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Abstract: The orexin/hypocretin neuropeptide family has emerged as a focal point of neuroscientific
research following the discovery that this family plays a crucial role in a variety of physiological
and behavioral processes. These neuropeptides serve as powerful neuromodulators, intricately
shaping autonomic, endocrine, and behavioral responses across species. Notably, they serve as
master regulators of vigilance and stress responses; however, their roles in food intake, metabolism,
and thermoregulation appear complementary and warrant further investigation. This narrative
review provides a journey through the evolution of our understanding of the orexin system, from its
initial discovery to the promising progress made in developing orexin derivatives. It goes beyond
conventional boundaries, striving to synthesize the multifaceted activities of orexins. Special emphasis
is placed on domains such as stress response, fear, anxiety, and learning, in which the authors have
contributed to the literature with original publications. This paper also overviews the advancement
of orexin pharmacology, which has already yielded some promising successes, particularly in the
treatment of sleep disorders.

Keywords: orexins; neuropeptides; neurotransmitters; stress; feeding; temperature regulation; fear;
anxiety; learning; sleep–wake disorders

1. Introduction: Neuropeptides as the Modulators of the Connectome

In Sections 1 and 2, a general overview of the orexin system is given, and Sections 3 and 4
will be devoted to those fields in which the authors have considerably contributed to the
literature. Neuropeptide research started more than a hundred years ago with the discovery
of the effects of vasopressin [1] and oxytocin [2] and tissue extraction of the first classical
neuropeptide: substance P [3]. Since then, more and more distinct features of neuropep-
tides have been identified that clearly separate them from classical neurotransmitters [4–6].
First, some obvious biochemical features justify the differentiation. They are much larger
molecules than classical neurotransmitters; therefore, the energy requirements for their
synthesis and transport well exceed those of these neurotransmitters. Functionally, their
release is not confined to the synapses, although some portions of their pool are also
frequently co-secreted together with classic neurotransmitters. In contrast, they can be
released from the dense core vesicles of practically any portion of the neurons [4–6]. Unlike
classic neurotransmitters, neuropeptides are not taken back economically by a reuptake
system but are metabolized by peptidases. Nonetheless, this process frequently yields
biologically active compounds [6]. Further, due to their prolonged half-life, neuropep-
tides can diffuse to long distances; therefore, they act not only post- and pre-synaptically
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(i.e., in a paracrine and autocrine fashion) but also in an endocrine manner [6] through the
operation of G-protein-coupled receptors (GPCRs) [6]. Due to these characteristics, their
effects develop slowly but are usually longer lasting. Their impact, compared to that of
classic small molecular and even gaseous neurotransmitters, is almost always less robust,
which strongly resembles the activity of hormones [7]. That is why in the literature some
members are still referred to as neurohormones and their activity has been formulated as
“neuromodulation” [4–6], which represents a “mild” or “functionally buffered” form of
signal transduction [4–6]. A unique feature of neuromodulation is that it is realized using
a much broader arsenal of receptors than that of neurotransmitters [5]. Also, the ligands
themselves show immense structural versatility because, in some families, almost infinite
splice variants can be produced from several copies of an ancestral gene [5]. Therefore, it is
not surprising that neuroscience has struggled to formulate a rigid functional definition of
neuromodulation, in contrast with that of neurotransmission and neurotransmitters [8].

Accordingly, neuropeptides appear to represent an individual and separate form of
transfer of biological information, somewhere in between that of the classical neurotrans-
mitters and peripheral hormones. The secretion of these modulators gives rise to less
acute but, in the long run, more profound changes in the neural connectome, the operative
framework of neurophysiology [9]. The multi-faceted activity and redundancy of these
signaling molecules provide an indispensable component of the plasticity and resilience of
the central nervous system (CNS). This is further augmented by the bewildering diversity
and extremely broad distribution of several neuropeptide families. Certain groups and
their receptors are expressed at every level of neuroendocrine control [4–6].

It is apparent that the challenges to which the CNS is exposed ultimately will give rise
to changes in translational processes. These will manifest themselves in the modification of
receptor and enzyme expression, synaptic plasticity, and the dendritic pattern and structure
and finally the complete wiring of the connectome [9,10]. Neuropeptides represent an
essential but so-far overlooked element of the translational machinery, bridging the gap
between volatile functional alterations and permanent structural changes. As peptides,
they represent one of the earliest steps (along with neurotransmission-evoked peptide
and protein synthesis) in the translational processes of information signaling in the CNS.
Their modulatory action via extremely versatile ligands, the corresponding receptors,
and a multitude of stimulated signaling cascades make them the most flexible line of
neuroendocrine plasticity and adaptation [4–6].

The experiments carried out on the orexin/hypocretin system especially support
this view: its cooperation with other neuropeptides appears to harmonize the autonomic,
behavioral, and endocrine response to arousal [11–20]. Hence, firstly, the present paper
gives a general overview of the general biochemical, anatomical–histological, physiological,
and pathophysiological features of the orexin/hypocretin system. This review focuses on
those specific fields (stress response, thermoregulation, fear, anxiety, and learning) in which
the authors have also contributed to the literature.

2. The Hypocretin/Orexin Peptide and Receptor Family

The hypocretin/orexin system represents an extremely complex neuropeptide network
in the CNS [21,22]. The seminal papers [23–25] that dealt with the discovery of these ligands
and their receptors also demonstrated the hyperphagic [23] and neuroexcitatory activity [24]
of orexins and the unique distribution pattern of the system. The orexin/hypocretin
system, similarly to melanin-concentrating hormone (MCH)-positive neurons [26], has
a well-circumscribed expression in the hypothalamus (Figure 1) [24,27]. Its cell bodies
are restricted to the lateral, dorsal, dorsomedial, and perifornical areas, and the whole
population does not exceed 50,000–80,000 cells in the hypothalamus. However, its axon
terminals reach distant regions, and its receptors are scattered throughout the whole
CNS [25].
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Figure 1. The localization of the lateral hypothalamic area and the amino acid sequences of the 
orexin/hypocretin family peptides.. The letters stand for the one letter code of amino acids. A: Ala-
nine, C: Cysteine, D: Aspartic acid, E: Glutamic acid, G: Glycine, H: Histidine, I: Isoleucine, K: Ly-
sine, L: Leucine, M: Methionine, N: Asparagine, P: Proline, Q: Glutamine, R: Arginine, S: Serine, T: 
Threonine, U: Pyroglutamic acid, Y: Tyrosine. 

At the cellular level, so far, two ligands (orexin-A, orexin-B) and two receptors (OX1R 
and OX2R) of the system have been described (Figure 1) [23,24]. The peptides biochemi-
cally belong to the incretin family, but they bear weak structural resemblance only to a 
few members of the group [23,24]. Even orexin-A and orexin-B differ by 50% of their pri-
mary structure. Both peptides are cleft from pre-pro-orexin (PPO) and are amidated C-
terminally, but orexin-A is larger, comprising 33 amino acids, while orexin-B consists of 
only 28 residues [28]. Orexin-A is also less prone to proteolytic degradation because it 
comprises an N-terminal pyroglutamate residue and two disulfide bonds. Additionally, 
orexin-A is more hydrophobic, and therefore it can bypass more efficiently the blood–
brain barrier (BBB) [29]. These orexins also exhibit significantly different receptor affinities 
[23,24,30], which is definitely attributed to the fact that the orexin receptors (OXRs) share 
only 64% amino acid identity [28,31]. The two receptor subtypes create diversity within 
the cellular signaling pathways [28,31–34]. Both OX1R and OX2R activity is mediated by 
Gq11, which, in turn, leads to the activation of phospholipase C (PLC), phospholipase A 
(PLA), and phospholipase D, ultimately resulting in an increase in cytosolic Ca2+ and the 
activation of protein kinase C (PKC). In addition, OX1R can elevate the intracellular Ca2+ 
level by activating non-selective cation channels (NSCCs) [31]. On the other hand, OX2R 
can also inhibit adenyl cyclase (AC) and protein kinase A (PKA) through the G-protein-
coupled pathway. The potential dimerization of the OXRs and the structural overlap be-
tween OXRs and some other GPCRs lend further diversity to the signal transduction of 
the system [31]. For example, certain neuropeptide receptors, such as the type-2 neuro-
peptide-Y (NPY) receptor, the thyrotropin-releasing hormone (TRH) receptor, the chole-
cystokinin (CCK) type-A receptor, and the NK2 neurokinin receptor, show some 
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At the cellular level, so far, two ligands (orexin-A, orexin-B) and two receptors (OX1R
and OX2R) of the system have been described (Figure 1) [23,24]. The peptides biochem-
ically belong to the incretin family, but they bear weak structural resemblance only to
a few members of the group [23,24]. Even orexin-A and orexin-B differ by 50% of their
primary structure. Both peptides are cleft from pre-pro-orexin (PPO) and are amidated C-
terminally, but orexin-A is larger, comprising 33 amino acids, while orexin-B consists of only
28 residues [28]. Orexin-A is also less prone to proteolytic degradation because it comprises
an N-terminal pyroglutamate residue and two disulfide bonds. Additionally, orexin-A is
more hydrophobic, and therefore it can bypass more efficiently the blood–brain barrier
(BBB) [29]. These orexins also exhibit significantly different receptor affinities [23,24,30],
which is definitely attributed to the fact that the orexin receptors (OXRs) share only 64%
amino acid identity [28,31]. The two receptor subtypes create diversity within the cellular
signaling pathways [28,31–34]. Both OX1R and OX2R activity is mediated by Gq11, which,
in turn, leads to the activation of phospholipase C (PLC), phospholipase A (PLA), and
phospholipase D, ultimately resulting in an increase in cytosolic Ca2+ and the activation
of protein kinase C (PKC). In addition, OX1R can elevate the intracellular Ca2+ level by
activating non-selective cation channels (NSCCs) [31]. On the other hand, OX2R can also
inhibit adenyl cyclase (AC) and protein kinase A (PKA) through the G-protein-coupled
pathway. The potential dimerization of the OXRs and the structural overlap between OXRs
and some other GPCRs lend further diversity to the signal transduction of the system [31].
For example, certain neuropeptide receptors, such as the type-2 neuropeptide-Y (NPY)
receptor, the thyrotropin-releasing hormone (TRH) receptor, the cholecystokinin (CCK)
type-A receptor, and the NK2 neurokinin receptor, show some similarities (26%, 25%, 23%,
and 20% identity, respectively) to the orexin receptors [23]. The highest structural similarity
is exhibited by the neuropeptide FF (NPFF) receptor of the RF-amide peptide family, which
is 37% identical to OX1R and 35% identical to OX2R, respectively [35,36].

Neither the distribution of the immunoreactivity of the two orexins [37,38] nor the
expression of OX1R [30,39–41] and OX2R [30,40–42] completely overlaps. This, together
with the aforementioned distinct features of the pharmacokinetics of orexin peptides and
the differences in the signal transduction of OX1R and OX2R [32–34], must be responsible
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for some divergence in the physiologic and pathophysiologic actions of orexin-A and
orexin-B [38].

3. The Orexin System, as an Indispensable Regulator of Arousal, Cooperates with the
Central Oscillator to Control Circadian Activities

At the systemic level, the function of target areas of the orexin neurons has suggested
numerous clues on the feasible actions of orexins [25] (Table 1). Although, at first, orexins
were proved to play an important role in hedonic feeding [23,43], later publications un-
veiled that the most important aspect of their functional spectrum could be the regulation
of arousal [44]. Later studies also verified that the orexin network receives important input
from the neurons of the circadian system [45,46], the most important center of which is the
suprachiasmatic nucleus (SCN). These results substantiated the way circadian rhythms
and arousal are synchronized in the mammalian brain. The mammalian circadian clock
itself is hierarchically organized [47–50]. Its main components are the input signaling
pathways, the main pacemaker, and the output signaling pathways [47–50]. The most
important inputs to the SCN are photic stimuli, which arrive from the retina through the
retinohypothalamic pathway [47,48,51]. The SCN serves as the “master clock” for the
brain and the body and controls the activity of “local clocks”. In the CNS, its outputs
reach several autonomic centers in the hypothalamus, such as the ventrolateral preoptic
nucleus (VLPO), the arcuate nucleus (ARC), the organum vasculosum laminae terminalis
(OVLT), the median preoptic area (MnPO), the lateral hypothalamus, the medial preoptic
area (MPO), and the paraventricular nucleus (PVN) [48]. Therefore, the central oscillator
determines the circadian, diurnal, or mensual characteristics of the sleep–wake cycle, food
and fluid intake, core temperature, vigilance, and several endocrine activities, such as the
estrous cycle and the activity of the hypothalamic–pituitary–adrenal cortex (HPA). The SCN
also targets several extrahypothalamic centers from the brainstem, through the pineal gland
to the hippocampus [47]. This way, it also provides temporal clues on the entrainment
of arousal, autonomic control, pain sensation, and even higher cortical activities such as
mood, affection, and learning. The connection between the SCN and the orexin neurons
has two-way bidirectional components, as described in recent publications [48]. However,
a strong endocrine connection has also been verified between the two centers, through the
melatonin secretion of the pineal gland [51]. Ultimately, indirect communication is estab-
lished between the central oscillator and the orexin neurons at the level of the ascending
reticular activation system (ARAS). First, the ARAS is undoubtedly the most important
output of the lateral hypothalamus since orexinergic cells target several important centers
of the ARAS, such as the pedunculopontine tegmental (PPT) and lateral dorsal tegmen-
tal (LDT) nuclei in the mesopontine tegmentum (MT), the nucleus raphe (NR), the locus
coeruleus (LC), and the periaqueductal gray (PG) [25,52]. Second, these nuclei also provide
the most important non-photic inputs to the central oscillator [48].

The nuclei of the ARAS operate with the classical neurotransmitters (acetylcholine,
serotonin, norepinephrine, and dopamine, respectively) and foster the inputs to the du-
alistic centers of sleep–wakefulness regulation: the tuberomammillary nucleus (TMN)
and the VLPO of the hypothalamus. The histaminergic TMN and the galanin- and γ-
amino-butyric-acid (GABA)-positive VLPO control sleep onset according to a flip-flop
mechanism [53–55]. It seems that the orexin-positive cells facilitate arousal through indirect
disinhibition: they block the GABAergic output of the VLPO through the stimulation of
the above-mentioned cholinergic and monoaminergic nuclei of the ARAS [25,56–61]. In
this activity, OX2R mediation appears to play a predominant role. OX2R antagonism is
sufficient to induce sleep, while OX1R blockade even attenuates this phenomenon [62–64].
This way, the orexin system could be easily categorized not only as the master regulator of
arousal [65] but also as a significant modulator of the sleep–wake cycle and other circadian
rhythms [44,53,66,67]. The indispensable role of the orexin system in the maintenance of
vigilance is strongly supported by the finding that narcolepsy and cataplexy observed in
dogs [68] and mice [69] can be solely attributed to the deficiency of the orexin/hypocretin
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system. Moreover, by now, it has been supported by several observations that human
cases of narcolepsy with cataplexy [70–72] can also be attributed to either the abnormal
development [73] or acquired immunological destruction [74] of the orexin–hypocretin
system. Narcolepsy is characterized by REM intrusion into wakefulness, and REM sleep
depends on the cholinergic activity of the ARAS, which is gated by the histaminergic neu-
rons of the system [60,61,64]. These antagonistic centers both receive orexinergic input [25].
However, it appears that it is the selective deficiency of histaminergic gating that is respon-
sible for the disease. This can be attributed to the absence of OX2R in the histaminergic
neurons [60,61,64]. These observations offer great therapeutic opportunities not only for
sleep disorders but also for abnormalities of these physiological functions, which are influ-
enced by the orexin/hypocretin network. The most important physiological processes the
circadian control of which the orexin system modulates are food and fluid intake [75–77],
metabolism and thermoregulation [78], the activity of the HPA axis [11,13,65,79–82], and
reproduction [83,84]. As mentioned above, the anatomical connections, which provide
the foundation of these physiological actions, have also been verified: the orexinergic
axons target the ARC, the PVN, and the preoptic and supraoptic nuclei (PON and SON,
respectively) of the hypothalamus [10,53].

Even the initial publications suggested that orexins increase body weight and acutely
stimulate food intake [23,85]. Due to the hyperphagic activity and specific localization
of the orexin neurons, at least a group of their population can certainly be identified
with some portion of the classic glucose-sensitive feeding center of the ventrolateral
hypothalamus [86–90]. The orexin-positive neurons are bidirectionally connected to the
ARC and the PVN, which operate in a well-known dualistic manner in food intake regula-
tion. The most important stimulatory neuropeptides are NPY and agouti-related peptide
(AgRP) in the ARC and TRH in the PVN. The inhibitory neurohormones are cocaine- and
amphetamine-regulated transcript (CART) and melanocortins (MCs) in the ARC and CRH
in the PVN [91,92]. According to the literature, orexin-A evokes the activation [93] of
the OX1Rs [77] in the ARC, and the PVN mediates the hyperphagic effect of the system.
However, the role of orexins is more complex since, in the long run, it is their deficiency
that is associated with weight gain [94], which is attributed to their two-pronged action
in thermoregulation. The anatomical substrate of this activity is the connection of the
orexin system to the PON and the dorsomedial hypothalamus (DMH) [25]. The orexins
concurrently activate heat loss and thermogenesis. That is why they can either decrease
or increase the core temperature depending on the experimental settings [12,95–97]. In
summary, they stimulate heat dissipation [12,97] through sympathetic vasodilation [95],
which is mediated by OX1R. However, it is accompanied by the modulation of metabolism
in the brown adipose tissue (BAT) [98]. In the sympathetic nervous system, OX1Rs ap-
parently activate [96,99] while OX2Rs inhibit [100] non-shivering thermogenesis in the
BAT. Obviously, concomitant increases in heat generation and heat dissipation prevent the
excessive accumulation of fat.

Orexins also modulate the activity of the reproductive axis [83,84,101,102]. This
action is bidirectional and brain-region- and, in females, estrous-cycle-dependent. Fur-
ther, both orexin-A and orexin-B and both OXR1 and OXR2 take part in the control of
the hypothalamic–pituitary–gonadal (HPG) axis [103]. The orexin system may supply
period-dependent inputs to the HPG axis. Moreover, it can provide the link between
self-preservation and species preservation since a well-fed but not overweight subject can
optimally guarantee the survival of its offspring. It appears, that in the regulation of the
HPG axis, the interaction between the orexigenic and anorexigenic (such as leptin) peptides
plays a pivotal role [104,105]. As far as self-preservation is concerned, orexins have also
been proved to be one of the most important orchestrators of the stress response [80,81].
Further, they modulate all threat-related adaptive behavioral processes [106–108], even
fear-related learning [109–112].
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Table 1. An outline of the orexin/hypocretin connectome in physiologic regulation [113].

Input Region Core
Region Target Region Receptor Function

Thalamus, TMN, SCN PFA, LHA Thalamus, LC, DR,
VTA, TMN OX2R Circadian regulation, arousal,

wakefulness [44,53,65–67]
Peripheral signals,
ARC, PVN, SCN LHA, DMH VMH, ARC,

PVN, NAc OX1R Food intake [23,43,85]

Peripheral receptors,
brainstem, septum LHA, PFA

PAG, NST, PON,
PVN, RVLM,
RVMM, VTA

OX1R, OX2R

Autonomic regulation:
thermoregulation [12,95–97],

cardiovascular
responses [114,115]

Thalamus,
hippocampus,
PVN, BNST

PFA, DMH CeA, LA, LC, PPT,
PVT, BNST and MTL OX1R Emotions (anxiety, fear,

mood) [109,110,116]

Thalamus,
hippocampus, SCN LHA, DMH VTA, NAc, DR, IC,

and PFC OX1R, OX2R Cognition, reward, and
addiction [117,118]

Pituitary, adrenal
gland, thalamus,
brainstem, SCN

LHA, DMH PVN, PON OX1R, OX2R GAS [11,65,119] and
fight-or-flight response [80,81]

Pituitary, ovary,
brainstem, SCN LHA, DMH ARC OX1R, OX2R Gonadal functions [83,103]

ARC: arcuate nucleus, CeA: central amygdala, DMH: dorsomedial hypothalamus, BNST: bed nucleus of stria
terminals, DR: dorsal raphe, IC: insular cortex, LA: lateral amygdala, LC: locus coeruleus, LHA: lateral hy-
pothalamic area, MTL: medial temporal lobe, NAc: nucleus accumbens, NST: nucleus of the solitary tract,
OX1R: orexin-1 receptor, OX2R: orexin-2 receptor, PAG: periaqueductal gray material, PFA: perifornical area,
PFC: prefrontal cortex, PON: preoptic nucleus, PVN: paraventricular nucleus, PPT: pedunculopontine tegmental
nucleus, RVLM: rostral ventrolateral medulla, RVMM: rostral ventromedial medulla, TMN: tuberomammillary
nucleus, VMH: ventromedial hypothalamus, VTA: ventral tegmental area.

However, the orexin system has been proven to act as an important regulator even
in physiological and pathophysiological processes which possess less obvious temporal
characteristics: to mention a few of them, pain sensation [120,121], anxiety, mood, reward
processes, and addiction [21,79,106,122,123]. The orexin system represents the poster child
of neuropeptide regulation: its perikarya are confined to a small region, but it signals
diverse evolutionarily conserved functions to distant targets. In summary, we can say that
its principal role must be the temporal gating of brainstem functions [10,53].

4. The Role of Orexins in the Regulation of the Stress Response

The reaction of our neuroendocrine regulation to adverse challenges is provided
by the interaction between the sympathoadrenal (SA) system and the HPA axis [124].
Although they represent two distinct pathways, the line between them is frequently blurred,
even in scientific literature. Perhaps this is due to their interwoven functions, as they
complement each other’s activity while trying to maintain the homeostatic balance of
challenged individuals. However, the SA response described by Cannon [125] is carried
out according to the cooperation of the autonomic nervous system and the adrenal medulla,
while the stress response, discovered by Selye [126], relies on the reaction of the HPA
system, one of the central neuroendocrine axes later described by Schally, Guillemin [127],
and Vale [128]. Unfortunately, by now, the terminology has been oversimplified, and
stress response (though it has several stages) is frequently used as an umbrella term for
both responses. Only in meticulous descriptions are these two neuroendocrine reactions
clearly separated. To avoid confusion, for the HPA response, the most suitable term is the
synonym (general adaptation syndrome: GAS) coined later by Selye [129]. Nonetheless, the
distinction between the two pathways is of crucial importance because it helps clarify many
contradictions in the literature. Some conflicting responses to certain stress paradigms
could be easily resolved by clear discrimination between the two potential targets of adverse
stimuli, that is, the SA system and the HPA axis.
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It is well known that many neuropeptides modulate the activity of the HPA axis. For in-
stance, NPY, neurotensin (NT), ghrelin, apelin, and endomorphins activate [14,17,20,130–133]
while oxytocin and natriuretic peptides inhibit the system [134–137]. The output of the
HPA axis is quite uniform: it begins with the pituitary translation and cleavage of pro-
opiomelanocortin (POMC), yielding adrenocorticotropic hormone (ACTH), which, upon
secretion, stimulates glucocorticoid release from the adrenal cortex [126,129]. However,
in sharp contrast with the output, the input of the HPA axis is extremely diverse and
involves a multitude of neuropeptides in signal transduction [131]. Therefore, it is not
surprising that the modality (systemic or neurogenic) and schedule (acute, repeated, or
chronic) of the stressors strongly influence the extent of the HPA response [138]. Systemic
challenges (e.g. osmotic, immune, etc.) perturb the homeostatic balance of the organism,
which is directly projected to the brainstem, while neurogenic paradigms (fear, pain) are
processed by the cerebral centers [124]. The responses to these two types of challenges
are signaled in a dichotomized manner in the brain. The corticotrope-releasing hormone
(CRH)-positive neurons of the PVN are responsible for the acute and processed stimuli,
while parvocellular arginine vasopressin (AVP) cells in the PVN and the SON maintain
responsiveness to chronic, repeated, and homeostatic challenges [139]. It is also worth
noting that neuropeptide modulation perfectly complements the built-in brakes of the
GAS: the stepwise ultrashort, short, and long loop feedback mechanisms provided by
CRH, ACTH, and the glucocorticoids, as well as the potent anti-inflammatory action of the
glucocorticoids [124]. These mechanisms are called stress coping or stress resilience, and
they harness the severe inflammatory response (SIRS), which otherwise could consume the
organism [124,140,141].

As far as the effect of orexins on the HPA axis and the SA system is concerned, the two
responses work hand in hand. Namely, in both responses, orexins play a predominantly
stimulatory role [80,81]. However, according to the data from the literature, they are
stimulated separately. It seems that the SA system is uniformly activated by orexin-A,
which stimulates the OX1Rs expressed in the neurons of the nucleus of the solitary tract
(NST), the LC, and the sympathetic neurons [53,65,75,80,142–144]. Ultimately, it is not a
far-fetched idea to state that the perifornical, dorsal, dorsomedial, and lateral hypothalamic
foci of orexin-positive neurons can be identified with those in the caudal hypothalamic
region, which were demonstrated to be essential for an intact “fight or flight” and “sham
rage” response by Philip Bard and Walter Hess [8,106].

However, as for the HPA axis, the picture is more complex. Soon after the discovery
of the dense orexinergic innervation of the hypothalamic centers (PVN and SON) of the
GAS, the scientific rivalry surrounding this highly coveted topic begot several important
papers, which established that orexin neurons can activate the HPA axis predominantly
at the hypothalamic level [11,65,119]. The main targets of the orexin neurons are the
OX2Rs [145] expressed in the CRH-positive perikarya of the PVN [25,119]. Nonetheless,
later publications showed that the connection between the orexin- and CRH-positive neuron
population is bidirectional since abundant CRH-positive fibers land in the orexinergic
perikarya of the hypothalamus [146–148]. Apparently, orexin-evoked HPA activation
also involves the release of noradrenaline and NPY [13,149–151], which can significantly
diversify its processing [140,141].

As far as the input of the HPA axis is concerned, the activity of orexins appears to
be stressor- and schedule-specific [80,81]. In an acute setting, the challenges processed
with heightened arousal (aversive odors, novelty, and contextual fear) give rise to more
conspicuous activation of the orexin neurons (verified according to c-fos expression) than
systemic challenges (e.g., cold exposure) or long-lasting procedures (e.g., restraint and
immobilization) [80,81,108,152]. Nevertheless, while acute stress mostly activates the orexin
neurons, experiments with chronic or repeated stressors returned mixed results [80,81],
the findings of which may reflect an adaptation to unavoidable and permanent challenges.
Further studies have revealed that the involvement of the orexins in the GAS depends on
not only the modalities and schedule of the applied stressor but also the species and gender
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of the investigated subjects. Females and strains with better stress resilience phenotypes
release less orexin in response to adverse stimuli [80,81].

Regarding the output of the HPA axis, orexins have been proven to stimulate the HPA
axis not only at the hypothalamic but also at the pituitary and adrenal levels [80,81]. This
finding is of crucial importance as peripheral activation stabilizes the HPA response to
prolonged stimuli. It nurtures sufficient basal activity but also prevents an exaggerated
hypothalamic response by maintaining negative feedback through the release of ACTH
and glucocorticoids. Apparently, the orexin/hypocretin system also plays a crucial role
in the cooperation and seamless integration of the GAS and the “fight or flight” response.
Even the earliest publications which dealt with the orexin system demonstrated the dense
innervation of the BNST, a limbic center, which harmonizes the activity of the SA system and
the GAS [25]. Therefore, it is not unrealistic at all to conceive of orexins as the coordinators
of the stress response to challenges with heightened arousal [80,81].

5. The Role of the Orexins in the Regulation of Anxiety and Reward-Related
Learning Processes

There is a consensus in the scientific community that the orexin system is the most
important peptidergic mediator of the ARAS [44,53,65] and thus arousal processes. Its in-
dispensable role in the regulation of vigilance was ultimately confirmed by the observation
that its deficit leads to irreversible functional consequences both in congenital and acquired
disorders of arousal and sleep: narcolepsy and cataplexy [68,70–73]. However, over time,
it became obvious that not only the maintenance of wakefulness but also the fine-tuning
of arousal-related behavior belongs to the functional repertoire of the orexin system [109].
This concept is supported by the experimental data, which have demonstrated that orexins
stimulate attention, rearing, and locomotion as well as such anxiety-related stereotyped
behaviors as grooming and freezing [44,53,65,153–156]. Further experiments are needed to
verify its role in such ancient behavioral patterns as thanatosis [157,158].

It is well known that threats are the strongest activators of vigilance. They evoke
alertness and attention and then provoke an emotional response, that is, fear. And fear has
a huge impact on all aspects of behavior, which manifests itself in anxiety and alterations
in mood and cognition, among other things [159]. This strong association considered, it is
not surprising that the appropriate behavioral responses to both transient and permanent
threats are accompanied by the stimulation of the orexin system, one of the key components
of arousal regulation [160]. It seems that in the central processing of threats, first, the robust
stimulation of the ARAS involves activation of the orexinergic network [44,53,65]. In turn,
its hypothalamic foci fine-tune the neurotransmitter release [107,111,112,116,160,161] of
those brainstem and limbic centers which are responsible for the regulation of emotions,
affections, mood, and learning processes [80,160,162]. The neuroanatomical substrate of
fear- and reward-related learning consists of three components: first, the sensory center,
the thalamus, and second, the primary modulator, the amygdala. However, the third,
the output, is modality-dependent. Reward-related learning is controlled by the ventral
striatum and the ventral tegmental area (VTA), while it is the medial temporal lobe (MTL)
that synchronizes fear-related learning [159,163]. Both the central (CeA) and the extended
amygdala (e.g., BNST) take part in the facilitation of fear-related memory engraving. Then,
contextual memory consolidation is achieved through the activity of such components
of the MTL as the hippocampus and the entorhinal, perirhinal, and parahippocampal
cortices [163]. On the other hand, reward-related memory is processed by the basolateral
amygdala, and the output reaches the prefrontal cortex (PFC). This connection, however, is
permanently fine-tuned by such mesolimbic reward centers as the VTA and the nucleus
accumbens (NAc) [164]. The orexin-induced activation, similarly to the neuroendocrine
parallels, is bidirectional, as inputs from the limbic structures (the septum, BNST, basal
forebrain, central amygdala, and hippocampus) account for most of the telencephalic
inputs to the orexin neurons [165]. The activity of this connection was demonstrated in
a multitude of experiments, which revealed that anxiogenic stimuli, such as exposure to
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cat odor or novelty [106–108,166], gave rise to the activation of the orexin network. In
this way, it is not surprising that orexin treatment enhances the startle response [167] and
passive avoidance [112]. Later studies specified that the function of the amygdala, which
monitors emotional learning and arousal-driven memory consolidation [168], is controlled
by the orexin network indirectly and directly. The amygdala receives direct orexinergic
projections [25], but the indirect pathway (through the LC) is more important: it carries
rich noradrenergic projections to the lateral amygdala [160]. These studies ultimately
revealed that orexins play an especially important role in cue-dependent fear memory
formation, mainly indirectly through the release of noradrenaline in the LC [109–111].
Both this indirect pathway and the direct pathway utilize OX1Rs. The LC expresses
exclusively OX1Rs [169], and the direct pathway targets the OX1Rs in the lateral nucleus
of the amygdala and hippocampus [160,170]. This hypothesis was confirmed by the
finding that orexin-A, which prefers OX1R, proved to promote emotional learning, memory
consolidation, and retrieval processes in a passive avoidance paradigm and in social
learning [112,171]. Hence, facilitation of learning ensures the avoidance of potentially
harmful events, which ultimately is preventive and therefore the most effective technique
in stress coping.

Recently, more and more attention has been paid to specific aspects of orexin-mediated
behavioral responses: reward and addiction [117]. Functionally, orexins are prime examples
of hedonistic neuropeptides [172]. In the past two decades, orexins have been proven to
take part in the control of such strong natural rewards as food and fluid intake [23,43,75–77]
and reproduction [83,102]. They especially stimulate binge eating of palatable food [85,173].
These physiological data have already been substantiated by the histological findings, as
well. The cells of the two principal dopaminergic pathways (mesolimbic and mesocortical
tracts) of the reward system [8] bear orexin-positive boutons [25]. The beginning (the
VTA) of the pathways, the relay centers (the BNST, the CeA, and the hippocampus), and
the endings (the NAc, the target of the mesolimbic tract, and the PFC, the target of the
mesocortical fibers) receive rich orexinergic inputs [25]. Perhaps the orexinergic inputs can
fine-tune the SCN-independent circadian activity of the reward system [118]. However,
this hypothesis requires experimental verification.

In addition to these primary hedonistic features, orexins appear to control stress re-
silience, especially in chronic and repeated experimental conditions [80,81]. This concept
was reinforced by the histological data when the interaction between the orexin network
and another hedonistic peptide, ghrelin, was verified [89,174,175]. It was suggested that
they should augment each other’s activity in stress coping, which could dampen the detri-
mental psychological consequences of adverse stimuli. Therefore, it was postulated early
on that they could take part in the mediation and modulation of behavioral responses
evoked by not only natural but also pharmacological rewards. Since then, numerous publi-
cations have revealed that the orexin connectomics shows significant alterations not only in
obesity [89,174,175] but also in drug dependence [176]. This way, several pathophysiologi-
cal responses in addiction, such as reinforcement, drug-seeking, and self-administration,
were attributed to its modified activity [177]. The orexin network is unambiguously upregu-
lated in cocaine [178–180] and opiate abuse [181–183], while in the case of other substances,
the reaction is more complex [177]. Acute alcohol consumption increased while chronic
alcohol, ∆19-tetrahydrocannabinol, and nicotine abuse decreased the orexin expression in
the hypothalamus [177,184–186]. Acute changes must be related to the direct effect of the
addictive substance. However, chronic changes may reflect the response to a specific stress
paradigm: drug withdrawal. Ultimately, these schedule-dependent bimodal changes also
appear to reflect adaptation, a form of stress coping.

6. The Cooperation between Orexinergic and Other Peptidergic Neuronal Networks

As has been discussed, the somas of the orexin/hypocretin neurons are restricted
to the caudal portion of the hypothalamus [23] but their axon terminals reach distant
regions, and their receptors are scattered throughout the whole CNS [25]. This spatial
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concentration of the cell bodies is not unique in the CNS since it can be observed among
other neuropeptides such as MCH [187], ghrelin [188,189], and neuromedin-S [190]. As is
the case with other neuropeptides, the feasible interaction of the orexin system and other
networks greatly broadens the regulatory repertoire of the orexin/hypocretin neurons. The
potential partners are MCH- [191], NPY- [192], apelin- [14,193–195], ghrelin- [15–17,196],
and neuromedin-positive [20,197] networks, which show a marked functional overlap with
orexins in the regulation of food intake, the sleep–wake cycle, stress response, and behavior.
These networks may cooperate with each other, but the intact function of the orexin system
is required for normal processing of arousal-related processes [68–72].

So far, besides releasing hormones of the hypothalamic–pituitary–target organ axis,
only the orexin system has proven to be an essential neuropeptide in the regulation of
the CNS. However, the interpolations of other neuropeptides and neurotransmitters in
the signal transduction of the orexin neurons lend immense diversity and flexibility to
the orexin-regulated responses [83]. This is because the neuropeptide ligand and receptor
families typically consist of several members, which may have numerous splice vari-
ants, can also be modified by peptidases after secretion, and can act on an arsenal of
receptors [4–6,131,140,198]. With the different binding affinities and activities taken into
consideration, the number of potential interactions between this abundance of ligands and
receptors is infinite and may span from full agonism to complete antagonism [4,5,7,198].

Cooperation both in the afferent and efferent pathways of the orexin system has been
verified. In the input, monoamines [25], NPY [199,200], and ghrelin [89,174,175] seem to
play the most important role, while in the output, NPY [12,13,151,199,201], POMC [202],
and also monoamines [25,107,112,161,203] have been identified. Unambiguously, the
pathways between the LC and the lateral hypothalamus are the most important connec-
tions of the orexin network in the regulation of arousal-related behavioral and endocrine
responses [24,25]. Also, circulating peripheral or centrally released ghrelin significantly
contributes to the hyperphagic activity of the orexins [89]. In efferentation, the orexin con-
nectomics cooperates with the corticotrope-releasing hormone (CRH)–urocortin system [11],
the network of NPY-positive [12,13] and monoaminergic [203] cells in the orchestration
of the neuroendocrine responses to processed and homeostatic challenges [11,13]. Such
interactions were established in other functions such as thermoregulation, mood, anxiety,
learning [12,107,112,148,161,204,205], and reproduction [151]. Regarding arousal, one of
the most important connections between the orexinergic system of the organism and the
environment is established through the SCN [46]. The neuromedin-S released from the SCN
of the hypothalamus might interpret these photic stimulations, which arrive at the SCN
through the retinohypothalamic pathway [190]. Nevertheless, this aspect of hypocretin
physiology must be further scrutinized and confirmed using experimental data.

During the investigation of pathophysiological alterations in the hypocretin/orexin
network, some unique features of the system were unveiled. It is a well-known phe-
nomenon in neuropeptide pathophysiology that the deficiency of a given neuropeptide
or its secretory neurons usually does not bring about significant functional disturbances
in the affected organism. This is due to the functional overlap between and redundancy
of different neuropeptides or neuropeptide families. Typically, in congenital cases, during
embryonic and fetal development, other neuropeptides can functionally compensate for
the deficiency of the affected transcript even in knockout animals. Obviously, acquired
abnormalities are less prone to correction due to the much more limited adaptation of the
adult brain. Therefore, neuropeptide deficiencies do not cause such dramatic pathophys-
iological and clinical changes as is the case in congenital or acquired disorders of neuro-
transmission such as dopamine (phenylketonuria, Parkinson’s disease, and Sydenham’s
chorea minor), GABA (Huntington’s disease and some forms of congenital epilepsies), or
acetylcholine (myasthenia gravis, Lambert–Eaton myasthenic syndrome, and Alzheimer’s
disease) metabolism disorders. However, the orexin/hypocretin system is different in
this respect. Not only acquired but also congenital deficiency inevitably leads to severe
pathophysiological changes, as exemplified in narcolepsy [70,71] or the blunted stress
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response exhibited by OX2R-deficient knockout mice [145]. This might be attributed to the
fact that the orexin-positive neuron population does not exceed 50,000–80,000 cells in the
hypothalamus [72], which makes it peculiarly sensitive to injuries. Furthermore, orexins
bear weak structural resemblance only to a few members of the incretin family [23,24].
Even orexin-A and orexin-B differ in 50% of their primary structure, and they exhibit
significantly different receptor affinities [23,24]. Therefore, it is not surprising that hardly
any other neuronal network can take over the function of the orexinergic system. Some
functional overlap might be provided by other GPCRs since certain neuropeptide receptors,
such as the type-2 NPY receptor, the TRH receptor, the CCK type-A receptor, and the NK2
neurokinin receptor show some similarities (26%, 25%, 23%, and 20% identity, respectively)
to the orexin receptors (OX1R and OX2R) [23]. However, their binding affinity to orexins
is negligible [206]. The highest structural similarity is exhibited by the NPFF receptor of
the RF-amide peptide family, which is 37% identical to OX1R and 35% identical to OX2R,
respectively, and shows significant affinity to the orexins [35,36].

7. Aspects of Human Pathophysiology: The Present and Future Therapeutic Potential of
Orexin Receptor Ligands

Even the first results of experiments carried out on the orexin/hypocretin system
suggested that several human pathophysiological conditions could be explained by alter-
ations in the orexin neurons [207]. Dysfunctions of the ARAS and sleep disorders, such as
obstructive sleep apnea–hypopnea syndrome, were the first and somewhat obvious cul-
prits, which were thoroughly and successfully investigated. Since then, both in narcolepsy
with cataplexy [70–73,208] and in obstructive sleep apnea–hypopnea syndrome [209–211],
the dysfunction of the orexin system has been established. Moreover, the acquired form
of narcolepsy proved to be a classic example of a neuroinflammatory disorder. It seems
to be evoked by H1N1 influenza virus infection or vaccination, which gives rise to an
autoimmune reaction against the hypocretin neurons [74,212,213].

Increased tone of the orexinergic system, especially in cooperation with the ghrelin
network, has also been suspected in disorders of the reward system. It appears that their
synergistic hyperactivity is accountable for a rare form of monogenic obesity, Prader–Willi
syndrome (PWS) [214]. However, the picture is more complex, as the orexin system is a
double-edged sword; it increases feeding and energy expenditure simultaneously depend-
ing on the environmental cues. Accordingly, it has been implicated in both weight gain and
weight loss [85], as well as in such disorders of food consumption as binge eating [215],
bulimia, and anorexia nervosa [216]. Furthermore, in Kleine–Levin syndrome [217,218],
the alternation of the alert and hyperphagic stages of hypersomnia has been connected to
fluctuations in the orexin levels in the cerebrospinal fluid (CSF). It seems that, like the HPA
response, the actual eating disorder is determined by the schedule and the modality of the
psychological stressor [219], and it can manifest itself in seemingly opposite conditions.

Regarding reproductive processes, hypoactivity of the orexin system was observed in
mothers suffering from gestational diabetes [220] and in patients diagnosed with polycystic
ovary syndrome (PCOS) [221,222]. This might be related to the concomitant increase in the
body weight and leptin levels of the patients, which downregulates orexin expression [223].
As for the pharmacological rewards, it is substance withdrawal that represents the common
mechanism of orexin upregulation in different forms of drug addictions. Apparently,
withdrawal symptoms are managed by individuals as stress stimuli, and they increase
arousal, attention, and drug-seeking behavior [172,224,225].

In humans, the dysfunction of the orexin system in the regulation of the ARAS may
also bring about the development of such diseases as attention deficit hyperactivity disorder
(ADHD), anxiety, epilepsy, panic, and phobias [106,160,162,172,226]. As far as hyperactivity
is concerned, the role of the orexin system has also been verified since the exaggerated
startle response in anxious patients could be effectively reduced with an orexin recep-
tor antagonist [227]. These conditions accompany the pathophysiological regulation of
neuronal excitation and show clear circadian fluctuation, which reinforces the view that al-
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teration in the orexin/hypocretin system plays a causative role in their development. Long
periods of overexcitation have a detrimental impact on the neurons. In the burnt-out phase,
these diseases give way to such chronic conditions as major depression, post-traumatic
stress disorder (PTSD), psychosomatic problems like hypertension [228–231], and even neu-
rodegenerative disorders [232]. Some further conditions such as cognitive disorders [233]
and abnormal pain sensation [234–236] may also be related to alterations in alertness and
the gating mechanism and therefore can be connected to the orexin/hypocretin system.
However, it is important to emphasize that orexin receptors show some structural simi-
larities to those of RF-amides [233]. Accordingly, their direct action may be mediated by
not only their own receptors, expressed on the crucial gating elements (LC and PAG) of
pain signaling, but also can be reinforced indirectly via the RF-amide receptors, which
are expressed in both the ascending and descending pathways of pain sensation [237].
Abnormalities in orexin physiology have already been identified in chronic pain disorders,
such as fibromyalgia [238], and especially in primary headaches such as migraine and
cluster headaches [120,121,198]. The latter condition deserves special attention since these
attacks show a clear diurnal pattern, and in its pathogenesis, the role of the SCN has already
been verified [121]. According to the data from the literature, this analgesic action of the
orexin network is mediated by orexin-A and OX1Rs [239].

The previously mentioned conformational overlap between the RF-amide and orexin recep-
tors may also account for the reproductive and antineoplastic activities of orexins [28,240,241].
This is because RF-amides play a well-known role in the inhibition of metastasis formation [242],
and in the past few years, they have emerged as metabolic regulators of the gonadal
axis [243]. Since the activity of the RF-amide system shows clear periodicity, it is quite
reasonable to imply that the orexin system may modulate its function either directly or
indirectly [240].

Finally, it must be mentioned that the dysfunction of the orexin system was demon-
strated in common neuropsychiatric, neuroinflammatory, and neurodegenerative disorders
such as schizophrenia, Parkinson’s disease, Alzheimer’s disease, Huntington’s disease,
multiple sclerosis (MS), and amyotrophic lateral sclerosis (ALS) [232,244–247]. Neverthe-
less, in these pathologic conditions, the dysfunction of the orexin system is not specific but
can be attributed to the widespread devastation of the connectome. In these conditions,
ultimately, all neural networks will be affected, but the orexin system is specifically frail
and sensitive to focal injuries since it has a limited number of neurons, which are confined
to a relatively small region. Therefore, it is among the first centers that succumb to the detri-
mental effects of misfolded protein aggregation and neuroinflammation. That is why some
shared, conspicuous symptoms of the above-mentioned fatal disorders were identified as
resulting from the failure of the orexin network. Cataplexy and dysfunction of the postural
reflexes can be observed in Parkinson’s, Huntington’s, and prion diseases. Alterations in
sleep patterns and vigilance are common findings in Alzheimer’s, MS, and prion diseases.
Rapid fluctuations in mood, unwarranted anxiety, irrational fears, and extreme irritability
are the common behavioral symptoms [248,249] in the above-mentioned diseases. Later, in
all these symptom categories, either hyperactivity or hypoactivity of the orexin system has
been suspected or already verified [232,244].

8. Promising Results in Translational Pharmacology

It is a well-known hindrance in neuropeptide pharmacology that often those com-
pounds which possess the most promising biochemical features (affinity, activity, half-life,
etc.) cannot bypass the blood–brain barrier (BBB) [7]. In several instances, only circum-
scribed areas (the lamina cribrosa or the circumventricular organs) provide access to the
cerebrospinal fluid (CSF) to native ligands [7], or sophisticated nanocarriers (liposomes,
nanoparticles, etc.) are required to surmount this pharmacokinetic obstacle [250]. However,
in the case of the previously discussed feed-promoting neuropeptides such as ghrelin and
the orexin system, both natural ligands and their chemically designed analogs can freely
bypass the BBB [7,251,252]. Derivatives of orexins are especially successful in this regard
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because some of these antagonists have already been approved by the Food and Drug
Administration (FDA) in the treatment of insomnia [113] (Table 2). Other antagonists,
which are suggested for the treatment of panic, major depressive disorder, anxiety, and
binge eating, are under investigation [113]. Studies on antagonists which are recommended
for the treatment of narcolepsy are also in the clinical phase of pharmacological trials [113].

Table 2. Orexin analogs under clinical investigation [113,253].

Classes Indications Stage

OX2R agonists Narcolepsy Phase II. [254,255]

OX2R antagonists Major depressive
disorder (MDD) Phase III. [256]

Dual antagonists Insomnia
approved

(e.g., Suvorexant [257,258],
Lemborexant [259])

OX1R antagonists Binge eating disorder Phase II. [260]
Panic disorder, MDD, anxiety Phase II. [261]

At present, the most coveted aim in neuroendocrine research is to engineer orexin
derivatives which could relieve the abnormalities of the sleep–wake cycle in neurode-
generative disorders. They would be game-changers in palliative therapy, as traditional
hypnotics are strong depressants and further deteriorate the function of the otherwise fail-
ing CNS. Therefore, present and future orexin derivatives are among the most pioneering
and successful compounds in neuropeptide pharmacology and have huge potential in
pharmaceutical development [113].

Additionally, emerging research explores the potential of non-invasive brain stimula-
tion techniques (NIBS), such as transcranial magnetic stimulation (TMS) and transcranial
direct current stimulation (tDCS). These NIBS techniques seem to be promising therapeutic
alternatives as the orexin system occupies a well-circumscribed region in the CNS. There-
fore, the symptoms of conditions like narcolepsy, cluster headaches, and affective and
cognitive disorders that are associated with the dysfunction of the orexin system could be
mitigated by them [262–264].

9. Discussion

Orexin/hypocretin neuropeptides are pivotal players in regulating various physi-
ological processes, such as food intake, metabolism, the HPA axis, reproduction, and
behavior [10,21,23,43,82,83,85,109,136,265,266]. They were primarily described to orches-
trate such parameters of homeostatic balance as feeding, thermogenesis, and heat dissipa-
tion [12,23,43,85,97]. Later research shed light on their intricate involvement in the media-
tion and modulation of such behavioral paradigms as arousal, anxiety, fear, and the stress
response [11,44,65,82,106,111,116,160]. The orexin system is also implicated in the regula-
tion of pain sensation and the behavioral changes evoked by natural and pharmacological
rewards such as addiction [79,106,117,120,181,198,224,267,268]. This way, dysfunctions in
the orexin system have been associated with various human pathophysiological conditions,
such as obesity, addictive disorders, narcolepsy, obstructive sleep apnea–hypopnea syndrome,
anxiety, cognitive disorders, and abnormal mood fluctuations [10,109,122,215,227,230,269].
This review tries to seamlessly integrate the diverse activities of orexins and provides a
more in-depth understanding of those fields such as stress response, fear, anxiety, and learn-
ing in which the authors have significantly contributed to the literature [11–13,107,112,161].

Regarding the limits of this article, it is important to note that the review is based on
the existing literature and does not present any new experimental data. As a result, the cal-
iber and scope of the studies included in the analysis limit the conclusions drawn from this
review. Additionally, the review focuses on preclinical research on the orexin/hypocretin
system, and the translation of these findings into clinical practice may be challenging. How-
ever, the review has several merits, including its interdisciplinary approach to understand-
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ing the orexin/hypocretin system, synthesizing information from various fields, including
neuroscience, endocrinology, and pharmacology [10,21,83,85,109,113,270,271]. It could
provide “food for thought” to researchers and clinicians interested in the orexin/hypocretin
system, and it could inspire future research by identifying the knowledge gaps and areas
that require further investigation.

The ultimate goal of the research on the orexin/hypocretin system is to develop ef-
fective therapeutic interventions for various disorders, such as sleep disorders, obesity,
addiction, and anxiety [23,53,66,68,69,85,106,108,116,160,162,217,272–275]. However, this
goal presents several challenges, including the need to understand the complex and mul-
tifaceted role of orexins in physiology and behavior, as well as the need to develop safe
and effective drugs that target the orexin system. To achieve this goal, researchers need
to have a deep understanding of the orexin/hypocretin system, including its molecular
and cellular mechanisms, as well as its interactions with other systems in the body. They
also need to develop advanced technologies for studying the orexin system, such as op-
togenetics, chemogenetics, and advanced imaging techniques. In addition, researchers
need to develop safe and effective drugs that target selectively the orexin system, which
requires a thorough understanding of the pharmacokinetics and pharmacodynamics of
orexin derivatives. Overall, this line of research has the potential to improve the lives of
millions of people worldwide, making it a crucial area of investigation, as is their potential
therapeutic applications. Nevertheless, since several derivatives of orexins with high affin-
ity and activity to their receptors can bypass the blood–brain barrier, some antagonists have
already been approved by the FDA for the treatment of insomnia, and other antagonists
and agonists are under investigation for the treatment of various disorders of food intake
and behavior [113,271,276].

10. Conclusions

The interdisciplinary approach of this review has enhanced our understanding of the
orexin/hypocretin neuropeptide family and its potential therapeutic applications. However,
there are still several theoretical and methodological avenues that require refinement, such
as the need for more precise and selective orexin receptor agonists and antagonists. Future
research directions could focus on developing innovative drug delivery systems that can
effectively target the orexin system while minimizing the off-target effects. Additionally,
further research is needed to understand the complex interactions between the orexin
system and other physiological and behavioral processes, such as the immune system and
circadian rhythms. Overall, the orexin/hypocretin system is a fascinating area of research
with significant theoretical and translational implications. By understanding the complex
and multifaceted role of the orexin system, researchers can identify new drug targets and
develop innovative drug delivery systems that can effectively treat various disorders. We
hope that this review serves as a valuable resource for researchers and clinicians interested
in the orexin/hypocretin system and the development of agents targeting this system.
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Abbreviations

ACTH adrenocorticotropic hormone
ALS amyotrophic lateral sclerosis
ARAS ascending reticular activation system
ARC arcuate nucleus
BAT brown adipose tissue
BBB blood–brain barrier
BNST bed nucleus of stria terminalis
CeA central amygdala
CCK cholecystokinin
CNS central nervous system
CSF cerebrospinal fluid
CRH corticotrope-releasing hormone
DMH dorsomedial hypothalamus
DR dorsal raphe
FDA the Food and Drug Administration
GABA γ-amino-butyric-acid
GAS general adaptation syndrome
GPCRs G-protein-coupled receptors
HPA hypothalamic–pituitary–adrenal cortex
HPG hypothalamic–pituitary–gonadal axis
IC insular cortex
LA lateral amygdala
LC locus coeruleus
LDT lateral dorsal tegmental nuclei
LHA lateral hypothalamic area
MCH melanin-concentrating hormone
MDD major depressive disorder
MnPO median preoptic nucleus
MPO medial preoptic nucleus
MS multiple sclerosis
MT mesopontine tegmentum
MTL medial temporal lobe
NAc nucleus accumbens
NIBS non-invasive brain stimulation techniques
NK neurokinin
NM neuromedin
NMS neuromedin S
NPY neuropeptide Y
NST nucleus of the solitary tract
NT neurotensin
OVLT organum vasculosum laminae terminalis
OX1R orexin-1 receptor
OX2R orexin-2 receptor
OXR orexin receptor
PAG periaqueductal gray
PCOS polycystic ovary syndrome
PFA perifornical area
PFC prefrontal cortex
POMC pro-opiomelanocortin
PON preoptic nucleus
PPT pedunculopontine tegmental nucleus
PVN paraventricular nuclei
RVLM rostral ventrolateral medulla
RVMM rostral ventromedial medulla
SA sympathoadrenal
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SCN suprachiasmatic nucleus
SON supraoptic nucleus
tDCS transcranial direct current stimulation
TMs transcranial magnetic stimulation
TMN tuberomammillary nucleus
VMH ventromedial hypothalamus
VTA ventral tegmental area
VLPO ventrolateral preoptic nucleus
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