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Abstract: The development of bacteriophages (phages) as active pharmaceutical ingredients for
the treatment of patients is on its way and regulatory agencies are calling for reliable methods to
assess phage potency. As the number of phage banks is increasing, so is the number of phages that
need to be tested to identify therapeutic candidates. Currently, assessment of phage potency on a
semi-solid medium to observe plaque-forming units is unavoidable and proves to be labor intensive
when considering dozens of phage candidates. Here, we present a method based on automated
pipetting and phage drop-off performed by a liquid-handling robot, allowing high-throughput testing
and phage potency determination (based on phage titer and efficiency of plaquing). Ten phages
were tested, individually and assembled into one cocktail, against 126 Escherichia coli strains. This
automated method was compared to the reference one (manual assay) and validated in terms of
reproducibility and concordance (ratio of results according to the Bland and Altman method: 0.99;
Lin’s concordance correlation coefficient: 0.86). We found that coefficients of variation were lower
with automated pipetting (mean CV: 13.3% vs. 24.5%). Beyond speeding up the process of phage
screening, this method could be used to standardize phage potency evaluation.

Keywords: phage therapy; phagogram; automation; spot test; variability; reproducibility

1. Introduction

The development of bacteriophages (phages) as active pharmaceutical ingredients for
the treatment of patients infected with antibiotic-resistant or difficult-to-treat bacteria is
now on the agenda of health regulatory authorities such as the European Directorate for
the Quality of Medicines and healthcare (EDQM) and the Food and Drug Administration
(FDA) [1,2].

Given the specificity of phages to infect a limited number of bacterial isolates within a
bacterial species, the development of phage therapy for each patient necessitates a large
collection of phages [3]. Then, the next step is invariably to test these numerous phages
to select those that exhibit the best activity, which corresponds to the highest number of
produced plaque-forming units (PFUs) and to the longest period preventing the growth of
phage-resistant bacteria. These characteristics help define the pharmaceutical potency of a
phage.

During the past decade, several laboratories and a few institutions have engaged in
building large phage collections [4–7]. As the number of phages to be tested manually is
increasing, there is a need for an automated process, which could be more time efficient,
and less labor intensive. The benefit of test automation is undeniable when considering
standardization and reproducibility. In the field of clinical laboratories (from biochemistry
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to microbiology, through hemostasis or toxicology), accreditation is now mandatory in most
countries [8]. Without accreditation, results produced from any analysis could be regarded
as meaningless (unreliable results). In most cases, accredited laboratories must comply with
ISO 15,189 and 17,025 standards, testifying for reproducibility and repeatability of measures,
as well as minimization of human-dependent errors. Considering the development of phage
therapy and its future entry into medical microbiology laboratories, it appears necessary to
consider phage-related diagnosis tests as a target of automation.

Here, we present and discuss an automated technique using a liquid-handling robot,
allowing rapid high-throughput susceptibility testing. The aims of this study were: (i) to
validate an automated method of pipetting and spotting to perform phage susceptibility
and potency testing: we carried out a comparison to a reference (manual) method (one
bacterial strain, one phage), and (ii) to test the feasibility and limits of the automated
method on a large series of measures (10 phages and an assembly of these into a cocktail
against 126 Escherichia coli strains).

2. Materials and Methods
2.1. The Manual Drop-Off Method

The reference method routinely used in our laboratory, sometimes referred to as “direct
spot test” [9] belongs to the group of plaque-based assays. As the classical double-layer
agar method, it allows the detection of individual PFUs and the determination of the titer
of a phage suspension. This direct spot test method consists of spotting drops (4–10 µL) of
serial 10-fold dilutions (performed in a 96-well plate) of a phage stock, on the surface of an
agar plate (LB-Lennox) previously inoculated with the bacteria to be tested.

Inoculation is obtained by inundation (1 mL per round agar plate) with a fresh expo-
nentially growing (OD600 0.3–0.4) liquid culture (LB-Lennox, 37 ◦C, 200 rpm) of the strain
to be tested to cover the entire surface of the agar plate, to obtain a thin and homogenous
bacterial lawn, as it is intended when performing antibiotic susceptibility testing [10]. The
excess of liquid is then removed by pipetting and the plate is kept open under a safety
cabinet for a few minutes to allow the surface to dry.

Next, phage dilutions are spotted, in triplicate, on the surface of the bacterial lawn,
using an 8-channel pipette. Particular attention is required regarding the type of tips, which
must be highly hydrophobic to allow, once ejection has taken place, the total detachment of
the drop formed at the extremity of the tip, triggered by gentle contact of this drop with the
agar surface. Once the drops of the phage spots are soaked up, the plates are incubated at
37 ◦C, usually overnight. After incubation, the number of individual plaques is counted
and the phage titer is calculated.

Based on a few independent assays to titrate virulent phages infecting either Pseu-
domonas aeruginosa or Escherichia coli, this method proved to be as accurate as the classical
double-layer agar assay. Aside from being notably less labor intensive, it also avoids brief
thermal stress to bacteria and phages imposed by using the molten soft agar (50–55 ◦C).

2.2. The Automated Drop-Off Method
2.2.1. Robot, Tips, and General Setup

In 2014, we refurbished a liquid-handling robot manufactured by Tecan (model Gen-
esis, Tecan, Switzerland) equipped with a single arm carrying four pipetting channels,
each connected to 1000 µL syringes. The robot was controlled by proprietary software
(GENESIS Instrument Software V4.21), on which the run programming was performed.
Briefly, the robot’s arm provided displacements of the four pipetting channels in the X and
Y axes, which could then independently move along the Z axis (up and down) and equip
themselves automatically with tips. Tips containing graphite were used, allowing liquid
detection using conductivity changes between air and liquid (Tecan, 200 µL disposable tips,
“Non-filtered, Pure”). The robot’s working area was equipped with a homemade Plexiglas®

flat tray to handle up to 10 square agar plates (see below).
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All plates used during the assay (the 96-well plate containing the phages and the
square agar plates containing the bacterial lawn) were formerly characterized in terms of
size (length, width, height) and positioned using the instrument software. For the robot,
this ensured a precise location of each well and drop-off areas on the agar surface in terms
of X, Y, and Z axis coordinates. The program, the liquid class definition, and the settings of
used labware are available in the Supplementary Materials File S1: configuration files).

2.2.2. Agar Plates

Sterile square Petri plates (15.8 × 120 × 120 mm, Gosselin, France) were placed on a
horizontal plane and filled precisely with 50 mL of LB-Lennox agar medium to guarantee
a constant thickness and therefore a constant height in the Z axis. As described for the
manual method (see Section 2.1), a liquid culture (4 mL) of the tested bacteria was poured
on each plate before use (see below). The plate was then tilted to remove the excess of
liquid by gentle pipetting. Special attention was given to the dryness of the agar plates as
this parameter is critical to avoid drops spreading and coalescence. This was controlled by
placing opened agar plates in a biological safety cabinet for 15–30 min.

Before being placed in the robot’s working area, each plate was labeled on the top
left corner with the name of the tested strain for identification and orientation purposes
(subsequent result readings).

2.2.3. Bacteriophages

Ten E. coli phages from our lab collection (the Antonina Guelin collection [11] and
unpublished ones) and an assembly of these 10 phages (subsequently designated as the
cocktail) were used for this study (phages listed in Supplementary Materials File S2).
Phage stocks (>108 PFU/mL) corresponding to filter-sterilized lysates (in LB-Lennox) were
distributed in a 96-deep well polystyrene plate (1.2 mL, TreffLab, Switzerland). Between
runs, this plate was stored at 4 ◦C. When the 96-well plate was positioned in a landscape
view, the first 11 rows (vertical) corresponded to the 10 single phages and finally the cocktail.
Lines 1 to 8 (horizontal) corresponded to the ten-fold serial dilutions (from non-diluted
to 10−7).

2.2.4. Strains

A total of 126 E. coli strains were tested for their susceptibility to the above-mentioned
phages (strains listed in Supplementary Materials File S2). Among these 126 strains, 10
were positive controls (i.e., strains that are the hosts of the 10 phages tested) while the
others were randomly picked from a large collection of E. coli isolates of various origins
hosted by our laboratory and the IAME laboratory (Infection, Antimicrobials, Modelling
and Evolution; INSERM unit, UMR 1137, Paris).

2.2.5. Step-by-Step Description of Robot Processes during a Run

After launching the program, the user entered the number (n) of bacterial strains to be
tested per run (i.e., the number of agar plates, n = 1 to 10) and the volume of the drop (v,
5 µL). The sequence started with the arm moving the pipetting channels to pick up four tips
from the tips box and then moving above the first four wells (A1 to A4) of the 96-well plate
containing phages, to aspirate a total volume of (3vn + 10) µL per tip. Then, the robot’s arm
moved to sequentially distribute four drops of 5 µL each on the surface of the n agar plates,
each overlaid with the bacterial lawn. This was performed in triplicate as illustrated in
Video S1 (the video illustrates the distribution of two dilutions of phage, in triplicate, on
one agar plate).

At the end of the distribution, tips were ejected and a new cycle started with the next
four wells (B1 to B4) and so forth. The software records indicate that a full run (testing
4 phages at 8 different concentrations in triplicate on 10 bacterial strains, i.e., 96 spots per
agar plate and 960 spots in total) lasted 24 min. Three consecutive runs were thus needed
to distribute all dilutions of the 10 phages and the cocktail on 10 bacterial strains.
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After completion of the run, plates were incubated for 8–12 h at 37 ◦C.

2.3. Validation of Concordance between Manual and Automated Methods

To compare the results obtained with the manual and the automated methods, the
phage 536_P1 (Myoviridae, 149.4 kbp) and its isolation strain (E. coli 536) were used [12].
The same lot of phage stock, diluent (LB-Lennox) and agar plates were used. Four different
dilutions were prepared from the phage stock: undiluted (tube A), 10−1 (tube B), 10−2 (tube
C) and 10−3 (tube D).

Each tube (A to D) was then subjected to titration in triplicate, by using the manual
and the automated method as described above (Sections 2.1 and 2.2). Four independent
replicates (agar plate and dilution) were performed in each case.

2.4. Plates Reading, Data Analysis and Statistics

After the incubation period, agar plates were analyzed as follows, whatever the
method considered (manual or automated pipetting): only phages able to form individual
plaques were considered active on the considered strain. Phages leading to partial or
entire bacterial lawn clearance without forming individual plaques at higher dilutions were
removed from the analysis as titers could not be calculated. Considering the three replicates,
a mean concentration (knowing the volume of the drop and the dilution factor), its standard
deviation and its coefficient of variation (standard deviation divided by the mean) were
calculated.

We only focused on intra-observer variability as only one user performed both the
manual pipetting and readings of the plates (i.e., PFU count).

Results from both methods were analyzed in terms of fidelity (i.e., ability to reproduce
the same result when repeated) and accuracy (i.e., ability to indicate the truth, compared
to a reference method) using methodologies dedicated to such analysis [13] like the Bland
and Altman approach [14] and Lin’s concordance correlation coefficient [15]. Bland and
Altman representation and calculation were performed using the ratio of titers obtained by
repeated measurements (n = 16, automated method divided by manual method) after a
Log10 transformation of the values.

Statistical analyses were performed using GraphPad Prism version 7.03 (GraphPad
Software, CA, USA). The normal distribution of all variables was checked using the
Kolmogorov–Smirnov test. Statistical tests (Student’s t-test or the Mann–Whitney test)
were chosen accordingly. A P value less than 0.05 was considered statistically signifi-
cant. Lin’s concordance correlation coefficient was calculated using the Real Statistics
Resource Pack software (Release 8.9.1, copyright 2013–2023) created by Charles Zaiontz
(www.real-statistics.com) on Microsoft Excel.

3. Results
3.1. Comparison of the Automated to Manual Pipetting and Drop-Off Methods Using
Phage 536_P1

Using the same source material (phage, bacteria, media), we performed, four times
independently, the titration of phage 536_P1 on strain 536 in triplicate using both the
manual and automated pipetting and drop-off methods.

The difference in phage titers observed between the two methods was of negligible
meaning (Table 1 and Figure 1). When pairwise comparisons were performed on the mean of
values obtained from the four replicates, the absolute difference between the two methods was
0.020 Log for tube A (1.03 × 109–1.08 × 109), 0.042 Log for tube B (1.18 × 108–1.30 × 108), 0.075
Log for tube C (1.05 × 107–1.25 × 107) and 0.204 Log for tube D (1.65 × 106–1.03 × 106). Taken
together, the mean absolute difference for all measures was 0.085 Log.

www.real-statistics.com
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Table 1. Phage 536_P1 titers on strain 536, obtained from the manual and automated drop-off
methods, at four different concentrations.

Dilutions
Manual Method (Reference One) Automated Method (Evaluated One)

A (ND) B (10−1) C (10−2) D (10−3) A (ND) B (10−1) C (10−2) D (10−3)

Rep. #1 1.00 × 109 1.00 × 108 7.33 × 106 1.53 × 106 1.07 × 109 1.33 × 108 1.33 × 107 1.13 × 106

Rep. #2 7.33 × 108 1.20 × 108 1.40 × 107 1.73 × 106 8.67 × 108 1.20 × 108 1.07 × 107 1.13 × 106

Rep. #3 1.53 × 109 1.07 × 108 1.07 × 107 2.07 × 106 1.40 × 109 1.47 × 108 1.27 × 107 1.00 × 106

Rep. #4 8.67 × 108 1.47 × 108 1.00 × 107 1.27 × 106 1.00 × 109 1.20 × 108 1.33 × 107 8.67 × 105

Mean of Rep. 1.03 × 109 1.18 × 108 1.05 × 107 1.65 × 106 1.08 × 109 1.30 × 108 1.25 × 107 1.03 × 106

SD 3.51 × 108 2.06 × 107 2.74 × 106 3.37 × 105 2.27 × 108 1.28 × 107 1.26 × 106 1.28 × 105

CV (%) 33.93 17.44 26.11 20.44 20.94 9.82 10.10 12.35

Mean CV (%) 24.48 (±7.25) 13.30 (±5.21)

ND: non-diluted, Rep.: independent replicate, SD: standard deviation, and CV: coefficient of variation.
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Figure 1. Phage 536_P1 titers on strain 536, obtained from the manual and automated drop-off
methods. The results of four independent replicates are shown, at four different concentrations (Tube
A to D).

The highest variability (33.93%) expressed by the coefficient of variation (CV) was
observed with the manual method on tube A (Table 1). While this was expected as tube A
contained the highest phage titer (likely to amplify any pipetting inconsistency), we found
that the CV obtained with the automated method for the same tube was lower (20.94%).
The same trend was observed for the three other tubes (B, C, D); and overall, the variability
was significantly lower when the titration was performed by the robot as compared with
the manual titration (CV = 13.30 vs. 24.48%, respectively, p = 0.04).

The Bland and Altman analysis using a ratio vs. average method showed a very
low bias of 0.99 (95% confidence interval: 0.95–1.05), with a stable concordance of the
two methods across the interval of tested phage titers (roughly 106 to 109 PFU/mL) as
shown in Figure 2. In this analysis, the closer the ratio (of results from one method to the
other) is to 1, the more these methods give identical results. Finally, Lin’s concordance
correlation coefficient was 0.86 (95% confidence interval: 0.66–0.95), indicating a good
agreement between the two methods. A quasi-equivalence was then demonstrated between
the manual and automated drop-off methods.
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3.2. Evaluation of the Performance of the Automated Method on a Large Series of Tests

Next, we used the robot to spot serial dilutions of 11 phage suspensions (10 individual
phages and a cocktail of) on a set of 126 E. coli strains that included the 10 original hosts of
the phages (positive controls). The latter were all susceptible to their respective phages.

A total of 33,264 spots were performed by the robot: 126 strains × 11 phages (10 singles
phages and 1 cocktail) × 8 concentrations × 3 replicates. We used 378 agar plates (3 plates per
strain), which corresponds to 38 runs (1 run = 10 plates). Overall, the duration of these tests
lasted about 16 h (38 × 24 min), which were split into three consecutive working days.

Within the limits presented hereinafter, drops of phage suspensions were evenly distributed
on the surface of the agar plate (Figure S1). Nonetheless, the most frequently observed irregular-
ity was the merging of two adjacent spots (Figure 3, Panel B), which occurred in 1.97% of the
total spot (i.e., approximately 1 coalescence for 50 spots or 2 coalescences per plate on average).
Opportunely, due to the proceeding of the run, these events were only observed within replicates
and never between drops of different phages or different dilutions. The consequence of such
a merge had a weak impact as PFUs were still separated from one spot to the other (despite
merging of the drop) or because the PFUs count from the merged spots could be divided by 2
and remained still close to the third replicate.

The second irregularity linked to the automation was a “no drop-off” error when a spot
was missed (Figure 3, Panel A): it occurred in 0.93% (i.e., approximately 1 spot missing out of
100, 1 occurrence per plate). This was mainly observed when a drop stayed attached to the
corresponding tip and less frequently to default in liquid aspiration. From a qualitative point of
view, the consequence was limited thanks to the existence of replicates. However, having only
two replicates instead of three (with a possible double dose in phage drop-off on one spot for
some) has indisputably elevated the CV in these rare events (Figure 4).
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Figure 3. Representative images of agar plates obtained with the automated method. Panel A: layout of phage spots on the bacterial lawn (four different phages, vertical axe,
A to D), at a decreasing concentration (horizontal axe, from left to right, ten-fold serial dilution, non-diluted to 10−7), in triplicate. Dotted circles indicate the absence of a drop
at the expected location. Panel B: example of drop coalescence (merging). Panel C: example of the visualization of two plaque morphologies when testing the cocktail,
corresponding to two active phages.
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From a total of 151 positive phage–bacteria interactions, for which individual PFUs
were identified, four of them were excluded from the analysis as the number of individual
plaques in the highest dilution was still above 50 and precluded a reliable count. The
remaining 147 positive interactions corresponding to 441 spots (147 × 3) were analyzed.
The concentration range was 5 × 103 to 7 × 1010 PFU/mL. The median coefficient of
variation for all measures was 16.9% (IQ25–75% range: 10.6–27.5%, Figure 4).

When focusing on the precision (fidelity) of the measures, we found that an acceptable
value (defined here as a CV lower than 15%) was observed when the phage titer was
assessed by counting at least 15 PFUs per spot. In other words, the lowest variation in
repeated measures was obtained when the number of counted events (PFU per spot) was
higher than 15 (Table 2).
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Figure 4. Distribution of the coefficient of variation (CV) of the phage titers obtained from 147 positive
interactions. Each dot is the CV of one titration performed in triplicate. A CV of 0 means that no
variation was observed within the triplicate (equal number of PFUs on each replicate). The box plot
indicates median and interquartile ranges (25–75%); whiskers represent the 10th and 90th percentiles.

Table 2. Phage titration using the automated method: mean coefficient of variation (CV) according to
the number of plaques counted per spot within a triplicate (147 titrations analyzed).

Number of PFUs Per Spot
(Mean of the 3 Replicates)

Number of Independent
Triplicates Analyzed Mean CV (%)

]0–5] 6 37.1%
]5–10] 26 29.3%

]10–15] 37 25.5%
]15–20] 40 14.1%
]20–25] 19 14.1%
]25–30] 12 9.6%
]30–50] 7 7.9%

In this report, we did not exploit the data beyond those needed for the critical analysis
of the automated method. However, it should be noted that we could: (i) calculate the
efficiency of plaquing for each phage forming individual plaques on tested strains, (ii) detect
the growth of phage-resistant bacteria within clear spot areas and (iii) observe different
plaque morphologies with cocktail as shown in Figure 3, Panel C.
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4. Discussion

We demonstrated here that a liquid-handling robot was suitable to perform direct spot
tests of serial phage dilutions for the evaluation of phage potency in semi-solid medium
(i.e., presence or absence of a lytic activity, titration, and efficiency of plaquing when
lysis is observed). In particular, we found that the variability of measures obtained with
the robot was lower, as compared with the manual method. The challenge represented
by dropping off a low volume of liquid on the surface of an agar plate required several
steps of optimization but was overall well achieved and proved to be stable over several
independent runs.

Within a triplicate, the observed coefficient of variation for our measures (titers)
was nonetheless slightly higher than the one usually reported in the literature with an
automated pipetting system (in terms of volume accuracy), which is usually lower than
10% [16,17]. Nonetheless, one has to keep in mind that our analysis of variability concerned
the final result of two operations: the pipetting itself (aspiration, serial ejection) and the
drop-off on the agar surface (that must be complete), the latter being not evaluated in
studies focused on pipetting accuracy.

Our work has several limits. First, we only assessed intra-observer variations, as the
purpose of this study was only to investigate the technique by itself and not the whole
process in multiple hands (i.e., the inter-observer variations) [18]. By definition, operations
performed by an automated system display no or very weak variations. If present, these
variations are within the limit of the technical specifications of the process and not subject
to the influence of human interventions. Second, phage potency testing might not be
limited to assays performed in semi-solid (agar) medium. Interactions between phages
and bacteria are different in liquid and in semi-solid medium. Indeed, phenotypic traits in
bacteria are highly different according to their planktonic or sessile lifestyle [19]. Changes
displayed are prone to introduce many differences in phage–bacteria interaction through,
for example, variations in expression of receptor binding proteins, capsule, metabolic state
(linked to available nutrients), and rate of cell division [20]. Consequently, differences in
phage susceptibility testing results between semi-solid or liquid medium can sometimes be
observed. In most cases, assays in liquid medium offer the possibility to follow bacterial
lysis over time by recording the optical density at regular intervals and provide data
on the ability of the phage population to hold onto a low bacterial density without the
apparition of resistant clones over time [21]. Fortunately, studies of the interactions between
phages and bacteria in a liquid medium could also be implemented with a liquid-handling
robot. Third, we observed that at least 15 PFUs should be numerated to decrease the
measure variability in the evaluated conditions. This target was difficult to achieve with
phages making large plaques as less than ten individual plaques could be enough to merge
altogether into a complete clearance area. For those situations, either an early reading of
the plate or a conventional method (like the double-layer agar method, that provides a
larger surface of analysis) could help circumvent this limitation.

To assess phage potency, the visualization of individual PFUs is of critical importance
and the methods presented here (manual or automated) allow us to reach this objective.
Beyond allowing the precise determination of the viral titer of a solution, this point is
technically important to prevent misclassification of phage activity that could be linked
to mechanisms of lysis that do not rely on a viral cycle but, as an example, on an abortive
infection [22] or lysis from without [23].

In these cases, a total or partial erasure of the bacterial lawn may be observed at high
phage concentration but without individualized PFUs at lower dilutions. When present,
these observations may not be related to a viral cycle, and phages that demonstrate such
a pattern on a given strain should not be considered active, according to the classical
definition (that is for a virus, the ability to replicate into the host and produce progeny).
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Assessing precise titers also allows, as in our method, to calculate the EOP (efficiency
of plaquing) of a phage towards all susceptible strains. EOP is the titer of a phage against a
specific strain, as compared to its titer on its reference host strain (titrated in parallel) [24]:

EOP =
Titer o f phage X on the tested strain (PFU/mL)

Titer o f phage X on its re f erence host strain (PFU/mL)

On this basis, phages can be classified in terms of potency, using the following commonly
accepted thresholds: highly virulent (0.1 < EOP > 1.00), moderately virulent (0.001 < EOP < 0.099),
and weakly or avirulent (EOP < 0.001) [25–27].

However, the simplest method like the classical spot test (or spot assay), often reported
in the literature [24], still has the advantage of the rapidity and can be used for large and
quick screenings. As such, the spot assay (one drop of phage without serial dilutions) may
provide only qualitative results with a lower specificity. Thus, the inherent weakness of
this approach [24,28], should be kept in mind, especially the risk of false positives linked to
the above-mentioned mechanisms, as well as the impossibility to calculate an EOP value.

Automation of clinical microbiology laboratories is continuously growing and pro-
vides many benefits to biologists, clinicians and ultimately patients. Among them, automa-
tion improves reproducibility, traceability, and time to test result, while decreasing human
related errors, repetitive tasks, and possibly long-term financial costs [29]. We can antici-
pate that, even if expensive and requiring dedicated training, automated phage titration
techniques as presented here could be routinely used by clinical laboratories. Nonetheless,
a complete automation process should not be considered as such if it does not include the
last part of the process, which is plate reading and PFU count. Fortunately, automation of
these tasks is already under development, which will certainly contribute to improving
phage potency assessment [30–32].
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