptosis evaluation with TUNEL assay was performed in HeLaWT, HT-29 and MCF7 cells
after treatment with different concentrations of KS1, KS2, KS5, KS6, KS8. The cells were analyzed
using a FACScan flow cytometer (Becton–Dickinson, USA). The percentage of TUNEL-positive cells
was calculated and shown as graphs. The experiment was performed in triplicate. Results were
represented as mean ± SD. ** p < 0.005 vs. Control group, and *** p < 0.001 vs. Control group.
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3.3. Computational Analysis

Regarding the effect of the studied compounds on HelaWT cells and the human I
kappa B kinase beta (4kik.pdb protein, IKKβ [61–63]), the estimates during the docking
protocol binding affinities were as follows: −8.200, −9.400, −8.600, −10.100, −8.400,
−9.900, −9.700, −9.700, and −8.800 kcal mol−1 for KS1, keto form of KS2 (KS2_keto),
enolic form of KS2 (KS2_enol), KS3, KS4, KS5, KS6, KS7 and KS8, respectively. We
noticed that fitting the first poses of docked compounds KS1–KS8 using protein 4kik.pdb
resulted in forming several hydrogen bonds between the ligands and the protein amino
acids (Figures S1–S9 in the Supplementary Material). However, the docked poses of the
KS3, KS4 and KS7 analogs were oriented quite similarly (Figure 10). It turned out that the
enolic form of curcumin (KS2_enol in Figure 10) was slightly more potent in comparison
with its keto isomer from the standpoint of binding affinity. Moreover, the KS5, KS6 and
KS8 derivatives were able to form hydrogen bonds with several amino acids within the
protein cavity (in comparison with the KS1, KS3 and KS4), i.e., Lys147 (KS8/3.040 Å),
Arg220 (KS6/3.180 Å), Arg427 (KS6/2.980 and 3.120 Å), Arg579 (KS6/3.060 Å) and Arg582
(KS5/2.820 Å; KS6/3.020 Å).
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Figure 10. Superimposition of docked ligands: KS1 (red), KS2_keto (orange), KS2_enol (green),
KS3 (cyan), KS4 (blue), KS5 (magenta), KS6 (brown), KS7 (black) and KS8 (gray); first poses
(Chimera 1.13.1 package) protein (contacts under d ≤ 9 Å) inhuman I kappa B kinase (4kik.pdb).

Considering the activity of the investigated derivatives against the HT-29 cell lines
and their ability to interact with the human cyclin D1-cyclin-dependent kinase 4 CDK4
(2w96.pdb protein [39–41]), the estimated binding affinities were as follows: −9.00, −7.700,
−7.900, −10.000, −7.200, −8.200, −9.900, −7.500, and −8.300 kcal mol−1 for: KS1, keto
form of KS2, enolic form of KS2, KS3, KS4, KS5, KS6, KS7 and KS8, respectively. We
observed that the main core of KS3, KS4 and KS7 compounds was docked in a similar
manner (Figure 11). Derivatives KS1, KS3, KS4 and KS7 were able to form only weak
hydrogen bonds within the cavity (Figures S10–S18 in the Supplementary Material), es-
pecially with: Arg126 (KS1/3.040 Å), Val27 (KS3/3.120 Å), Lys33 (KS4/3.100 Å), Arg26
(KS7/2.890 Å), Arg126 (KS7/3.140 Å) and Gln291 (KS7/2.950 Å). For active analogs, more
ligand−amino acid contacts were detected, including Lys33 (KS5/2.970 Å, KS6/3.090 Å),
Phe66 (KS8/2.790 Å), Glu67 (KS8/2.790 and 2.830 Å), Arg126 (KS5/2.860 Å, KS6/2.810
and 3.010 Å), Asp129 (KS5/3.080 Å) and Gln291 (KS8/3.110 Å).

The binding of a ligand to the estrogen receptor (ER) is crucial for its potential to act
as an ER agonist or antagonist. Curcumin is a compound with an impact on the expression
of ERα and p53 in the presence of hormones and anti-hormones in breast cancer cells [64].
On account of the activity of the testes analytes in the MCF7 cell line, in this study, we used
in silico techniques to investigate the activity of curcumin analogs to modulate the activity
of estrogen receptors using ERα (3dt3.pdb [65]) and ERβ (1l2j.pdb [44]) proteins [66].
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KS3 (cyan), KS4 (blue), KS5 (magenta), KS6 (brown), KS7 (black) and KS8 (gray); first poses
(Chimera 1.13.1 package) protein (contacts under d ≤ 9 Å) in human cyclin D1-cyclin-dependent
kinase 4 (CDK4, 2w96.pdb).

Regarding the ERα, the computed binding affinities were as follows: −8.500, −8.00,
−7.800, −7.500, −8.200, −9.100, −8.700, −9.800 and −8.900 kcal mol−1 for KS1, keto form
of KS2, enolic form of KS2, KS3, KS4, KS5, KS6, KS7 and KS8, respectively. We observed
that the main core of KS3, KS4 and KS7 compounds was docked in a similar manner
(Figure 12). Moreover, the overlap of aromatic rings of the first poses within the active KS6
and KS8 derivatives was also significant. Docking protocol allowed us to detect several
hydrogen bonds formed between analyzed ligands and amino acids within the ERα, such as
(Figures S19–S26 in the Supplementary Material): Thr347 (KS2_enol/3.140 Å, KS6/3.130 Å,
KS8/2.950 Å), Leu387 (KS2_keto/2.740 Å, KS7/3.190 Å), Asn519 (KS4/3.230 Å), Tyr526
(KS2_keto/2.720 Å, KS2_enol/2.930 Å), Asn532 (KS1/2.850 Å) and Leu536 (KS7/3.270 Å).
It is known that tryptophan present at position 383 is considered as a conservative point in
the hormone binding site, and it is also present in other steroid receptors [66]. Notably, the
aromatic rings of Trp383 and KS6 and KS8 (distance equaled ca. 4 Å) were coplanar. In
case of ERβ, the binding affinities of curcumin analogs were as follows: −7.300, −7.700,
−7.800, −7.00, −8.500, −8.00, −7.200, −7.100 and −6.800 kcal mol−1 for KS1, keto form
of KS2, enolic form of KS2, KS3, KS4, KS5, KS6, KS7 and KS8, respectively. We also
observed that the binding modes of ligands KS4 and KS7 were similar (Figure 13). Hy-
drogen bonds within the ligand-protein complex (Figures S27–S35 in the Supplementary
Material) were not detected (KS7) or were weak (HBs formed with Lys395 for KS3/3.280 Å,
with His350 for KS4/3.200 Å). Several hydrogen bonds formed between other analyzed
ligands and amino acids within the ERβ, such as (Figures S27–S35 in the Supplementary
Material): Glu276 (KS1/3.010 Å), Pro277 (KS2_enol/2.960 Å), His279 (KS2_enol/2.960
and 3.010 Å), Glu305 (KS2_keto/2.960 Å, KS2_enol/3.110 Å, KS5/2.810 Å, KS6/2.920 Å),
Trp345 (KS8/3.260 Å), Arg346 (KS1/2.880 Å), Gln393 (KS8/3.050 Å), His394 (KS1/3.260 Å)
and Tyr397 (KS2_keto/2.960 Å).
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3.4. Structure-Activity Relationships

Comparing the cytotoxicity results in Table 1, mono-oleanoyl hydrogen succinate
(KS1) was inactive against HeLaWT and HT-29 cells, but quite active against MCF7 cells.
The conjugation with curcumin, which was active against all tested lines, resulted in a
significant decrease in cytotoxic activity, with both curcumin oleanoyl hydrogen succinate
derivative (KS4) and its methyl ester (KS3).

It was also noted that the conversion of the keto-enol moiety in compounds KS3 and
KS4 to the corresponding pyrazole KS8 and KS6 leads to increased cytotoxicity against all
cell lines. However, in the case of isoxazole derivatives hybrids (KS3 and KS4), only the
compound with the free carboxylic group in the oleanolic acid skeleton (KS5) showed a
significant increase in activity. Thus, the ring substituents affected the increased cytotoxicity
in the pyrazole and isoxazole derivatives obtained. The transformation of the free carboxyl
function of the oleanolic acid skeleton in KS6 into methyl ester (KS8) increased the cytotoxic
activity of the KS6. Only curcumin isoxazole mono-oleanoyl hydrogen succinate methyl
ester (KS7) was inactive.
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In conclusion, curcumin was the most potent against all tested cell lines, but several of the
obtained hybrid compounds, in which the one hydroxyl group was linked with an oleanolic
acid skeleton, showed significant cytotoxicity against HeLaWT, HT-29 and MCF7 cells.

The current direction in the field of discovering new drugs in the treatment of breast
cancer is testing currently used drugs—directed to the treatment of specific subtypes of
breast cancer—in combination with new ones with proven activity, or the use of combina-
tions of various substances/compounds with biological activity to enhance this effect. Our
research, although aimed at verifying such a trend in the context of increasing therapeutic
effectiveness, did not show the expected spectacular effect, but is important for the design
of new drugs, indicating a different type of modification than the examples of hybrids
presented by us.

4. Conclusions

In this study, hybrid compounds were synthesized through the combination of cur-
cumin and oleanolic acid skeleton; novel promising curcumin-triterpene analogs containing
heterocyclic rings in curcumin part were also synthesized. The potential cytotoxic effect of
these newly synthesized agents was investigated in an experimental in vitro model.

The tested compounds KS2, KS5, KS6 and KS8 showed cytotoxic activity against
HeLaWT, HT-29 and MCF7 cells, and KS2 was the most active in MCF7 cells. Curcumin
showed the strongest activity, followed by compound KS8, then compounds KS6 and KS5.
The cytotoxic activity of KS1 against MCF7 cells was at the level of that of KS8.

Based on in silico results, we can assume that computations proved the low activity of
the KS3, KS4 and KS7 analogs towards IKKβ, CDK4 proteins, ERα and Erβ, basically due
to their similar binding modes and the weak nature of hydrogen bonds formed within the
cavity of ligand−protein complexes.

Overall, the conjugation of the structure of curcumin and oleanolic acid may represent
an important basis for the development of effective anticancer agents, without retaining
the diketone moiety. Moreover, some modifications in this portion have led to obtaining
more information about different biological activities on several cancer cell lines.

However, our research shows that not every combination of chemical modifications of
the structure of two biologically active compounds is effective in the context of anticancer
activity. This requires a multi-directional view; modifications that would increase the solu-
bility, bioavailability and selectivity of a new hybrid are not always appropriate. Therefore,
the research results presented by us only indicate the direction of designing new drugs,
with an emphasis on specific modifications and combinations of two biologically active
compounds in order to improve the effectiveness of their biological action and create an
effective and selective anti-cancer drug.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/biomedicines11061506/s1. Herein, the first poses of the docked
compounds KS1–KS8 and 1H-NMR and 13C-NMR spectra are given.
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