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Abstract: The occurrence of B cell aggregates within the central nervous system (CNS) has prompted
the investigation of the potential sources of pathogenic B cell and T cell responses in a subgroup
of secondary progressive multiple sclerosis (MS) patients. Nevertheless, the expression profile of
molecules associated with these aggregates and their role in aggregate development and persistence
is poorly described. Here, we focused on the expression pattern of osteopontin (OPN), which is a
well-described cytokine, in MS brain tissue. Autopsied brain sections from MS cases with and without
B cell pathology were screened for the presence of CD20+ B cell aggregates and co-expression of OPN.
To demonstrate the effect of OPN on B cells, flow cytometry, ELISA and in vitro aggregation assays
were conducted using the peripheral blood of healthy volunteers. Although OPN was expressed in
MS brain tissue independent of B cell pathology, it was also highly expressed within B cell aggregates.
In vitro studies demonstrated that OPN downregulated the co-stimulatory molecules CD80 and CD86
on B cells. OPN-treated B cells produced significantly lower amounts of IL-6. However, OPN-treated
B cells also exhibited a higher tendency to form homotypic cell aggregates in vitro. Taken together,
our data indicate a conflicting role of OPN in modulating B cell responses.
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1. Introduction

Multiple sclerosis (MS) is a chronic demyelinating disease of the central nervous
system (CNS), which typically manifests in young adults. Although B cells are not the
first responders of neuroinflammation, their dichotomous role, especially in the chronic
stage of MS has gained increasing attention [1]. Ectopic lymphoid follicles (eLFs), which
are a common feature of several chronic autoimmune diseases [2], have been detected in
the meninges of some but not all secondary progressive MS patients [3–5]. More recent
reports have demonstrated the presence of B cell aggregates in other stages of MS [6–8].
Furthermore, multiple lines of evidence suggest that the presence of B cell aggregates
within the CNS tissue in MS patients positively correlates with a more severe disease
pathology [9–11].

Nevertheless, there remains a crucial gap in our knowledge regarding the precise
molecular and cellular landscape of these aggregates [12]. On the one hand, molecules
expressed within the B cell aggregates that may function as positive regulators of dis-
ease [13] remain to be clearly defined. On the other hand, the identification of molecules
that facilitate B cell aggregation [14–16] is an important step to specifically block those
pathways that negatively affect the severity of disease progression.

In the current study, we set out to investigate the expression of SPP1—secreted
phosphoprotein-1—an extracellular matrix (ECM) glyco-phosphoprotein also described as
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osteopontin (OPN) [17] within B cell aggregates in MS patients. OPN has been identified as
the fifth most common transcript in MS brain tissue [18] and its role in several pathologic
and inflammatory processes [19] has been described over the last decades. Furthermore, the
involvement of OPN in T cell-mediated CNS pathology has been emphasized in different
EAE models [20,21], and very recently, the role of OPN in controlling and compartmental-
izing brain T cells has been suggested [22]. While OPN has also been implicated in several
diseases with a B cell component [23,24], its expression within eLFs or B cell aggregates in
MS patients is unknown.

To this end, we used immunohistochemistry to determine the expression of OPN in
MS brain tissue that contained CD20+ B cell aggregates. In vitro, human recombinant OPN
(rOPN) downregulated the co-stimulatory molecules CD80 and CD86 on human B cells
from peripheral blood. Conversely, the stimulation of B cells with rOPN increased the
number of B cell aggregates in vitro suggesting that OPN has opposing effects that may
have an impact on the pathogenesis of B cell-mediated diseases.

2. Materials and Methods
2.1. Human Tissue

The MS brain sections used in this study were from the same cohort reported by
Chunder et al. [25]. Paraffin-embedded brain tissue sections were received from the
Multiple Sclerosis and Parkinson’s Tissue Bank, Center for Brain Sciences, Imperial College
London (file number 258/14, approved by the Ethics Committee of the University of
Würzburg), or from the Netherlands Brain Bank (NBB; co-ordinator Prof. I. Huitiga) in
Amsterdam with approval of the Medical Ethics Committee of the Amsterdam UMC. All
participants or the next of kin had given informed consent for an autopsy and the use of
tissues for research purposes. MS brain samples from the NBB were selected from regions
of interest (ROI) after ex vivo MRI for the detection of lesions. Tissue blocks containing
the ROI were cut in half and half fixed in 10% formalin and embedded in paraffin while
the other half was snap-frozen and stored in liquid nitrogen. General information on the
patient samples is listed in Table 1. n = 16 MS patients including n = 7 patients with a
high B cell pathology were included in the study. Synovial tissues from n = 3 patients with
rheumatoid arthritis (RA) that were obtained from the Department of Rheumatology and
Immunology of University Hospital Erlangen were also included in this study (file number
334_18B, approved by the Ethics Committee of the University Hospital Erlangen).

Table 1. Patient details [25].

MS patients

Number Age Sex MS Type Disease Duration
(In Years) Cause of Death Number of Blocks Patient Type

MS325 51 M PPMS 2 Bronchopneumonia 2 NI

MS342 35 F SPMS 5 MS 2 B cell

MS402 46 M SPMS 20 MS, bronchopneumonia 1 B cell

MS407 44 F SPMS 19 Sepsis, pneumonia 1 B cell

MS408 39 M SPMS 10 Sepsis, pneumonia 1 NI

MS438 53 F Unknown 18 MS 2 NI

MS444 49 M SPMS 20 Kidney failure 2 T cell

MS473 39 F PPMS 13 MS, bronchopneumonia 2 T cell

MS485 57 F PPMS 29 MS, bronchopneumonia 2 T cell

MS510 38 F SPMS 22 MS, pneumonia 1 T cell

MS523 63 F SPMS 32 Bronchopneumonia 1 T cell

MS528 45 F SPMS 25 Pneumonia 1 T cell

11-077 66 F PPMS 32 Euthanasia 5 B cell
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Table 1. Cont.

MS patients

Number Age Sex MS Type Disease Duration
(In Years) Cause of Death Number of Blocks Patient Type

14-006 56 F Unknown 31 Suicide by
pentobarbital intoxication 2 B cell

15-047 50 F SPMS 18 Euthanasia 2 B cell

16-019 48 M Unknown 15 Ileus, dehydration 4 B cell

RA patients

Number Age Sex Tissue type Number of blocks

427-19 57 F Surgical biopsy 1

470-19a 74 F Surgical biopsy 1

471-19b 82 F Surgical biopsy 1

F = female; M = male; MS = multiple sclerosis; NI= No CD3/CD20 infiltration; PPMS = primary progressive MS;
SPMS = secondary progressive MS.

2.2. Immunohistochemistry

The protocol for immunohistochemical staining has been previously described by
our group [25]. Briefly, following deparaffinization of the brain sections, heat-induced
antigen retrieval was performed in 10 mM sodium citrate buffer (pH 6.0). Sections were
washed with tris-buffered saline + 0.05% Tween 20 (TBS-T) between every incubation step.
After blocking with 5% milk blocking buffer at room temperature for 1 h, tissue sections
were incubated with primary antibodies diluted in 0.5% blocking buffer at 4 ◦C overnight.
The appropriate secondary antibodies diluted in 0.5% blocking buffer were applied to
the sections at room temperature for 2 h in the dark. Double stainings were carried out
sequentially where the tissue sections were incubated with the second primary antibody
for 3 h at room temperature following completion of the first staining. The corresponding
secondary antibody was diluted as mentioned above and incubated at room temperature
for 1 h. Human brain sections were finally mounted using Fluoroshield mounting medium
containing 4′,6-diamidino-2-phenylindole (DAPI) (Abcam, Cambridge, UK). Every staining
contained a secondary antibody-only control. Additionally, a rabbit polyclonal IgG control
was used to confirm primary antibody binding specificity (Supplementary Figure S1). The
primary and secondary antibodies that were used are listed in Table 2. Images were ac-
quired using a Leica DM6 fluorescence microscope (Leica Microsystems, Wetzlar, Germany)
equipped with Las X software (version 5.1.0, Leica Microsystems, Wetzlar, Germany).

2.3. B Cell Isolation and Cell Culture

For the in vitro B cell studies, blood was collected from healthy controls between the
ages of 22 and 35. The study was performed pseudonymized and approved by the Ethics
Committee of Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
(files 185_18B and 74_18B). Written informed consent was obtained from all volunteers.

The protocol used for isolating and culturing B cells has been previously described
by our group [25]. Briefly, 30 mL of peripheral blood per person was collected using
S-Monovette™ (Sarstedt Inc., Newton, MA, USA) tubes containing lithium heparin. Whole
blood was incubated with RosetteSep™ Human B Cell Enrichment Cocktail (STEMCELL
Technologies, Vancouver, BC, Canada) and purified by density centrifugation according
to the manufacturer’s instructions. Isolated B cells were counted and resuspended in the
appropriate B cell medium at a concentration of 150,000 cells/200 µL for all downstream
applications. The B cell medium was prepared using Roswell Park Memorial Institute
(RPMI)-1640 medium supplemented with 0.3 g/L L-glutamine, 10% fetal bovine serum
(FBS) (ThermoFisher, Waltham, MA, USA), 1% penicillin/streptomycin (P/S), 50 µM β-
mercaptoethanol, and 10 mM HEPES. An aliquot of 450,000 freshly isolated B cells was set
aside for purity check by flow cytometry.
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Table 2. List of antibodies and their dilutions.

Antibodies Used for Immunofluorescence

Antibody Source Host Species Clone Dilution

Anti-CD20 Invitrogen Mouse L26 1:400

Anti-CD3
Abcam Rabbit

SP162 1:150

Anti-OPN Polyclonal 1:100

Anti-human IgG Abcam Rabbit Polyclonal 1:200

Antibodies used for flow cytometry

BB700 Anti-CD3

BD Biosciences Mouse

SK7 1:20

APC Anti-CD19 HIB19 1:5

APC Anti-CD20 2H7 1:5

BB515 Anti-CD45 HI30 1:20

BV605 Anti-CD80 2D10.4 1:40

BB515 Anti-CD86 FUN-1 1:20

B cells that had a purity of >80% as determined by flow cytometry were cultured in
the presence or absence of stimulation (15 ng/mL interleukin (IL)-2 (PeproTech, Rocky Hill,
NJ, USA) and 1 µg/mL synthetic TLR 7/8 agonist R-848 (ENZO Life Sciences, Farmingdale,
NY, USA)) in 96-well plates. B cells that were stimulated with IL-2 and R-848 are referred
to as pre-stimulated B cells, which were incubated at 37 ◦C and 5% CO2 for 24 h before
the addition of rOPN. Freshly isolated B cells, which did not receive any stimulation, are
mentioned as unstimulated B cells and were directly incubated with rOPN. For every
culture condition and all downstream applications, B cells from every donor were plated,
measured, and analyzed in duplicates.

2.4. Stimulation of B Cells with rOPN

A dose-titrated amount of 2 µg/well (1 µg/mL) human rOPN (R&D Systems, Min-
neapolis, MN, USA) was added to pre-stimulated or unstimulated B cells, which were
cultured for 40 h at 37 ◦C and 5% CO2. The amount of rOPN added to the B cells was
optimized to 2 µg/well based on recommendations in the literature [26,27].

2.5. Flow Cytometry
2.5.1. Purity Check of B Cells

The purity of the enriched B cell population was measured by flow cytometry as
previously described by us [25]. The isolated cell suspensions were incubated with BD
Horizon® Fixable Viability Stain 780 (FVS780) (BD Biosciences, Franklin Lakes, NJ, USA)
at 4 ◦C for 30 min in the dark. Cells were then washed, centrifuged, and incubated with
anti-human anti-CD19 and anti-CD45 antibodies at 4 ◦C in the dark for 30 min. Following
a washing step, cells were resuspended in an appropriate volume of FACSFlow™ (BD
Biosciences) for measurement of the samples. Data were acquired on a CytoFLEX S flow
cytometer (Beckman Coulter, Brea, CA, USA) equipped with CytExpert software (version
2.2, Beckman Coulter, Brea, CA, USA), and analysis was performed with FlowJo software
(version 10.8.0, BD Biosciences, Franklin Lakes, NJ, USA). A table corresponding to the B cell
purities from the different donors used in this study is shown in Supplementary Table S1.

2.5.2. B Cell Activation

To check the activation status of pre-stimulated or unstimulated B cells that were
treated with human rOPN for 40 h, the following cell surface markers were used: CD3,
CD20, CD80, and CD86. Live cells were discriminated from dead ones using FVS780.
Staining was performed as described above. The gating strategy used for the measurement
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of B cell activation status has been previously described by our group [25] and is shown in
Supplementary Figure S2. Unstained, isotype staining controls and fluorescence minus one
(FMO) samples were included.

Cases where either rOPN-treated or untreated B cells showed a coefficient of variation
(CV) higher than 20% between the technical replicates for any condition were excluded
from the analysis. Materials and methods with an overlap between the current manuscript
and that reported in Chunder et al. [25] have been summarized in Supplementary Figure S3.

2.6. Antibody Array and ELISA

To investigate the cytokine secretion profile of pre-stimulated B cells after incuba-
tion with rOPN, a human cytokine antibody array kit with 23 targets (Abcam) was used
(Supplementary Figure S4). An equal volume of culture supernatant from either rOPN-
treated or untreated pre-stimulated B cells was used for the array and the assay was
performed according to the manufacturer’s instructions. The integrated density of the
dot blots was analyzed using Image J (NIH). Based on the preliminary findings using
the antibody array, quantitative analysis of IL-6 and IL-10 was performed on the B cell
culture supernatant. Both ELISAs were performed as per the manufacturer’s protocol
(ThermoFisher, Waltham, MA, USA).

2.7. Aggregation Assay

Aggregation assays using purified B cells were performed as described earlier [28].
Briefly, pre-stimulated B cells that were treated with rOPN for 40 h were incubated with
mouse anti-human CD19 at a concentration of 1µg/mL for 2 h at 37 ◦C and 5% CO2. Mouse
anti-human IgG1 was used as an isotype control antibody. Five images were acquired from
each well using a Leica DMIL LED microscope (Leica Microsystems, Wetzlar, Germany).
B cell aggregation was quantified with Fiji (version 2.3.1, National Institutes of Health
(NIH), Bethesda, MD, USA), with at least three images/well included in the analysis.
Images/wells where a bubble or the edge of the well was photographed were excluded
from the analysis.

2.8. Statistical Analysis

Statistical analysis was performed using GraphPad Prism (version 8.0, GraphPad
Software Inc., San Diego, CA, USA). A Shapiro–Wilk normality test was used to test
the Gaussian distribution of every dataset. Differences between parametric groups were
assessed using either a t test or a one-way ANOVA, while for non-parametric datasets, the
Wilcoxon test was used. The level of significance was set at 5%.

3. Results
3.1. OPN Is Expressed within B Cell Aggregates in Human Tissues

We checked for the expression pattern of OPN in MS brain sections from a cohort
of patients that had already been characterized by our group [25]. As expected, the
expression of OPN was not limited to sections with a prominent B cell pathology (Figure 1A).
Tissue sections from patients that were positive only for T cells (CD3+ staining) and those
without any CD3/CD20 staining (“No T cell and B cell” infiltration) also expressed high
amounts of OPN. However, the results also demonstrated that this molecule is strongly
expressed within CD20+ B cell aggregates (Figure 1B). Furthermore, we confirmed previous
findings [29] using synovial tissue from RA patients to demonstrate that OPN is also
expressed within B cell aggregates in the periphery (Figure 1C). Control stainings are
shown in Supplementary Figure S1.
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Figure 1. Expression of OPN in human tissue sections with or without B cell pathology. (A) OPN
expression in brain tissue from a CD20+ B cell aggregate-positive patient, a CD20+ B cell aggregate-
negative patient, and a patient without any observable CD3/CD20 infiltration. Expression of OPN
within a CD20+ B cell aggregate in a (B) patient with MS vs. (C) a patient with RA. Scale bars
represent either 50 µm (A and B) or 100 µm (C). MS = multiple sclerosis; OPN = osteopontin;
RA = rheumatoid arthritis.

3.2. B Cells Treated with OPN Downregulate the Co-Stimulatory Molecules CD80 and CD86

Having shown that OPN is expressed within B cell aggregates, we wanted to inves-
tigate whether it had any effect on the activation status of B cells. To demonstrate the
influence of OPN on B cells, we studied the expression pattern of CD80 and CD86 as two
co-stimulatory molecules that are expressed on activated B cells and also play a crucial role
in T cell activation [30,31]. Unstimulated peripheral blood B cells from n = 6 healthy donors
treated with human rOPN for 40 h in culture significantly downregulated CD80 (p = 0.027)
as determined by flow cytometry (Figure 2A). Flow cytometric analysis of B cells that
were first pre-stimulated with R-848 and IL-2 and then treated with rOPN (n = 6 healthy
donors) demonstrated a significantly lower expression of both co-stimulatory molecules
(p = 0.003 for CD80; p = 0.010 for CD86) (Figure 2B) compared to the vehicle (i.e., medium
or R-848 + IL-2 only, respectively).
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Figure 2. Analysis of co-stimulatory molecules on B cells after rOPN stimulation. (A) Expression
of CD80 and CD86 by unstimulated B cells following incubation with medium only or rOPN (cells
isolated from n = 6 healthy donors). (B) Expression of CD80 and CD86 by B cells pre-stimulated
with R-848 + IL-2 and incubated with or without rOPN (cells isolated from n = 6 healthy donors).
Every data point on the graphs corresponds to the percentage of either CD80+ or CD86+ B cells
under different conditions. Graphs show mean values ± standard error of mean (SEM). * p < 0.05,
** p < 0.01, *** p < 0.001, paired t test. IL = interleukin; R-848 = synthetic toll-like receptor 7/8 agonist;
rOPN = recombinant osteopontin.

3.3. OPN Has Differential Effects on IL-6 and IL-10 Secretion by B Cells

To investigate if rOPN also had an effect on the cytokine profile of B cells, a dot
blot antibody array was performed. Supernatants of B cells that had been pre-stimulated
with R-848 and IL-2 only or pre-stimulated and then treated with rOPN from n = 1 donor
were used. Based on the integrated density of the dots (Supplementary Table S2), two of
the cytokines that triggered our interest were IL-10 and IL-6, which showed increased or
decreased secretion by rOPN-treated B cells, respectively (Figure 3A), compared to the
vehicle. An IL-6/IL-10-producing B cell ratio to predict active disease in MS patients has
been studied earlier [32]. Although no statistics could be performed on the dot blot with
n = 1 patient, we verified the influence of rOPN on IL-6 and IL-10 secretion by B cells
using ELISA. A supernatant of pre-stimulated B cells (of >80% purity) treated with rOPN
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from a cohort of n = 6 healthy donors was tested for both cytokines. There was significant
downregulation in the synthesis of IL-6 (p = 0.020) in rOPN-treated B cells vs. the untreated
group, but no significance was achieved in IL-10 production between the groups.
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Figure 3. Cytokine profiling of rOPN-treated B cells. (A) IL-6 and IL-10 production by B cells from
the same donor either with or without treatment with rOPN is shown. The amount of IL-6 and IL-10
production between the two groups was calculated by using the integrated density from n = 1 donor,
measured in duplicates as shown in the black boxes. (B) IL-6 and IL-10 production of pre-stimulated
B cells (n = 6 healthy donors), measured by ELISA. (C) An estimation plot demonstrating the level of
IL-6 vs. IL-10 secretion by rOPN-treated and -untreated B cells are also shown. Bars display mean
values± SEM. * p < 0.05, paired t test. IL = interleukin; R-848 = synthetic toll-like receptor 7/8 agonist;
rOPN = recombinant osteopontin.

An estimation plot was created to document the concurrent IL-6 and IL-10 synthesis
profile of B cells treated with rOPN from each individual donor. Although no statistical
significance was observed (p = 0.062), rOPN-treated B cells from 5/6 donors that had
decreased levels of IL-6 produced an increased amount of IL-10 (Figure 3C), while this was
not the case in the group that was treated with R-848 and IL-2 alone.

3.4. OPN Significantly Increases the Potential of B Cells to Form Aggregates

Given the expression of OPN within B cell aggregates, we assessed the impact of rOPN
on homotypic B cell aggregation. Accordingly, we used the in vitro B cell aggregation assay
model initially described by Smith, Rigley, and Callard [33] (Figure 4A). The number of B
cell aggregates induced by anti-CD19 antibody in rOPN-treated B cells was significantly
higher (p = 0.019) than in the control group (Figure 4B). However, the size of the aggregates
formed was comparable between the two groups.
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Figure 4. Aggregation of B cells in the presence of rOPN. (A) Representative images of aggrega-
tion of pre-stimulated B cells with or without rOPN treatment induced by anti-CD19 antibody.
Scale bars represent 100 µm. (B) Number and size of the aggregates formed comparing control
(R-848 + IL-2 stimulation only) and rOPN (in addition to R-848 + IL-2)-treated B cells. Bars display
mean values ± SEM. * p < 0.05, paired t test. IL = interleukin; R-848 = synthetic toll-like receptor
7/8 agonist; rOPN = recombinant osteopontin.

4. Discussion

In this study, we show that OPN is expressed within B cell aggregates in MS brain
tissue and uncover a conflicting role of this molecule in its association with B cells. On
the one hand, OPN has the potential to dampen B cell activity by downregulating the
co-stimulatory molecules CD80 and CD86. On the other hand, B cells have an increased
tendency to form aggregates when treated with OPN.

First, we demonstrate strong expression of OPN within B cell aggregates in human
brain tissues. Using MS brain tissues that were positive for B cell aggregates, we extend
previous findings that OPN expression is associated with B cell clusters not only in peripheral
inflammatory autoimmune diseases [34,35] but also in the event of chronic neuroinflammation.

In autoimmune diseases, OPN is widely considered to be a pro-inflammatory cytokine
that enhances the production of IL-6 [29] and (auto)antibodies [24] by B cells. However,
OPN also has anti-inflammatory properties and is known to regulate tissue repair [36]. Our
study demonstrates that OPN has the potential to regulate the activation status of B cells
and therefore possibly also plays an important role in modulating T cell activation.

CD27+ memory B cells are not only aberrantly outnumbered in the peripheral blood
and cerebrospinal fluid (CSF) of MS patients [37] but have also been detected within MS
lesions [7]. Furthermore, it has been demonstrated that memory B cells can function as
potent antigen-presenting cells (APCs) [38] with pro-inflammatory tendencies [39] and are
the main pathogenic subset of B cells [40]. Therefore, given the relevance of memory B cells
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in MS, we investigated the effects of OPN on B cells stimulated with a combination of R-848
and IL-2 as polyclonal activators that prompt efficient proliferation and differentiation of
memory B cells [41].

Our data indicate that OPN significantly downregulated both CD80 and CD86 on
B cells pre-stimulated with R-848 and IL-2 while only affecting CD80 expression on un-
stimulated B cells. CD80 and CD86 are co-stimulatory molecules that are overexpressed
on B cells in MS patients [42] and are involved in immune regulation [43]. Future studies
focusing on a more comprehensive phenotype characterization will allow us to confirm
the nature of the effect of OPN on different subtypes of B cells. Nevertheless, our results
suggest that OPN reduces the overall activation status of B cells through modulation of its
co-stimulatory molecules CD80/CD86.

Additionally, on the one hand, we show a significant downregulation of IL-6 secretion
by pre-stimulated B cells treated with rOPN and an upregulation of IL-10 synthesis by the
same cells in 83.3% of our cohort. On the other hand, as expected, we also confirm that
pre-stimulated B cells that were left untreated concurrently secreted high levels of IL-6
and low levels of IL-10 in all six donors tested. Despite the small sample size, the data
strongly support an overall tendency of OPN to polarize B cells to a more anti-inflammatory
phenotype. The therapeutic benefit of neutralizing the effects of the pro-inflammatory
cytokine IL-6 has been suggested for different autoimmune diseases such as RA [44,45],
and harvesting the potential of B cell-derived IL-10 in controlling autoimmunity, such as in
MS, has also been widely discussed [46,47].

Of note, in contrast to our finding, other groups have suggested that OPN not only
inhibits IL-10 secretion in macrophages [48] but OPN-deficient mice produce an enhanced
level of IL-10 compared to wild-type mice [49]. This suggests that OPN most likely exerts
differential effects on distinct cell populations in a context-dependent manner. One caveat of
this study is that we cannot exclude the possibility of a small number of IL-6/IL-10 secreting
contaminating cell populations in our B cell culture that contributed to the signal detected by
the different ELISAs. Therefore, taking the heterogeneity of the immune repertoires between
donors into account, in vitro treatment of B cells with rOPN using a larger cohort of donors
would verify the beneficial effect of this molecule in limiting inflammation. Furthermore,
the choice of cytokines used to demonstrate the anti-inflammatory effect of rOPN on B
cells (i.e., IL-6 and IL-10) was shortlisted from a cohort of only n = 1 donor. Hence, a
more comprehensive screening of pro- and anti-inflammatory cytokines secreted by OPN-
stimulated B cells using a larger cohort of donors would strengthen our current findings.

Finally, the high level of OPN expression within the B cell aggregates in the human
brain sections of MS patients led us to question whether OPN also influenced the formation
of B cell aggregates. Surprisingly, B cells treated with rOPN had a significantly higher
tendency to form aggregates than the control. An earlier study, however, argued against the
nature of OPN to induce homotypic aggregation formation [50]. Using CD44-transfected
cell lines, Weber et al. showed that the interaction between OPN and its receptor CD44 did
not induce homotypic aggregation [50]. Despite the conflicting findings, it is plausible that
in our in vitro system, OPN-stimulated B cells have a higher tendency to form aggregates
that may be dependent on another receptor–ligand interaction. Identifying the precise
receptor–ligand interaction, which results in OPN-dependent B cell aggregation, would be
a necessary step in the future.

One of the limitations of our short-term in vitro assay is that it does not mimic the
chronic aggregation of B cells. Furthermore, B cell aggregates found in chronically inflamed
tissues, such as in MS or RA, do not contain a pure population of B cells but are rather
clusters of B cells with T cells, as shown by us and others [27,51]. Therefore, future studies
using a mixed lymphocyte population to observe the effect of OPN on facilitating B cell
aggregation longitudinally would validate the role of this molecule in the development of
aggregates in chronic neuroinflammation.
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5. Conclusions

To conclude, the pleiotropic nature of OPN is well known [52] given its capacity to
interact with multiple receptors [53]. Exploiting the interaction between OPN and its
receptors that results in polarizing B cells to a less activated phenotype could open up
new therapeutic possibilities in chronic (neuro)inflammatory diseases. Similarly, inhibiting
the interaction between OPN and possible putative ligands that enhance B cell aggregate
formation could limit an ongoing antigen-specific immune response within tissues.
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