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Abstract: Dementia poses a substantial global health challenge, warranting an exploration of its
intricate pathophysiological mechanisms and potential intervention targets. Leveraging multi-omic
technology, this study utilizes data from 2251 participants to construct classification models using
lipidomic, gut metabolomic, and cerebrospinal fluid (CSF) proteomic markers to distinguish between
the states of cognitive decline, namely, the cognitively unimpaired state, mild cognitive impairment,
and dementia. The analysis identifies three CSF proteins (apolipoprotein E, neuronal pentraxin-2,
and fatty-acid-binding protein), four lipids (DEDE.18.2, DEDE.20.4, LPC.O.20.1, and LPC.P.18.1),
and five serum gut metabolites (Hyodeoxycholic acid, Glycohyodeoxycholic acid, Hippuric acid,
Glyceric acid, and Glycodeoxycholic acid) capable of predicting dementia prevalence from cognitively
unimpaired participants, achieving Area Under the Curve (AUC) values of 0.879 (95% CI: 0.802–0.956),
0.766 (95% CI: 0.700–0.835), and 0.717 (95% CI: 0.657–0.777), respectively. Furthermore, exclusively
three CSF proteins exhibit the potential to predict mild cognitive impairment prevalence from
cognitively unimpaired subjects, with an AUC of 0.760 (95% CI: 0.691–0.828). In conclusion, we
present novel combinations of lipids, gut metabolites, and CSF proteins that showed discriminative
abilities between the states of cognitive decline and underscore the potential of these molecules in
elucidating the mechanisms of cognitive decline.
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1. Introduction

Dementia is a growing health concern and presents a rising burden of morbidity and
mortality, with an estimated prevalence increase from 57.4 million in 2019 to 152.8 million in
2050 [1]. Beyond established genetic predispositions, the anticipated increase in dementia
cases underscores the importance of addressing cardiometabolic risk and the need for
primary and secondary prevention [2].

Intense research has focused on elucidating molecular differences between cognitively
healthy and demented individuals. Large-scale multi-omic studies reveal pivotal insights
into Alzheimer’s Disease (AD), offering the potential for personalized diagnosis and
treatment. Despite their contributions, challenges such as AD complexity and cohort
heterogeneity need to be addressed to advance our understanding. The integration of data
from various omics platforms provides valuable insights into intricate biological pathways,
paving the way for targeted therapeutic interventions and precision medicine [3].

The dysregulation of plasma lipidome is evident in AD and offers great predicting
capabilities for prevalent and incident cases of AD. A wide range of lipids is suggested to be
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implicated in the disease’s pathophysiology, such as phospholipids, sulfatides, gangliosides,
ceramides, and plasmalogens [4,5].

The proteomic signatures associated with AD subtypes were present already at the
preclinical stage and largely remained stable with increasing disease severity [6]. It has
been shown that SMOC1 and SPON1 proteins are associated with Aβ deposition and
brain structural integrity, which are present in high concentrations nearly 30 years before
the onset of symptoms. The study of the temporal evolution of AD alongside proteomic
changes may seem useful in the spectrum of early detection of AD pathophysiological
changes and subsequently reveal novel diagnostic and therapeutic perspectives [7].

Studies have revealed a significant link between gut metabolomic changes and Alzheimer’s
disease (AD). Key findings include altered gut microbial metabolites, with differences in
tryptophan metabolites, short-chain fatty acids (SCFAs), and lithocholic acid observed in
AD patients compared to controls. Gut microbiome alterations in AD participants showcase
decreased microbial diversity and a distinct composition, emphasizing the gut–brain axis’s
potential influence on the central nervous system function [8]. A mouse model study
associates dysregulated the gut–brain axis involvement with AD progression, highlighting
the need to characterize dysbiosis for alternative disease management strategies [9]. Col-
lectively, these studies underscore the intricate interplay between gut metabolites, blood
lipids, and CSF proteomics, with AD pathophysiology, thereby offering insights into po-
tential biomarkers, therapeutic targets, and lifestyle interventions for AD management.
Understanding these processes at early stages is crucial for early diagnosis, prognosis, and
designing targeted interventions.

Considering the profound impact of molecular profiles on cognitive decline, this study
investigates alterations and diagnostic abilities of baseline blood lipidomic, serum gut
microbial metabolomic, and cerebrospinal fluid (CSF) proteomic profiles in cognitively
normal individuals for identifying the prevalence of dementia.

2. Materials and Methods

In this study of the Alzheimer’s Disease Neuroimaging Initiative (ADNI), 2251 partici-
pants with a baseline diagnosis of cognitively unimpaired (CU), mild cognitive impairment
(MCI), and dementia were included, of which the available lipidomic, metabolomic, and
CSF proteomic features were obtained. At baseline, it included 677 CU individuals, 1203
with a diagnosis of MCI, and 449 with dementia. After filtering for missing values, the
sample numbers used for the statistical analyses are shown in Table 1.

Table 1. Baseline characteristics.

Lipidomics Gut Metabolomics CSF Proteomics

Participants (n) 883 1168 278

Age (SD) 73 (±7) 74 (±7) 75 (±7)

Sex

Female (n) 491 678 172
Male (n) 391 490 106

Diagnosis

Cognitively Unimpaired (n) 245 352 80
Mild Cognitive Impairment (n) 482 598 123

Dementia (n) 156 218 75

Number of ApoE4 Alleles

None (n) 475 623 142
One (n) 321 433 99
Two (n) 87 112 37

Education years (SD) 16 (±3) 16 (±3) 16 (±3)
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Table 1. Cont.

Lipidomics Gut Metabolomics CSF Proteomics

BMI category

Normal weight (n) 288 421 121
Overweight (n) 402 534 120

Obese (n) 193 213 37

Abbreviation: SD, standard deviation; CSF, cerebrospinal fluid; ApoE4, apolipoprotein E4; BMI, body mass index.

The ADNI was launched in 2003 as a public–private partnership, led by Principal
Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test whether
serial MRI, PET, other biological markers, and clinical and neuropsychological assessments
can be combined to measure the progression of mild cognitive impairment (MCI) and
early Alzheimer’s disease. The ADNI participants were recruited from >50 sites across
the United States and Canada. Detailed descriptions of the diagnostic criteria for ADNI
have been reported in previous publications [10]. Study data were obtained from the ADNI
database (https://adni.loni.usc.edu/, assessed on 21 December 2023).

2.1. Lipidomics Data

A lipidomic analysis targeting 781 specific lipid species was conducted using plasma
samples from participants in the ADNI study. In total, 10 µL of pre-portioned plasma
was combined with 100 µL of butanol–methanol (1:1) solution containing 10 mM of am-
monium formate and a blend of internal standards. Following vortexing and sonication,
the samples were centrifuged at 14,000× g for 10 min at 20 degrees Celsius before be-
ing transferred into sample vials with glass inserts for analysis. This involved utilizing
ultra-high-performance liquid chromatography combined with chromatographic separa-
tion techniques to distinguish between isomeric and isobaric lipid species. Mass spec-
trometry analysis was carried out using an Agilent mass spectrometer (model 6490 QQQ)
operating in positive ion mode, employing dynamic scheduled multiple reaction moni-
toring (MRM). The analysis protocol followed was developed by Kevin Huynh and Pe-
ter Meikle at the Metabolomics Laboratory of the Baker Heart and Diabetes Institute.
Detailed information about their lipidomics platform can be found in the methodology
file (https://adni.bitbucket.io/reference/docs/ADMCLIPIDOMICSMEIKLELABLONG/
meiklelab_methods_[Updated_for_20-10-2020].pdf, assessed on 21 December 2023) and
related publications [5].

2.2. Gut Metabolomics

The gut microbial metabolomic analysis was conducted by an ultra-performance liquid
chromatography coupled to tandem mass spectrometry (UPLC-MS/MS) system (ACQUITY
UPLC-Xevo TQ-S, Waters Corp., Milford, MA, USA), and 104 metabolites were quantified
in human serum samples. For sample preparation, 20 µL of each standard solution or
serum sample was combined with 120 µL of an internal standard solution. Following
centrifugation at 13,500× g and 4 degrees Celsius for 10 min, 30 µL of the supernatant
was transported to a 96-well plate for derivatization. Each well received a 10 µL aliquot
of freshly prepared derivative reagents: 200 mM 3-NPH in 75% aqueous methanol and
96 mM EDC-6% pyridine solution in methanol. After derivatization at 30 degrees Celsius
for 60 min, 400 µL of ice-cold 50% methanol solution was added to dilute the sample.
The plate was then stored at −20 degrees Celsius for 20 min, followed by centrifugation
at 4 degrees Celsius for 30 min at 4000× g. Subsequently, 135 µL of supernatant was
transferred to a new 96-well plate in each well. Lastly, the plate was sealed for LC-MS
analysis, with an injection volume of 5 µL. The analysis was conducted following the proto-
col developed by Huizhen Zhang at the University of Hawaii Cancer Center. A detailed
description of their gut microbial metabolomic platform was provided in the methodol-
ogy file (https://adni.bitbucket.io/reference/docs/ADMCGUTMETABOLITESLONG/

https://adni.loni.usc.edu/
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https://adni.bitbucket.io/reference/docs/ADMCGUTMETABOLITESLONG/Uhawaii_methods_Human_serum_Rima_MicrobiomeMetabolites[Updated_for_20-10-2020].pdf
https://adni.bitbucket.io/reference/docs/ADMCGUTMETABOLITESLONG/Uhawaii_methods_Human_serum_Rima_MicrobiomeMetabolites[Updated_for_20-10-2020].pdf
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Uhawaii_methods_Human_serum_Rima_MicrobiomeMetabolites[Updated_for_20-10-20
20].pdf, assessed on 21 December 2023) and respective articles [11].

2.3. CSF Proteomics

Targeted CSF proteomics data were analyzed and processed by the Department of
Neurology, Emory University School of Medicine, using CSF samples from the ADNI
cohort obtained by mass spectrometry. This study encompassed 306 cerebrospinal fluid
(CSF) samples. Each CSF sample, amounting to 0.5 mL, was preserved at −80 ◦C. Upon
thawing, 100 µL of each sample underwent depletion of high-abundance proteins utilizing a
MARS14 immunoaffinity resin (4.6 × 100 mm column, Agilent, Santa Clara, CA, USA), and
the lower abundance proteins were then stored at −80 ◦C. Furthermore, the frozen samples
underwent lyophilization over a period of 72 h and were subjected to overnight digestion
with trypsin at a protease-to-protein ratio of circa 1:25. Following digestion, the samples
were once again lyophilized and desalted using a 3M Empore C18 96-well plate. Two sets
of replicate mass spectrometry (MS) plates were prepared for each sample, which were
then dried by vacuum evaporation and stored at −20 ◦C before MS analysis. The samples
were reconstituted with a solution containing 5 internal standard peptides, followed by
LC/MRM-MS analysis performed on a QTRAP 5500 instrument. Detailed information
regarding protein assessment and quality control can be found at the provided link. In
the case of ADNI MRM data, the finalized ‘Normalized Intensity’ data, which underwent
quality control procedures, were utilized, with further explanation of the normalization
process available in the “Biomarkers Consortium CSF Proteomics MRM data set” within
the “Data Primer” document at adni.loni.ucla.edu and in related publications [12].

2.4. APOE Genotyping

At the baseline visit, blood samples were obtained from the participants, shipped
to the central biomarker analysis lab at the University of Pennsylvania, and processed
using an APOE genotyping kit, as further described (http://adni.loni.usc.edu/wp-content/
uploads/2010/09/ADNI_GeneralProceduresManual.pdf, assessed on 21 December 2023).
The APOE genotype was evaluated by examining two SNPs (rs429358, rs7412) that char-
acterize the epsilon 2, 3, and 4 alleles. This analysis was conducted using DNA extracted
from a 3 mL portion of EDTA blood.

2.5. Statistical Analysis

In the multi-omic analyses, log10 transformation followed by a standard normalization
(zero mean and one-unit standard deviation) was performed on each multi-omic variable.
Lipidomic features, owing to their large variable number, were filtered by the lower 25%
of Relative Standard Deviation (RSD). Feature selection was performed using ten-fold
cross-validated Recursive Feature Elimination (RFE). The top 5 contributing variables
were extracted. Then, we included only the variables adjusted for multicollinearity with a
variance inflation factor (VIF) < 3 and performed logistic regression with stratified ten-fold
cross-validation to assess the models’ discriminative performance in terms of the area under
the receiver operating characteristic curve (AUC). Furthermore, we used Youden’s Index to
determine the optimal risk threshold. All analyses were performed using R version 4.3.2
(31 October 2023).

3. Results

The baseline characteristics of the study population are presented in Table 1. After
RFE, four lipids (DEDE.18.2, DEDE.20.4, LPC.O.20.1, and LPC.P.18.1), five serum gut
metabolites (Hyodeoxycholic acid, Glycohyodeoxycholic acid, Hippuric acid, Glyceric
acid, and Glycodeoxycholic acid), and three CSF proteins (apolipoprotein E, neuronal
pentraxin-2, and fatty-acid-binding protein) were included.

Compared to blood lipids and metabolites, CSF proteins differentiated CU individuals
from those with dementia with the highest AUC (0.879, 95% CI: 0.802–0.956) (Tables 2–5.

https://adni.bitbucket.io/reference/docs/ADMCGUTMETABOLITESLONG/Uhawaii_methods_Human_serum_Rima_MicrobiomeMetabolites[Updated_for_20-10-2020].pdf
https://adni.bitbucket.io/reference/docs/ADMCGUTMETABOLITESLONG/Uhawaii_methods_Human_serum_Rima_MicrobiomeMetabolites[Updated_for_20-10-2020].pdf
https://adni.bitbucket.io/reference/docs/ADMCGUTMETABOLITESLONG/Uhawaii_methods_Human_serum_Rima_MicrobiomeMetabolites[Updated_for_20-10-2020].pdf
https://adni.bitbucket.io/reference/docs/ADMCGUTMETABOLITESLONG/Uhawaii_methods_Human_serum_Rima_MicrobiomeMetabolites[Updated_for_20-10-2020].pdf
http://adni.loni.usc.edu/wp-content/uploads/2010/09/ADNI_GeneralProceduresManual.pdf
http://adni.loni.usc.edu/wp-content/uploads/2010/09/ADNI_GeneralProceduresManual.pdf
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Blood lipids showed an AUC of (0.766, 95% CI: 0.700–0.835), and gut metabolites had an
AUC of (0.717, 95% CI: 0.657–0.777). All three categories (blood lipids, CSF proteins, and
blood metabolites) demonstrated similar performances in differentiating between MCI and
dementia, with AUCs ranging between 0.617 and 0.673 (Tables 2 and 6–8). Ultimately, to
distinguish individuals with CU from those who developed MCI, CSF proteins remained
first in terms of performance, with an AUC of 0.760 (95% CI: 0.691–0.828), followed by
blood lipids with an AUC of 0.655 (95% CI: 0.610–0.701) and gut metabolites with an AUC
of 0.556 (95% CI: 0.516–0.595) (Tables 2 and 9–11). The inclusion of the number of APOE4
alleles did not significantly increase the AUC in any prediction.

Table 2. Comparison of AUC (95% CI) performance for each set of predictors.

Predictors CU vs. Dementia MCI vs. Dementia CU vs. MCI

Blood Lipids

− DEDE.18.2
− DEDE.20.4
− LPC.O.20.1
− LPC.P.18.1

0.766 (0.700–0.835) 0.617 (0.581–0.652) 0.655 (0.610–0.701)

CSF proteins

− Apolipoprotein E
− Neuronal pentraxin-2
− Fatty-acid-binding protein

0.879 (0.802–0.956) 0.673 (0.594–0.752) 0.760 (0.691–0.828)

Blood gut Metabolites

− Hyodeoxycholic acid
− Glycohyodeoxycholic acid
− Hippuric acid
− Glyceric acid
− Glycodeoxycholic acid

0.717 (0.657–0.777) 0.653 (0.611–0.695) 0.556 (0.516–0.595)

Abbreviations: cognitively unimpaired, CU; mild cognitive impairment, MCI; CSF, cerebrospinal fluid.

Table 3. Prediction of cognitive unimpaired—Dementia with lipids.

Predictors AUC (95%CI) Standard
Deviation Accuracy Precision Recall F1 Youden Index SE NPV PVV

4 lipids 0.766 (0.700–0.835) 0.097 0.650 0.545 0.400 0.461 0.270
(0.160–0.380) 0.049 0.690 0.550

4 lipids + APOE4
alleles

0.836 (0.798 to
0.874) 0.053 0.718 0.667 0.533 0.593 0.227

(0.119–0.336) 0.048 0.741 0.667

Table 4. Prediction of cognitive unimpaired—Dementia with metabolites.

Predictors AUC (95%CI) Standard
Deviation Accuracy Precision Recall F1 Youden Index SE NPV PPV

5 metabolites 0.717 (0.657–0.777) 0.083 0.632 0.533 0.364 0.432 0.127
(0.016–0.239) 0.050 0.667 0.533

5 metabolites +
APOE4 alleles 0.794 (0.751–0.837) 0.060 0.825 0.833 0.682 0.750 0.179

(0.078–0.280) 0.044 0.821 0.833

Table 5. Prediction of cognitive unimpaired—Dementia with CSF proteins.

Predictors AUC (95%CI) Standard
Deviation Accuracy Precision Recall F1 Youden Index SE NPV PPV

3 CSF proteins 0.879 (0.802–0.956) 0.107 0.875 0.875 0.875 0.875 0.660
(0.503–0.818) 0.070 0.875 0.875

3 CSF proteins +
APOE4 alleles 0.891 (0.836–0.946) 0.076 0.933 1 0.857 0.923 0.614

(0.428–0.800) 0.082 0.889 1
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Table 6. Prediction of mild cognitive impairment—Dementia with lipids.

Predictors AUC (95%CI) Standard
Deviation Accuracy Precision Recall F1 Youden Index SE NPV PVV

4 lipids 0.623 (0.533–0.712) 0.125 0.750 0.500 0.063 0.111 0.045
(0.007–0.082) 0.017 0.759 0.500

4 lipids + APOE4
alleles 0.661 (0.603–0.719) 0.081 0.770 0.667 0.125 0.211 0.065

(−0.021–0.109) 0.020 0.774 0.667

Table 7. Prediction mild cognitive impairment—Dementia with metabolites.

Predictors AUC (95%CI) Standard
Deviation Accuracy Precision Recall F1 Youden Index SE NPV PPV

5 metabolites 0.653 (0.611–0.695) 0.059 0.732 0.500 0.045 0.083 0.037
(0.003–0.070) 0.015 0.738 0.500

5 metabolites +
APOE4 alleles 0.675 (0.634–0.715) 0.056 0.704 0.375 0.136 0.200 0.076

(0.021–0.126 0.023 0.740 0.375

Table 8. Prediction of mild cognitive impairment—Dementia with CSF proteins.

Predictors AUC (95%CI) Standard
Deviation Accuracy Precision Recall F1 Youden Index SE NPV PPV

3 CSF proteins 0.673 (0.594–0.752) 0.111 0.650 0.600 0.375 0.462 0.163
(−0.004–0.329) 0.074 0.667 0.600

3 CSF protein +
APOE4 alleles 0.700 (0.618–0.781) 0.114 0.579 0.333 0.143 0.200 0.193

(0.073–0.313) 0.053 0.625 0.333

Table 9. Prediction of cognitive unimpaired—Mild cognitive impairment with lipids.

Predictors AUC (95%CI) Standard
Deviation Accuracy Precision Recall F1 Youden Index SE NPV PVV

4 lipids 0.655 (0.610–0.701) 0.063 0.797 0.750 0.200 0.316 0.059
(0.012–0.105) 0.021 0.797 0.750

4 lipids + APOE4
alleles 0.680 (0.641–0.719) 0.055 0.597 0.667 0.792 0.724 0.147

(0.0577–0.237) 0.040 0.333 0.667

Table 10. Prediction of cognitive unimpaired—Mild cognitive impairment with metabolites.

Predictors AUC (95%CI) Standard
Deviation Accuracy Precision Recall F1 Youden Index SE NPV PPV

5 metabolites 0.556 (0.516–0.595) 0.056 0.628 0.630 0.983 0.768 0.037
(0.002–0.071) 0.015 0.500 0.630

5 metabolites +
APOE4 alleles 0.631 (0.585–0.678) 0.065 0.663 0.663 0.950 0.781 0.079

(0.053–0.104) 0.011 0.667 0.662

Table 11. Prediction of cognitive unimpaired—Mild cognitive impairment with CSF proteins.

Predictors AUC (95%CI) Standard
Deviation Accuracy Precision Recall F1 Youden Index SE NPV PPV

3 CSF proteins 0.760 (0.691–0.828) 0.095 0.700 0.688 0.917 0.786 0.301
(0.196–0.406) 0.046 0.750 0.688

3 CSF protein +
APOE4 alleles 0.783 (0.713–0.854) 0.098 0.700 0.688 0.917 0.786 0.389

(0.230–0.548) 0.070 0.7500 0.688



Biomedicines 2024, 12, 941 7 of 8

4. Discussion

In our investigation, the discriminative abilities of biomarker panels derived from
CSF, lipidomic, and metabolomic profiles for the prognosis of prevalent dementia were
evaluated. The inclusion of three CSF proteins (apolipoprotein E, neuronal pentraxin-2, and
fatty-acid-binding protein) demonstrated excellent discriminative capabilities between CU
individuals and individuals with dementia, while four lipids and five metabolites exhibited
significant, albeit less pronounced, discriminative abilities. Notably, none of the feature
groups studied in this study met clinical significance in differentiating between MCI and
dementia and between CU and MCI.

It is known that there are differences in circulating plasma and CSF molecules be-
tween cognitively unimpaired individuals and those with cognitive decline. However, the
available literature is still limited and presents heterogeneity [13–15]. Lysophosphatidyl-
cholines and dehydrodesmosterol ester alterations are documented in AD pathology and
are associated with its progression [16]. Regarding CSF proteomics, apolipoprotein E,
neural pentraxin-2, and fatty-acid-binding protein have been implicated in neurodegenera-
tion, which are markers of prognosis [7], synaptic function, amyloid deposition [17], and
neuronal membrane disruption [18], respectively. The relationship between the utilized
gut metabolites and neurodegeneration is yet to be elucidated. There is early evidence
that multi-omic features, such as beta amyloid and tau, may be associated with the CSF
biomarkers of neurodegeneration [4]. In light of our findings, further research is necessary
to comprehensively study the pathophysiological pathways of cognitive decline using
proteomic, lipidomic, and metabolomic markers.

Acknowledging the absence of an external validation cohort as a noteworthy constraint
warranting consideration in future investigations is essential. In conclusion, we present
novel combinations of lipids, metabolites, and proteins that showed discriminative abilities
between the states of cognitive decline and underscore the potential of these molecules in
elucidating the mechanisms of cognitive decline.
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