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Abstract: These days, in vitro functional analysis of gene variants is becoming increasingly important
for risk stratification of cardiac ion channelopathies. So far, such risk stratification has been applied to
SCN5A, KCNQ1, and KCNH2 gene variants associated with Brugada syndrome and long QT syndrome
types 1 and 2, respectively, but risk stratification of HCN4 gene variants related to sick sinus syndrome
has not yet been performed. HCN4 is the gene responsible for the hyperpolarization-activated ‘funny’
current If, which is an important modulator of the spontaneous diastolic depolarization underlying
the sinus node pacemaker activity. In the present study, we carried out a risk classification assay
on those loss-of-function mutations in HCN4 for which in vivo as well as in vitro data have been
published. We used the in vitro data to compute the charge carried by If (Qf) during the diastolic
depolarization phase of a prerecorded human sinus node action potential waveform and assessed
the extent to which this Qf predicts (1) the beating rate of the comprehensive Fabbri–Severi model
of a human sinus node cell with mutation-induced changes in If and (2) the heart rate observed in
patients carrying the associated mutation in HCN4. The beating rate of the model cell showed a very
strong correlation with Qf from the simulated action potential clamp experiments (R2 = 0.95 under
vagal tone). The clinically observed minimum or resting heart rates showed a strong correlation
with Qf (R2 = 0.73 and R2 = 0.71, respectively). While a translational perspective remains to be seen,
we conclude that action potential clamp on transfected cells, without the need for further voltage
clamp experiments and data analysis to determine individual biophysical parameters of If, is a
promising tool for risk stratification of sinus bradycardia due to loss-of-function mutations in HCN4.
In combination with an If blocker, this tool may also prove useful when applied to human-induced
pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) obtained from mutation carriers and
non-carriers.

Keywords: sinoatrial node; human; pacemaker activity; hyperpolarization-activated current; HCN4
channels; cellular electrophysiology; action potential; patch clamp; computer simulations

1. Introduction

Over the past decade, risk stratification has become common practice for a large variety
of diseases [1–5], including cardiac rhythm abnormalities [6–12]. Attempts at arrhythmic
risk stratification are frequently based on patient clinical parameters, including electrical
history and basic and advanced electrocardiographic indices [9,13–20]. However, the
stratification of arrhythmic risk in patients can be difficult and controversial [15,17,21–23].
These days, genetic testing for the presence of gene variants is increasingly becoming part of
the clinical management and risk stratification of cardiac ion channelopathies [6,15,24–26].
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Variants of genes underlying the major ion channels involved in cardiac depolarization and
repolarization can be classified as ‘pathogenic’, ‘likely pathogenic’, ‘variant of uncertain
significance’, ‘likely benign’, and ‘benign’, according to a classification scheme developed
by the American College of Medical Genetics and Genomics (ACMG) [27]. The ACMG
criteria for the classification of pathogenic and benign variants include in vitro functional
data, which for arrhythmia syndromes are mainly based on patch clamp experiments.

The patch clamp technique is a >40-year-old electrophysiological tool [28] and is
considered the gold standard in electrophysiology because of its ability to measure both
action potentials (APs) and specific membrane currents, and even single-channel currents,
in detail [29]. Functional consequences of variations in genes encoding cardiac ion channels
(for reviews, see Marbán [30], Schwartz et al. [10], and Wilde et al. [15]) can be studied in a
large variety of models, such as isolated cells from genetically modified animals [31–33]
and human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) [34–36].
However, mammalian cell lines in which the wild-type and the variant cDNA of a given
ion channel can be expressed are still widely used to study the functional properties of
ion currents [37,38]. Initially, patch clamp experiments were performed manually, but in
recent years, the pathogenicity of SCN5A, KCNQ1, and KCNH2 variants involved in the
inherited cardiac channelopathies Brugada syndrome and long QT syndrome types 1 and
2, respectively, have also been determined using high-throughput reclassification assays
based on automated patch clamp devices [25,39–44]. Various biophysical parameters of
the membrane currents have been used to classify the risk of genetic variants, but current
density is the most reliable marker for predicting the risk of SCN5A [45], KCNQ1 [39],
and KCNH2 [46] ion channel variants, followed by their voltage dependence of activation
(through their half-activation voltage, V 1

2
).

Here, we performed a risk classification assay for sick sinus syndrome, a group of
disorders with the common feature that the heart cannot adequately perform its normal
pacemaking function [47–49]. Impaired cardiac pacemaker function may be due to reduced
impulse formation in the sinoatrial node (SAN), defects in impulse conduction from SAN
to atria, or widespread atrial electrophysiological abnormalities [49–52], but in the present
study, we limited ourselves to familial sinus bradycardia due to loss-of-function mutations
in HCN4. The HCN4 gene encodes the HCN4 protein, which is the major HCN isoform of
the ion channels in the human SAN that mediate the hyperpolarization-activated ‘funny’
current If (also called ‘pacemaker current’) [53,54]. If is a depolarizing inward current
during the diastolic depolarization phase of human SAN APs and fulfills an important
modulatory role [55]. To date, several HCN4 variants have been identified, as reviewed by
us and others [56–60], and they all affect pacemaker function by one or more alterations in
the unique set of biophysical parameters of If, including activation upon hyperpolarization,
time constants of activation and deactivation, reversal potential, modulation by cAMP,
and density of channels. In the present study, we tested whether the affected biophysical
parameters of HCN4 variants can explain the severity of sinus bradycardia. Therefore, we
first selected from the literature those loss-of-function mutations in HCN4 that have been
associated with familial sinus bradycardia and for which both clinical and in vitro data
are available, with the condition that the clinical data include quantitative heart rate data
from at least two mutation carriers. The in vitro data were then used to compute the charge
carried by If (Qf) during the diastolic depolarization of a prerecorded human SAN AP
waveform [61] as a measure of the physiological impact of If that can be readily determined
in AP clamp experiments without the need for further voltage clamp experiments and data
analysis to determine individual biophysical parameters of If [55,60,61]. We assessed the
extent to which this Qf predicts (1) the beating rate of the comprehensive Fabbri–Severi
model of a human SAN pacemaker cell [62] with mutation-induced changes in If, and (2) the
heart rate observed in patients carrying the associated mutation in HCN4. We demonstrate
that the beating rate of the model cell, as well as the clinically observed minimum or resting
heart rate, show a strong correlation with Qf and conclude that risk stratification by AP
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clamp is a promising tool for risk stratification of sinus bradycardia due to loss-of-function
mutations in HCN4.

2. Materials and Methods
2.1. Simulations of Action Potential Clamp Experiments

A prerecorded AP waveform from a single isolated human SAN cell [61], with a cycle
length of 813 ms, was used to construct a train of 100 APs that could be employed as a
command signal of ≈82 s duration under voltage clamp conditions, which was long enough
to achieve stable behavior of the HCN4 current during the simulated AP clamp experiments.
This typical AP waveform had been recorded from a pacemaker cell isolated from a human
SAN in the whole cell configuration of the patch clamp technique [61]. Recordings were
made at 36 ± 0.2 ◦C, and the extracellular Na+, K+, and Ca2+ concentrations amounted to
140, 5.4, and 1.8 mmol/L, respectively, whereas the recording pipette solution contained
145 mmol/L K+ and 5.0 mmol/L Na+. Of note, these ion concentrations are identical or
almost identical to those in the Fabbri–Severi human SAN cell model [62] (Section 2.2).
Only the intracellular K+ concentration of the model cell (140 mmol/L) is slightly different
from the K+ concentration in the pipette solution (145 mmol/L).

The custom software to simulate such AP clamp experiments was compiled as a 32-bit
Windows application using Intel Visual Fortran Composer XE 2013 and run on an Intel
Core i7 processor-based workstation. For the numerical reconstruction of the HCN4 current,
we used equations based on our experimental data on If acquired from the same set of
single isolated human SAN cells [61], as described in detail by Verkerk et al. [63] and also
employed by Fabbri et al. [62] in their Fabbri–Severi model of a human SAN pacemaker
cell. We applied a simple and efficient Euler-type integration scheme with a time step of
10 µs for the numerical integration of the differential equations [64].

2.2. Simulations of the Electrical Activity of Human Sinoatrial Node Pacemaker Cells

The electrical activity of a single human SAN pacemaker cell was simulated using the
comprehensive model of such a cell developed by Fabbri et al. [62], known as the Fabbri–
Severi model, with updated equations for the slow delayed rectifier potassium current
(IKs) [65]. Vagal tone was simulated by setting the model concentration of acetylcholine
(ACh) to 20 nmol/L, whereas β-adrenergic tone was simulated by adopting our ‘High Iso’
settings [65] that are intermediate between the model settings used by Fabbri et al. [62] to
simulate the administration of 1 µmol/L of isoprenaline and the model settings that they
used to arrive at a pacemaking rate near 180 beats/min.

The CellML code [66] of the Fabbri–Severi model, available from the CellML Model
Repository [67] at https://www.cellml.org/ (accessed on 9 June 2023), was edited and
run in version 0.9.31.1409 of the Windows-based Cellular Open Resource (COR) environ-
ment [68]. All simulations were run for a period of 100 s, which was long enough to achieve
stable behavior. The data analyzed are from the final five seconds of this 100 s period.

3. Results

First, we reviewed the scientific literature for publications on sinus bradycardia due to
a loss-of-function mutation in HCN4, in which the clinical data on heart rate were preferably
accompanied by in vitro data on the functional effects of the mutation of interest on the
HCN4 current. If the clinical data were not accompanied by such experimental data, we
reviewed the scientific literature for separate studies on the functional effects of the specific
mutation, resulting in a set of loss-of-function mutations in HCN4 for which both clinical
and in vitro data were available. These mutations are summarized in Figure 1 and include
the R375C [69], R378C [70], A414G [71], G480R [72], Y481H [71,73], G482R [71,74,75],
A485V [76], K530N [77], R550C [78], R666Q [79], and S672R [80] missense mutations, and
the 695X truncating mutation [81].

https://www.cellml.org/
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associated with familial sinus bradycardia for which both clinical and in vitro data were available, 
requiring that these clinical data include quantitative heart rate data from at least two mutation 
carriers. Tetramers of HCN4 α-subunits form the cardiac ion channels that conduct the 
hyperpolarization-activated ‘funny’ current (If). The HCN4 protein has six transmembrane 
segments (S1–S6), a pore-forming loop (P), and intracellular N- and C-termini. The voltage sensor 
of the channel is formed by the positively charged S4 helix. The C-terminus contains the C-linker 
(dotted line) and the cyclic nucleotide-binding domain (CNBD), which is known to mediate cyclic 
AMP (cAMP)-dependent changes in HCN channel gating. Colored dots indicate the location of the 
loss-of-function mutations in the HCN4 protein of the present study. This set of mutations includes 
eleven substitutions (R375C, R378C, A414G, G480R, Y481H, G482R, A485V, K530N, R550C, R666Q, 
and S672R) and one truncation (695X). 

The clinical and in vitro data resulting from our review are presented in Sections 3.1 
and 3.2, respectively. In these sections, we have only included mutations with quantitative 
data on heart rate in at least two mutation carriers, thus, for example, ignoring the initial 
studies by Schulze-Bahr et al. [82] and Ueda et al. [83] on the 573X and D553N mutations, 
respectively, and the parts of the studies by Schweizer et al. [74] and Möller et al. [70] 
dealing with the P883R mutation and the R550H and E1193Q mutations, respectively. 

In Section 3.3, we use the in vitro data in Section 3.2 to compute the charge carried 
by If (Qf) during the diastolic depolarization of a prerecorded human SAN AP waveform 
for each of the collected mutations. In Sections 3.4 and 3.5, we demonstrate the extent to 
which Qf can predict the beating rate of a single human sinus node pacemaker cell and 
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Figure 1. Schematic topology of the HCN4 protein and the set of loss-of-function mutations in
HCN4 associated with familial sinus bradycardia for which both clinical and in vitro data were
available, requiring that these clinical data include quantitative heart rate data from at least two
mutation carriers. Tetramers of HCN4 α-subunits form the cardiac ion channels that conduct the
hyperpolarization-activated ‘funny’ current (If). The HCN4 protein has six transmembrane segments
(S1–S6), a pore-forming loop (P), and intracellular N- and C-termini. The voltage sensor of the
channel is formed by the positively charged S4 helix. The C-terminus contains the C-linker (dotted
line) and the cyclic nucleotide-binding domain (CNBD), which is known to mediate cyclic AMP
(cAMP)-dependent changes in HCN channel gating. Colored dots indicate the location of the loss-of-
function mutations in the HCN4 protein of the present study. This set of mutations includes eleven
substitutions (R375C, R378C, A414G, G480R, Y481H, G482R, A485V, K530N, R550C, R666Q, and
S672R) and one truncation (695X).

The clinical and in vitro data resulting from our review are presented in Sections 3.1
and 3.2, respectively. In these sections, we have only included mutations with quantitative
data on heart rate in at least two mutation carriers, thus, for example, ignoring the initial
studies by Schulze-Bahr et al. [82] and Ueda et al. [83] on the 573X and D553N mutations,
respectively, and the parts of the studies by Schweizer et al. [74] and Möller et al. [70]
dealing with the P883R mutation and the R550H and E1193Q mutations, respectively.

In Section 3.3, we use the in vitro data in Section 3.2 to compute the charge carried by
If (Qf) during the diastolic depolarization of a prerecorded human SAN AP waveform for
each of the collected mutations. In Sections 3.4 and 3.5, we demonstrate the extent to which
Qf can predict the beating rate of a single human sinus node pacemaker cell and the heart
rate of mutation carriers, respectively.

3.1. Loss-of-Function Mutations in HCN4: Clinical Observations

Clinical data on heart rate in the presence of (all heterozygous) loss-of-function mu-
tations in HCN4 are listed in Tables 1 and 2, ordered by the location of the mutation sites
on the HCN4 protein (Figure 1). In some studies, data are reported as minimum, aver-
age, and maximum heart rates from 24 h Holter recordings. Data from these studies are
presented in Table 1. In a similar number of studies, data are reported as resting heart
rates and maximum heart rates during exercise testing. Data from the latter studies are
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listed in Table 2. In several studies, on the G480R mutation by Nof et al. [72], the G482R
mutation by Schweizer et al. [74] and Brunet-Garcia et al. [75], the A485 mutation by Laish-
Farkash et al. [76], the K530N mutation by Duhme et al. [77], and the 695X mutation by
Schweizer et al. [81], both types of data were reported. This explains why these studies
appear in both Tables 1 and 2.

Table 1. Minimum, average, and maximum heart rates from 24 h Holter recordings.

Mutation Group
Heart Rate (Beats/Min) *

Reference
Minimum Average Maximum

A414G Carriers (n = 2) 31.0 ± 0.7 60.5 ± 3.9 140.0 ± 20.5 Milano et al. [71]
G480R Carriers (n = 7) 31.7 ± 3.0 48.9 ± 4.3 101.3 ± 7.5 Nof et al. [72]

Non-carriers (n = 8) 55.0 ± 3.1 73.5 ± 3.7 125.8 ± 5.5
Y481H Carriers (n = 2) 27.5 ± 0.4 47.0 ± 2.1 93.0 ± 0.7 Milano et al. [71]
G482R Carriers (n = 6) 30.5 ± 4.0 54.0 ± 6.3 120.5 ± 10.5 Milano et al. [71]

Non-carrier 38 63 103
G482R Carriers (n = 3) 25.0 ± 2.2 41.0 ± 4.2 120.3 ± 5.0 Schweizer et al. [74]

Non-carrier 48 63 155
G482R Carriers (n = 3) 29.3 ± 3.7 Brunet-Garcia et al. [75]

Carriers (n = 2) 55 ± 4.2 159.0 ± 4.2
A485V Carriers (n = 14) 36.9 ± 0.8 58.1 ± 1.5 116.9 ± 7.0 Laish-Farkash et al. [76]

Non-carriers (n = 5) 48.6 ± 4.5 77.2 ± 4.9 140.4 ± 13.0
K530N Carriers (n = 6) 37.8 ± 2.3 62.8 ± 3.1 133.5 ± 11.2 Duhme et al. [77]
R666Q Carriers (n = 2) 45.0 ± 0.7 50.0 ± 1.4 Wang et al. [79]
695X Carriers (n = 7) 35.9 ± 2.0 56.4 ± 1.7 131.4 ± 6.1 Schweizer et al. [81]

Non-carriers (n = 6) 47.2 ± 2.2 71.7 ± 3.8 157.5 ± 9.6

* Data on heart rate are mean ± SEM for mutation carriers and, if available, for non-carriers from the same family.

Table 2. Resting heart rates and maximum heart rates during exercise testing.

Mutation Group
Heart Rate (Beats/Min) *

Reference
Resting Exercise Testing

R375C Carriers (n = 12) 49.7 ± 3.2 Alonso-Fernández-Gatta et al. [69]
R378C Carriers (n = 3) 47.0 ± 6.5 Möller et al. [70]
G480R Carriers (n = 6) 149.8 ± 6.3 Nof et al. [72]

Non-carriers (n = 6) 152.7 ± 8.4
Y481H Carriers (n = 8) 44.1 ± 2.4 Vermeer et al. [73]
G482R Carriers (n = 3) 39.7 ± 2.6 Schweizer et al. [74]

Non-carrier 64
G482R Carriers (n = 2) 44.0 ± 4.2 Brunet-Garcia et al. [75]
A485V Carriers (n = 8) 166.6 ± 6.0 Laish-Farkash et al. [76]

Non-carriers (n = 4) 177.3 ± 6.0
K530N Carriers (n = 4) 57.5 ± 2.5 Duhme et al. [77]
R550C Carriers (n = 3) 60.0 ± 0.8 Campostrini et al. [78]
S672R Carriers (n = 15) 52.2 ± 1.4 Milanesi et al. [80]

Non-carriers (n = 12) 73.2 ± 1.6
695X Carriers (n = 8) 45.9 ± 1.5 Schweizer et al. [81]

Carriers (n = 7) 160.3 ± 4.4
Non-carriers (n = 6) 66.5 ± 3.4 169.2 ± 6.5

* Data on heart rate are mean ± SEM for mutation carriers and, if available, for non-carriers from the same family.

In Table 2, we have omitted the heart rate during exercise testing reported by Alonso-
Fernández-Gatta et al. [69] for carriers of the R375C mutation. This is because this heart
rate of only 81.5 ± 2.8 beats/min (n = 11) was not obtained after completion of the full
Bruce protocol for exercise testing but rather after completion of the third stage of this six-
stage protocol.

The R375C, G482R, and A485V mutations were also related to sinus bradycardia (and
ventricular non-compaction) by Chanavat et al. [84], but these were all single cases, and no
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quantitative data, either in vivo or in vitro, were provided. In a study of left ventricular
non-compaction, Richard et al. [85] presented a family with four heterozygous carriers
of the G480C (p.Gly480Cys) mutation, all of whom had sinus bradycardia. However, no
quantitative data were provided, neither on the bradycardia itself nor the functional effects
of the mutation. The G480C mutation was also identified by Cambon-Viala et al. [86] in
a single patient out of a group of 19 HCN4 mutation carriers with heart rates between 41
and 50 beats/min. Unfortunately, no further clinical data were reported and no functional
studies were performed.

3.2. Loss-of-Function Mutations in HCN4: In Vitro Data

In this section, we present the functional effects of the loss-of-function mutations
in HCN4 collected in Section 3.1, focusing on the functional differences between wild
type (WT) and heteromeric mutant HCN4 channels, again ordered by the location of
the mutation sites on the HCN4 protein (Figure 1). Also, we explain how we translated
these experimentally observed differences in HCN4 current characteristics into changes
in the parameter settings of If in our reconstructions of If during diastolic depolarization
(Section 3.3) as well as in our simulations with the Fabbri–Severi model of a human SAN
pacemaker cell [62] (Section 3.4). These changes in parameter settings are summarized
in Table 3. The changes are limited to a decrease in the fully activated conductance of If
(gf), representing an experimentally observed decrease in the fully activated HCN4 current,
and/or a hyperpolarizing shift in the voltage dependence of the steady-state activation
(y∞) curve and the bell-shaped (de)activation time constant (τy) curve. The shape of these
curves and the effects of hyperpolarizing shifts are illustrated for the R375C mutation in
Section 3.2.1 below.

Only a few of the functional studies presented data on the sensitivity of heteromeric
HCN4 mutant channels to cAMP. Such data are limited to the K530N [77] and 695X [81]
mutations and are described in the corresponding subsections below. In other cases, data
on the sensitivity to cAMP were only gathered for homomeric mutant channels or attempts
to obtain data on sensitivity to cAMP failed. For the sake of completeness, these cases are
also briefly documented below.

3.2.1. R375C (p.Arg375Cys)

In their recent study of the R375C mutation in HCN4, Alonso-Fernández-Gatta et al. [69]
carried out whole cell patch clamp experiments at room temperature on Chinese hamster
ovary (CHO) cells expressing WT, homomeric R375C mutant, or heteromeric R375C mutant
(WT + R375C) HCN4 channels. Estimated from the graphical representation of their patch
clamp data, the fully activated WT + R375C HCN4 current density at −140 mV was ≈50%
of the current density of the WT current, whereas the steady-state activation curve was
shifted by ≈−14 mV, as illustrated in Figure 2A, with no change in the reversal potential of
the HCN4 current. The mutation-induced ≈50% decrease in fully activated HCN4 current
was incorporated into the model as a 50% decrease in fully activated conductance of If (gf),
whereas the shift in the steady-state activation curve was incorporated as a −14 mV shift
in the voltage dependence of the If activation gate, thus also applying this hyperpolariz-
ing shift to the bell-shaped (de)activation time constant curve, as illustrated in Figure 2B.
This latter shift results in an increase in the time constant of activation at highly negative
membrane potentials, which would explain the experimentally observed mutation-induced
slowing of the HCN4 current activation at −130 mV.

3.2.2. R378C (p.Arg378Cys)

Möller et al. [70] recorded whole cell currents from Xenopus oocytes at room temper-
ature in their study of the R378C mutation. These oocytes were injected with cRNAs to
make them express WT, R378C, or WT + R378C HCN4 channels. Somewhat similar to
R375 (Section 3.2.1), the fully activated WT + R378C HCN4 current was reduced by 57%,
the steady-state activation curve was shifted by −7.9 mV, and activation was slowed at
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−140 mV, which were incorporated into the Fabbri–Severi model as a 57% decrease in the
fully activated conductance of If and a −7.9 mV shift in the voltage dependence of the If
activation gate (Table 3). Consistent with the associated −7.9 mV shift in the bell-shaped
time constant curve, Möller et al. [70] observed a decrease in the deactivation time constant
of the HCN4 current at +20 mV. Möller et al. [70] did not observe any ‘dramatic impairment
of cAMP activation’ of the mutant channels.

Table 3. Heteromeric mutation-induced changes in If characteristics derived from HCN4-
transfected cells.

Mutation Expression
System

Recording
System

Recording
Temperature

Scaling
Factor for gf

Shift in Vm
Dependence (mV) Reference

R375C CHO Whole cell Room
(21–23 ◦C) 0.5 −14

Alonso-Fernández-
Gatta et al.

[69]

R378C Xenopus Two-
electrode

Room
(22–24 ◦C) 0.43 −7.9 Möller et al. [70]

A414G CHO Amphotericin-
perforated 36 ± 0.2 ◦C 1 −19.9 (y∞), −11.9

(τy)
Milano et al. [71];

present study

G480R Xenopus Two-
electrode

Room
(21–23 ◦C) 0.46 −10 Nof et al. [72]

Y481H CHO Amphotericin-
perforated 37 ± 0.2 ◦C 1 −44 Milano et al. [71]

G482R CHO Amphotericin-
perforated 37 ± 0.2 ◦C 1 −39 Milano et al. [71]

G482R HEK-293 Whole cell Room
(21–23 ◦C) 0.35 0 Schweizer et al. [74]

A485V Xenopus Two-
electrode

Room
(21–23 ◦C) 0.32 −15 Laish-Farkash et al. [76]

K530N HEK-293 Whole cell Room
(21–23 ◦C) 1 −14 Duhme et al. [77]

R550C
CHO Whole cell Room

1 −4 Campostrini et al. [78]
NRVC Whole cell 36 ± 1 ◦C

R666Q HEK-293T Whole cell Room
(21–23 ◦C) 0.46 0 Wang et al. [79]

S672R HEK-293 Whole cell Room
(25–26 ◦C) 1 −4.9 Milanesi et al. [80]

695X HEK-293 Whole cell Room
(21–23 ◦C) 1 −10.9 Schweizer et al. [81]

If: hyperpolarization-activated ‘funny’ current; gf: fully activated If conductance; Vm: membrane potential;
CHO: Chinese hamster ovary cells; HEK-293(T): human embryonic kidney 293(T) cells; NRVC: neonatal rat
ventricular cardiomyocytes; Xenopus: Xenopus oocytes; amphotericin-perforated: amphotericin-perforated patch
clamp technique; two-electrode: two-electrode voltage-clamp technique; whole cell: whole cell patch clamp
technique; room: room temperature; y∞: steady-state activation; τy: (de)activation time constant.

3.2.3. A414G (p.Ala414Gly)

We have recently extended the voltage clamp experiments presented by Milano et al. [71]
on CHO cells expressing WT or WT + A414G heterozygous mutant HCN4 channels, which
were also carried out in our laboratory. For details on materials and methods, we, therefore,
refer to the study by Milano et al. [71]. Using the amphotericin-perforated patch clamp
technique at 36 ± 0.2 ◦C, we found that the half-maximal activation voltage (V 1

2
) of the WT

+ A414G current showed a shift of −19.9 mV relative to WT and the voltage dependence of
its (de)activation time constant showed a shift of −11.9 mV, whereas no differences were
observed in the slope factor (k) of the steady-state activation curve, the fully activated
current density, and the reversal potential. Accordingly, a −19.9 mV shift in the steady-state
activation curve and a −11.9 mV shift in the voltage dependence of the time constant of
(de)activation were applied to the model If.
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Figure 2. Voltage dependence of wild type (WT; solid blue lines) and heteromeric R375C mutant
(WT + R375C; orange dotted lines) HCN4 current (de)activation. (A) Steady-state activation (y∞).
Horizontal arrow: the mutation-induced hyperpolarizing shift in half-maximum activation voltage.
Vertical arrow: the mutation-induced decrease in maximally available HCN4 current. (B) Time
constant of (de)activation (τy). Horizontal arrow: the mutation-induced hyperpolarizing shift in the
bell-shaped curve. Upward vertical arrow: the mutation-induced decrease in the rate of (de)activation
at highly negative membrane potentials. Downward vertical arrow: the mutation-induced increase
in the rate of (de)activation at less negative membrane potentials.

3.2.4. G480R (p.Gly480Arg)

In their study of the G480R mutation, Nof et al. [72] injected Xenopus oocytes with
mRNAs to make them express WT, G480R, or WT + G480R HCN4 channels. In whole cell
voltage clamp experiments at room temperature, they observed that the WT + G480R
current activated more slowly and at more negative potentials than the WT current,
with no change in the reversal potential. Also, the fully activated WT + G480R current
density was substantially smaller than the WT current density. Unfortunately, their data
on the heterozygous mutant current are limited. Roughly estimated, the WT + G480R
kinetics showed a −10 mV shift in voltage dependence relative to WT, whereas the fully
activated current was reduced by 54%. These estimated changes were applied to the
If of the model cell as a combined −10 mV shift of the steady-state activation curve
and the bell-shaped time constant curve and a 54% reduction in the fully activated If
conductance. Nof et al. [72] were unable to test the β-adrenergic regulation of either WT
or mutant channels in response to epinephrine. It is likely, as suggested by Nof et al. [72],
that their attempts failed due to the high levels of endogenous cAMP in their oocytes.

3.2.5. Y481H (p.Tyr481His)

In the study by Milano et al. [71], HCN4 channels were expressed in CHO cells,
and HCN4 currents were recorded at 37 ± 0.2 ◦C using the amphotericin-perforated
patch clamp technique. The steady-state activation curve of the WT + Y481H mutant
current showed a hyperpolarizing shift of as much as 44 mV compared to WT, whereas
no difference in its slope factor k was observed. The apparent decrease in fully activated
current density at −160 mV did not reach statistical significance. The effects of the
mutation were implemented by a −44 mV shift in the steady-state activation curve of
If. Given the common observation that a mutation-induced hyperpolarizing shift in the
steady-state activation curve of If is accompanied by a similar shift in the bell-shaped
time constant curve, we also applied this shift to the latter curve. Of note, the more recent
study by Vermeer et al. [73], which identified a novel family with the Y481H mutation,



Biomedicines 2023, 11, 2447 9 of 22

focused on the structural effects of the mutation and did not include additional patch
clamp data.

3.2.6. G482R (p.Gly482Arg)

Clinical data on the G482R mutation were presented by Milano et al. [71],
Schweizer et al. [74], Brunet-Garcia et al. [75], and, with a strict focus on ventricu-
lar non-compaction, Cambon-Viala et al. [86]. Patch clamp data were only presented by
Milano et al. [71] and Schweizer et al. [74]. Using the same experimental approach as
for the Y481H mutation (see Section 3.2.5), Milano et al. [71] observed a −39 mV shift in
the steady-state activation curve of the WT + G482R mutant current compared to WT,
without a change in k. As also observed for the Y481H mutation, there was an apparent
decrease in fully activated current density at −160 mV that did not reach statistical
significance. In contrast to the findings by Milano et al. [71], Schweizer et al. [74], who
expressed HCN4 channels in human embryonic kidney (HEK-293) cells for their whole
cell patch clamp recordings at room temperature, did not observe any change in the
steady-state activation curve or kinetic properties of the WT + G482R mutant current
compared to WT, whereas the fully activated current density at −120 mV was reduced
by 65%. We incorporated the experimental findings of Milano et al. [71] into the Fabbri–
Severi model as a −39 mV shift in the steady-state activation curve of If (applying the
same shift to the bell-shaped time constant curve) and those in Schweizer et al. [74] as a
65% decrease in its fully activated conductance.

3.2.7. A485V (p.Ala485Val)

Laish-Farkash et al. [76] injected Xenopus oocytes with WT and/or A485V mutant
mRNA to let them express WT, A485V, or WT + A485V HCN4 channels. In whole
cell voltage clamp experiments at room temperature, the WT + A485V HCN4 current
activated more slowly and at more hyperpolarized potentials (below −80 vs. −65 mV)
than the WT current, with no significant difference in the reversal potential. Also, the
fully activated WT + A485V current was substantially smaller than the WT current. As
a rough estimate, the HCN4 current kinetics showed a −15 mV shift in their voltage
dependence, whereas the fully activated conductance was reduced by 68%. These
estimated changes were applied to If of the model cell.

3.2.8. K530N (p.Lys530Asn)

In their study of the K530N mutation, Duhme et al. [77] performed whole cell
patch clamp experiments at room temperature on transfected HEK-293 cells. Compared
to WT, the heteromeric WT + K530N current activated more slowly at −120 mV and
showed a −14 mV shift in V 1

2
, without a change in k, reversal potential, and fully

activated current density at −120 mV. These experimental findings were incorporated
into the cell model as a −14 mV shift in the voltage dependence of the If kinetics.
Interestingly, the heteromeric WT + K530N channels showed a significantly higher
sensitivity to cAMP, with a +7.5 mV larger cAMP-induced depolarizing shift in the
steady-state activation curve and a significantly more accelerated activation at −120 mV.
Surprisingly, the electrophysiological properties of the homomeric K530N channels were
almost indistinguishable from WT channels. In our simulations, we accounted for the
larger cAMP-induced shift through a +5 mV larger shift in our ‘High Iso’ settings of
the voltage dependence of the If kinetics, which also resulted in a more accelerated
activation at −120 mV.

3.2.9. R550C (p.Arg550Cys)

Campostrini et al. [78] transfected both CHO cells and neonatal rat ventricular
cardiomyocytes (NRVCs) with WT, R550C, or WT + R550C hHCN4 and carried out whole
cell patch clamp experiments at room temperature and 36 ± 1 ◦C, respectively, to assess
the functional effects of the R550C mutation. The V 1

2
of the WT + R550C current in
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CHO cells showed a small but statistically significant shift of −4.6 mV compared to
WT. No differences were observed in other electrophysiological properties, including k,
current density, and time constants of activation and deactivation. Highly similar results
were obtained in NRVCs, with a small but statistically significant shift of −3.7 mV in
V 1

2
and no significant differences in k, current density, and time constants of activation

and deactivation at multiple membrane potentials, except for a significantly smaller
time constant of deactivation at −65 mV. The effects of the mutation were implemented
by a −4 mV shift in the voltage dependence of the If kinetics, keeping in mind that a
−4 mV shift in the membrane potential sensitivity of the time constant of (de)activation
would be barely detectable. Homomeric WT and R550C channels showed a very similar
sensitivity to cAMP.

3.2.10. R666Q (p.Arg666Gln)

Recently, Wang et al. [79] carried out whole cell patch clamp experiments at room
temperature on HEK-293T cells expressing WT, homomeric R666Q mutant, or het-
eromeric R666Q mutant HCN4 channels. The V 1

2
and k of the WT and mutant HCN4

currents were highly similar. However, the current density of WT + R666Q at −130 mV
was significantly lower than WT. In 24 to 36 h and 36 to 48 h after transfection, it was
50% and 42% of WT, respectively. We incorporated these experimental results into the
Fabbri–Severi model as a 54% decrease in the fully activated conductance of If. The
sensitivity of homomeric WT and R666Q channels to cAMP was highly similar.

3.2.11. S672R (p.Ser672Arg)

The effects of the S672R mutation were determined by Milanesi et al. [80] through
whole cell patch clamp experiments at room temperature on HEK-293 cells that were
transfected to express WT or S672R homomeric or heteromeric mutant HCN4 channels.
For heteromeric mutant channels, the changes in electrophysiological properties relative
to WT were limited to a −4.9 mV shift in V 1

2
and a slight decrease in the time constants

of deactivation at multiple membrane potentials. These experimental findings were
incorporated into the cell model as a −4.9 mV shift in the voltage dependence of the
If kinetics (i.e., a combined −4.9 mV shift in the steady-state activation curve and the
bell-shaped time constant curve). Homomeric WT and S672R channels showed a highly
similar sensitivity to cAMP.

3.2.12. 695X (p.695X)

In their study of the 695X mutation, Schweizer et al. [81] performed whole cell
patch clamp experiments at room temperature on transfected HEK-293 cells. Under
cAMP-free conditions, the V 1

2
, k, and time constant of activation at −120 mV of the

heteromeric WT + 695X channels were highly similar to the WT channels. Changes in
electrophysiological properties were observed only in the presence of cAMP (10 µmol/L),
as a result of the truncation of the cyclic nucleotide-binding domain (CNBD; Figure 1)
due to an insertion of 13 nucleotides in exon 6 of the HCN4 gene that leads to a premature
stop codon [81], which exerted a dominant-negative effect on the cAMP-induced increase
in HCN4 current. These experimental findings were incorporated into the cell model as a
fixed −10.9 mV shift in the voltage dependence of the If kinetics (which is the maximum
shift at high ACh concentrations in the model equations).

3.3. Qf: Charge Carried by If during Diastolic Depolarization

Using the in vitro data on the biophysical effects of the loss-of-function mutations in
HCN4 in Section 3.2, we computed the charge that is carried by the associated heteromeric
mutant If during diastolic depolarization of a human SAN pacemaker cell (Qf). To
this end, we simulated AP clamp experiments using a prerecorded human SAN AP
waveform [61] and If equations based on our patch clamp data on If in human SAN
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cells [63]. As already set out in Section 2.1, these equations are also part of the Fabbri–
Severi model [62].

Figure 3, A and B, show the prerecorded AP with its diastolic depolarization and
the associated reconstructed WT If, which contributes to the diastolic depolarization as
an inward current that carries a charge of 1.00 pC (Figure 3B, filled area). Reconstructing
If with its gf halved and its voltage dependence shifted by −14 mV, as listed in Table 3
and set out in Section 3.2.1, we obtained the WT + R375C If, which is much smaller in am-
plitude and carries a charge of only 0.20 pC during diastolic depolarization (Figure 3C).
Similarly, we reconstructed If for each of the other (heterozygous) mutations listed in
Table 3 (and described in detail in Section 3.2) and computed Qf. The obtained data on
Qf are summarized in Table 4.

Table 4. Charge carried by If during diastolic depolarization of a human SAN pacemaker cell.

Mutation Charge Carried by If during Diastolic Depolarization (pC)

Wild type 1.003
R375C 0.201
R378C 0.260
A414G 0.249
G480R 0.242
Y481H 0.046

G482R a 0.066
G482R b 0.351
A485V 0.120
K530N 0.401
R550C 0.780
R666Q 0.461
S672R 0.736
695X 0.495

Data obtained from simulated action potential (AP) clamp experiments. a If parameters are based on Mi-
lano et al. [71]. b If parameters are based on Schweizer et al. [74].

3.4. Can Qf Predict the Beating Rate of a Single Human Sinus Node Pacemaker Cell?

We questioned to what extent the data on Qf obtained from (simulated) AP clamp
experiments can predict the beating rate of a single human sinus node pacemaker cell.
Therefore, we performed computer simulations with the Fabbri–Severi model under
control conditions (default ‘wild-type’ If) and for each of the (heterozygous) mutations
listed in Table 3 at different levels of autonomic tone. Figure 4 shows the results that we
obtained for the WT + R375C mutation compared to WT. Under vagal tone (20 nmol/L
ACh; Figure 4A), the modulatory If is already small. Yet, the cycle length is substantially
increased due to the mutation-induced decrease in If, and the beating rate is reduced
from 42.4 to 29.3 beats/min. With the default model (no rate modulation; Figure 4B),
where If is larger than under vagal tone, the mutation-induced decrease in If results in a
decrease in the beating rate from 70.2 to 56.9 beats/min. Under β-adrenergic tone (‘High
Iso’; Figure 4C), If exerts its modulatory role and is again larger. The mutation-induced
decrease in If now results in a decrease in the beating rate from 109.5 to 81.2 beats/min.

Having obtained data on the beating rate, as illustrated in Figure 4, for each of the
mutations, we plotted these beating rates against the associated Qf from the simulated
AP clamp experiments (Table 4), resulting in Figure 5. At each level of autonomic tone,
there is a very strong correlation between the beating rate and Qf, suggesting that data
on Qf obtained in AP clamp experiments on cells expressing the (heteromeric) HCN4
channels of interest, compared to Qf for wild type channels, may predict the amount of
sinus bradycardia in mutation carriers.
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Figure 3. Charge carried by If during diastolic depolarization. (A) Prerecorded AP waveform of an 
isolated human sinus node pacemaker cell. During the diastolic depolarization from the maximum 
diastolic potential (MDP) to the take-off potential (TOP), which takes 538 ms, the membrane 
potential (Vm) depolarizes by 23 mV. (B) Associated reconstructed WT If, which carries a charge of 
1.00 pC (filled area) as an inward current during diastolic depolarization. (C) Associated 
reconstructed WT + R375C If, which carries a charge of 0.20 pC during diastolic depolarization. The 
AP waveform of panel A is a typical waveform obtained from a set of single isolated human SAN 
pacemaker cells [61], and the If curve of panel B is reconstructed from this typical AP waveform and 
the If equations of the Fabbri–Severi model [62], which are based on the If data obtained in voltage 
clamp experiments on the same set of single-isolated human SAN pacemaker cells [61,63]. 

  

Figure 3. Charge carried by If during diastolic depolarization. (A) Prerecorded AP waveform of an
isolated human sinus node pacemaker cell. During the diastolic depolarization from the maximum
diastolic potential (MDP) to the take-off potential (TOP), which takes 538 ms, the membrane potential
(Vm) depolarizes by 23 mV. (B) Associated reconstructed WT If, which carries a charge of 1.00 pC
(filled area) as an inward current during diastolic depolarization. (C) Associated reconstructed WT
+ R375C If, which carries a charge of 0.20 pC during diastolic depolarization. The AP waveform of
panel A is a typical waveform obtained from a set of single isolated human SAN pacemaker cells [61],
and the If curve of panel B is reconstructed from this typical AP waveform and the If equations of the
Fabbri–Severi model [62], which are based on the If data obtained in voltage clamp experiments on
the same set of single-isolated human SAN pacemaker cells [61,63].
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3.5. Can Qf Predict the Heart Rate of Mutation Carriers?

Keeping in mind that the promising results of Section 3.4 are based on the ideal
case of an If in a (simulated) human SAN cell with biophysical parameters that are
completely identical to those of the HCN4 current in an expression system, we assessed
to what extent the data on Qf obtained from (simulated) AP clamp experiments can
predict the clinically observed heart rates of mutation carriers. To this end, we first
plotted the minimum, average, and maximum heart rates from 24 h Holter recordings
(Table 1) against the associated Qf (Table 4), resulting in Figure 6. The clinically observed
minimum heart rate shows a strong correlation with Qf (R2 = 0.73; p < 0.001, ANOVA).
The average heart rate shows a less clear relationship (R2 = 0.56) but is still statistically
significant (p = 0.002). For the maximum heart rate, the relationship is not statistically
significant (p = 0.07).
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Figure 4. Electrical activity of the Fabbri–Severi model of a human SAN pacemaker cell with its 
default ‘wild-type’ If (WT; solid blue lines) and heteromeric R375C mutant If (WT + R375C; orange 
dotted lines) at different levels of autonomic tone. (A) Vagal tone (simulated ACh concentration of 
20 nmol/L). (B) No rate modulation (default model). (C) β-Adrenergic tone (‘High Iso’ settings of 
the model). 
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Figure 4. Electrical activity of the Fabbri–Severi model of a human SAN pacemaker cell with its
default ‘wild-type’ If (WT; solid blue lines) and heteromeric R375C mutant If (WT + R375C; orange
dotted lines) at different levels of autonomic tone. (A) Vagal tone (simulated ACh concentration of
20 nmol/L). (B) No rate modulation (default model). (C) β-Adrenergic tone (‘High Iso’ settings of
the model).

We also plotted the clinically observed resting heart rates and maximum heart rates
during exercise testing in Table 2 against the associated Qf. As shown in Figure 7A, the
resting heart rate shows a strong correlation with Qf (R2 = 0.71; p = 0.001). Data on the
maximum heart rate during exercise testing are limited, and no clear correlation can be
discerned (Figure 7B).
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Figure 5. The beating rate of the Fabbri–Severi model of a human SAN pacemaker cell with its 
default ‘wild-type’ If (WT) and heteromeric mutant If, simulated with the settings presented in 
Section 3.2 as a function of Qf (Section 3.3) at different levels of autonomic tone. a If parameters are 
based on Milano et al. [71]. b If parameters are based on Schweizer et al. [74]. Dashed lines are linear 
fits. 
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Figure 5. The beating rate of the Fabbri–Severi model of a human SAN pacemaker cell with its default
‘wild-type’ If (WT) and heteromeric mutant If, simulated with the settings presented in Section 3.2
as a function of Qf (Section 3.3) at different levels of autonomic tone. a If parameters are based on
Milano et al. [71]. b If parameters are based on Schweizer et al. [74]. Dashed lines are linear fits.
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Figure 6. Minimum, average, and maximum heart rates obtained during 24 h Holter recordings
from heterozygous carriers of the mutations in HCN4 as indicated or from non-carriers of the same
family (Table 1) as a function of Qf (Section 3.3). a If parameters are based on Milano et al. [71]. b If

parameters are based on Schweizer et al. [74]. Dashed lines are linear fits.
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Figure 7. (A) Resting heart rates and (B) maximum heart rates during exercise testing from 
heterozygous carriers of the mutations in HCN4 as indicated or from non-carriers of the same family 
(Table 2) as a function of Qf (Section 3.3). Dashed lines are linear fits. 
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has been performed not only for a selection of cardiac ion channelopathies, as already 
outlined in the Introduction section, but also for neuromuscular diseases with NaV1.4 
variants [87], hearing loss related to KCNQ4 variants [88], and encephalopathies, 
including schizophrenia, with CACNA1I variants [89], and epilepsy with SCN1A [90], 
KCNB1 [91], HCN1 [92], KCNQ2 [93], and SCN2A [94] variants. In the present study, we 
tested whether risk stratification for sinus bradycardia can be based on AP clamp 
experiments on transfected cells to compute the charge carried by (mutant) If during the 
diastolic depolarization phase of a prerecorded human SAN AP, using this AP as 
command potential. The mutation-induced changes in the biophysical parameters of an 
HCN4 variant of interest are summarized in the mutation-induced change in this charge, 
without the need to characterize each of these parameters separately. 

In our study, we first reviewed the scientific literature for publications on loss-of-
function mutations in HCN4 with both clinical and in vitro data on the effects of the 
mutation. This resulted in clinical data on heart rate (Tables 1 and 2) and associated in 
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4. Discussion

These days, risk stratification of ion channelopathies is largely based on changes in the
electrophysiological properties of ion channel variants. So far, such risk stratification has
been performed not only for a selection of cardiac ion channelopathies, as already outlined
in the Introduction section, but also for neuromuscular diseases with NaV1.4 variants [87],
hearing loss related to KCNQ4 variants [88], and encephalopathies, including schizophre-
nia, with CACNA1I variants [89], and epilepsy with SCN1A [90], KCNB1 [91], HCN1 [92],
KCNQ2 [93], and SCN2A [94] variants. In the present study, we tested whether risk stratifi-
cation for sinus bradycardia can be based on AP clamp experiments on transfected cells to
compute the charge carried by (mutant) If during the diastolic depolarization phase of a
prerecorded human SAN AP, using this AP as command potential. The mutation-induced
changes in the biophysical parameters of an HCN4 variant of interest are summarized in
the mutation-induced change in this charge, without the need to characterize each of these
parameters separately.

In our study, we first reviewed the scientific literature for publications on loss-of-
function mutations in HCN4 with both clinical and in vitro data on the effects of the
mutation. This resulted in clinical data on heart rate (Tables 1 and 2) and associated in vitro
data on (changes in) HCN4 current characteristics (Table 3) for a total of 12 mutations
(Figure 1). This rather small number of mutations highlights the unfortunate situation
that clinical studies identifying mutations in HCN4 with potentially bradycardic effects
are not always accompanied by in vitro data on their functional effects. Perhaps the best
example is the extensive clinical study by Hategan et al. [95], which identified the novel
c.1737 + 1 G > T splice-site mutation in HCN4 in a large family with familial bradycardia.
Although it is highly likely that the c.1737 + 1 G > T mutation is disease-causing, it would
be very interesting to know its functional effects. This is all the more important for less
extensive clinical studies, where only one or a few mutation carriers have been identified.
The importance of in vitro data in such studies is, for example, underscored in the study of
Erlenhardt et al. [96], who identified the V759I mutation in HCN4, which had previously
been identified in cases of sudden infant death syndrome [97] and sudden unexpected death
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in epilepsy in a patient with severe sinus bradycardia [98]. Erlenhardt et al. [96] were the
first to perform functional studies on the mutation they identified. Patch clamp experiments
on Xenopus oocytes showed that voltage dependence, activation kinetics, sensitivity to
cAMP, and cell surface expression of mutant channels were all indistinguishable from wild
type channels.

After obtaining our clinical and in vitro data, we used the in vitro data to compute
Qf—i.e., the charge carried by If during the diastolic depolarization phase of a prerecorded
human sinus node action potential waveform (Figure 3)—in simulated AP clamp exper-
iments for each of the mutations as a potential measure of their severity. Also, we used
these in vitro data to test the functional effects of each of the mutations on the beating rate
of the comprehensive Fabbri–Severi model of a human sinus node cell (Figure 4). These
in silico experiments revealed a very strong correlation between the beating rate and Qf
(Figure 5), suggesting that this (relatively) readily obtained Qf may prove a useful tool
for risk stratification of sinus bradycardia due to loss-of-function mutations in HCN4. A
high correlation could be anticipated from the use of identical If equations [63] in our
reconstructions of If under action potential clamp conditions and in the Fabbri–Severi
model [62].

With R2 values of 0.73 and 0.71, respectively, the clinically observed minimum or
resting heart rates (Tables 1 and 2) show a strong correlation with Qf (Figures 6 and 7).
However, the maximum heart rate during 24 h Holter recordings (Figure 6) and during
exercise testing (Figure 7) do not show a clear correlation with Qf. This may reflect a
less pronounced role of If under β-adrenergic tone, when other ion currents contributing
to diastolic depolarization are substantially upregulated, in particular the L-type and
T-type calcium currents [99,100]. Alternatively, or simultaneously, the loss of a clear
correlation between the clinical data and Qf at high rates may point to shortcomings in the
‘High Iso’ settings that we applied to the Fabbri–Severi model to simulate β-adrenergic
tone [65]. One such shortcoming is that the T-type calcium current is not considered a
β-adrenergic target. Fabbri et al. [62] had to develop their model in the absence of an
electrophysiological characterization of the β-adrenergic targets in the human sinus node,
thus potentially requiring updates when quantitative data from human tissue become
available. Furthermore, it should be kept in mind that the Fabbri–Severi model is a single-
cell model, whereas the interaction of the human sinus node with its atrial surroundings is
also dependent on β-adrenergic tone, as individual ion currents of the atrial myocytes are
also up- or downregulated under β-adrenergic tone [101,102].

In the present study, we based our computations of Qf on the in vitro data that are
summarized in Table 3. Thus, we implicitly assumed that all of the experimentally observed
mutation-induced effects on HCN4 currents in expression systems also apply to If in human
SAN pacemaker cells from mutation carriers under physiological conditions. Although
all mutation-induced effects listed in Table 3 are relative changes (i.e., reductions in fully
activated conductance and/or shifts in the voltage dependence of steady-state activation
and time constants of (de)activation), it may well be that these mutation-induced effects
are quantitatively or even qualitatively dependent on the specific expression system and
recording temperature or other recording conditions, which show essential differences
between studies from different laboratories (Table 3). In a direct comparison of the effects
of the p.T1620M mutation in the SCN5A gene, encoding the pore-forming α-subunit of the
cardiac NaV1.5 fast sodium channel, Baroudi et al. [103] even obtained opposite phenotypes
depending on the expression system (Xenopus oocytes vs. mammalian tsA201 cells; both at
room temperature). Studying the same p.T1620M mutation in SCN5A in tsA201 cells at
22 ◦C and 32 ◦C, Dumaine et al. [104] observed a mutation-induced acceleration of current
decay at 32 ◦C but not 22 ◦C, directly demonstrating a temperature dependence of the nature
of the mutation-induced effects. Differences in the expression system (CHO vs. HEK-293
cells) and recording conditions (37 ± 0.2 ◦C vs. room temperature; amphotericin-perforated
vs. whole cell patch clamp technique) may explain, at least in part, why Milano et al. [71]
and Schweizer et al. [74] obtained essentially different data on WT + G482R channels
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(−39 mV shift in the steady-state activation curve vs. 65% reduction in fully activated
conductance). In contrast, Campostrini et al. [78] obtained very similar data on WT + R550C
channels in CHO cells at room temperature and in NRVCs at 36 ± 1 ◦C (both whole cell
patch clamp recordings).

5. Conclusions

While a translational perspective remains to be seen, we conclude that AP clamp on
transfected cells, without the need for further voltage clamp experiments and data analysis
to determine individual biophysical parameters of If, is a promising tool for risk stratifi-
cation of sinus bradycardia due to loss-of-function mutations in HCN4. In combination
with an If blocker, this tool may also prove useful when applied to human-induced pluripo-
tent stem cell-derived cardiomyocytes (hiPSC-CMs) obtained from mutation carriers and
non-carriers.
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