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Abstract: The unique opportunity for aptamer uses in thrombotic events has sparked a considerable
amount of research in the area. The short half-lives of unmodified aptamers in vivo remain one
of the major challenges in therapeutic aptamers. Much of the incremental successful therapeutic
aptamer stories were due to modifications in the aptamer bases. This mini-review briefly summarizes
the successes and challenges in the clinical development of aptamers for thrombotic events, and
highlights some of the most recent developments in using aptamers for anticoagulation monitoring.
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1. Introduction

Antibodies and their variants, such as antigen-bind fragments (Fab) and single-chain variable
fragments (scFv), have received considerable attention in the area of biomedicine. In the past decade,
there has been a modest increase in the number of biological drugs approved by the US FDA [1]. Almost
all of the approved biologics are antibodies and antibody–drug conjugates, with a few additional
enzyme products [1]. A largely under-explored area of biologics is nucleic acid-based aptamer therapies.
The purpose of this review is to provide a summary and perspective of the clinical success and failure
of aptamer-based therapeutic agents in the treatment and monitoring of thrombotic events.

1.1. A Brief History of Aptamers

Aptamers are molecular recognition elements (MREs) that include peptides and nucleic acids
(RNA and ssDNA). Nucleic acid aptamers have received high interest in their use as therapeutic
agents, targeting agents, and biosensing elements. Aptamers, by definition, can bind to various
user-defined targets with high affinity and specificity [2]. Tuerk and Gold first described the process
of discovering oligonucleotide binding elements closed to three decades ago [3]. Tuerk conducted
an in vitro selection experiment, which was first described as the Systematic Evolution of Ligands by
Exponential Enrichment (SELEX), to further understand mutations in the gene 43 protein in bacteria.
Tuerk decided to mutate a hairpin loop that contained eight nucleotides. The project produced two
RNA binding elements (aptamers) that had an equal affinity to gene 43 [4]. Ellington and Szostak
developed a similar process and named their products aptamers, which means “fitting part” [5]. After
these initial experiments, the length of aptamers was expanded to include up to 50 nucleotides to
gain further insight into the tertiary structure and folding of aptamers [4]. In 1992, NeXstar started
using aptamer technology to develop therapeutic agents similar to antibodies. The first aptamer that
underwent a clinical trial phase was NX1838. This compound was approved by the FDA in 2005, and
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is now on the market under the trade name Macugen®. Since then, many other researchers started
experiments on the therapeutic, biosensing, and diagnostic applications of aptamers in many different
areas of interest [6,7].

1.2. Aptamer Selection

SELEX is the standard procedure to identify nucleic acid aptamers (Figure 1). First, a library
composed of a random region surrounded by two constant regions for primer attachment is designed
and chemically synthesized. The two constant regions allow the library to be amplified by a polymerase
chain reaction (PCR) later on in the selection process. The diversity of this library is described to be 4n

diversity, where n represents the number of random nucleotide bases that compose the random region
of the library. For single-stranded DNA (ssDNA) aptamer selection, the second step is to introduce the
library to the desired target [7]. In comparison, RNA aptamer selection first requires PCR amplification
to add a T7 promoter, and then in vitro transcription of the dsDNA library into an RNA library before
incubation with the desired target. A selection target may be a small molecule, protein, enzyme, or a
whole prokaryotic or eukaryotic cell. During library–target incubation, the two species are allowed
to interact. Library sequences that do not bind to the target are washed and removed. The collected
library sequences will be amplified with PCR, and the library strands are eventually retrieved from
amplified double-stranded DNA (dsDNA). For RNA aptamer selection, the collected RNA molecules
are reverse-transcribed back to cDNA before PCR amplification, and lastly transcribed back to RNA [8].
This population of enriched library molecules will be reintroduced to the target, and the process will
be repeated, resulting in the enrichment of binding library molecules after each round. This process
generally lasts somewhere between 10–15 cycles [9,10].

Throughout the years, many variations of the SELEX process have been created to improve
the quality of the selection process. One method is to introduce negative targets or counter targets
to remove aptamers with a higher affinity to undesired targets or have a high binding affinity for
non-specific molecules. A SELEX process was developed that uses graphene oxide to interact with the
random library, which does not require the immobilization of the target [11]. Other SELEX variants,
such as capillary electrophoresis and microfluidics-based SELEX, are designed to increase the efficiency
of liquid separation and partitioning. Detailed discussions of different SELEX methodologies have
been extensively reviewed by several groups [7,12,13]. After the SELEX process is complete, library
molecules are either cloned into competent cells for sequencing and analysis or more recently analyzed
by high-throughput sequencing, due to decreasing cost. Several candidate sequences will often be
selected and subjected to target-binding affinity and specificity characterization.
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Figure 1. Illustration of the basic Systematic Evolution of Ligands by Exponential Enrichment (SELEX)
process. Repeated cycles of target–library incubation, partitioning, and amplification are performed to
enrich the library’s overall affinity toward the target of interest.

1.3. Clinical Advantages and Disadvantages of Aptamers

Nucleic acid aptamers have several unique properties that give them many advantages for
clinical applications. The first quality that distinguished them from small molecule therapeutics is
that they have high affinity and specificity for their targets due to the SELEX process [3]. Nucleic
acid aptamers generally have a low potential for systemic toxicity due to their composition of natural
molecules [3]. Additionally, aptamers can be synthesized chemically without the use of live systems.
Chemically produced aptamers generally are non-immunogenic, which is a significant advantage
over the immunoglobulin complexes currently on the market [3]. Aptamers are also more thermally
stable than immunoglobulins, which allows them to be transported and stored more conveniently for
practical purposes. Once an aptamer is selected, it is inexpensive to produce, which may give aptamers
a cost advantage for therapeutic purposes in comparison to immunoglobulins [9,14]. The primary
clinical disadvantage of an aptamer is the short half-life in the body [3]. It is mainly due to nucleases
degradations and high renal clearance. Nucleases within the bloodstream quickly degrade aptamers,
which significantly reduces concentrations in the body, and thus prevents them from reaching their
target sites [15]. This phenomenon is particularly significant with RNA aptamers. Ni et al. have
recently reviewed the topic of chemical modifications of nucleic acid aptamers [16]. Briefly, the in vivo
resistance to nucleases can be enhanced by modifying the main areas of susceptibility, the 5’ and 3’
terminal ends, and the phosphodiesterase backbone [3]. Modification to the sugar ring of the nucleoside
and creating mirror images of the nucleic acid aptamer (Spiegelmers) can also enhance resistance to
nuclease degradation. Additions of long bulky chains of biocompatible molecules, such as cholesterol
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and polyethylene glycol, can increase aptamers resistance to renal clearance [16]. However, modifying
these areas after selection may risk alterations in binding affinity or specificity [17].

More recently, both academia and the industry have reported the introduction of unnatural
or modified nucleotides to the library during aptamer selection. SomaLogic Inc. reported using
five-position modified dC and dU to select SOMamer for proprotein convertase subtilisin/kexin
type 9 (PCSK9) protein. The Hirao group reported using two highly hydrophobic unnatural bases,
7-(2-thienyl)imidazo[4,5-b]pyridine (Ds) and 2-nitro-4-propynylpyrrole (Px), to expand the genetic
alphabet of their library to select high-affinity DNA aptamers. They termed this new SELEX variant
ExSELEX [18]. In both cases, the modification produced aptamers with high affinity and enhanced
nuclease resistance.

Since the discovery, aptamers have been investigated for a wide array of therapeutic and biosensing
applications. Many disease states have been researched [9]. The greatest success has been recognized
in the treatment of age-related macular degeneration (ARMD), leading to the first approved aptamer
drug, Macugen® [5]. At the time of this review, ARMD is still the only FDA-approved aptamer
for therapeutic applications. This may be because the clinical delivery of aptamer drugs to the
localized area affected by ARMD has fewer pharmacokinetics challenges, i.e., adsorption, distribution,
metabolism, and excretion. Nucleic acid aptamers that target various cancer cell surface proteins and
biomarkers is a growing interest in both academia and the industry [19,20]. Aptamers have been
shown to be used in conjunction with nanomaterials, such as carbon nanodots or gold nanoparticles,
for applications in biosensing, payload delivery, or providing a direct therapeutic benefit by binding to
their specific targets [21]. One additional disease state where aptamers may offer a unique opportunity
is anticoagulation/antiplatelet therapy and monitoring.

2. Aptamer Clinical Research in Anticoagulation

2.1. Summary of the Coagulation and Clotting Cascades

In brief, anticoagulation agents work by interrupting the coagulation cascade. This cascade is
triggered when the endothelium is damaged, and the tissue factor (TF) is exposed (Figure 2). Then,
factor VIIa responds and converts factor IX to IXa and factor X to Xa. Factor IXa complexes with
factor VIIIa to further convert factor X to Xa. Factor Xa complexes with factor Va to convert factor II
(prothrombin) into factor IIa (thrombin). In turn, thrombin converts factor I (fibrinogen) to factor Ia
(fibrin). Calcium is necessary for the activity of many of the above clotting factors. Finally, the fibrin
will form a mesh to promote clotting, and fibrin and fibrinogen will interact with platelet receptors to
promote adhesion and form the clot. Many current drugs on the market work by inhibiting thrombin
or factor X, or inhibit vitamin-K reductase, which is needed to carboxylate several factors [22].



Biomedicines 2019, 7, 55 5 of 15

Figure 2. Illustration of the coagulation cascade upon vascular endothelium injury. Aptamers have
been isolated to inhibit clotting factors in both the extrinsic and intrinsic pathways of the coagulation
cascade. Different inhibition stages ultimately lead to the inhibition of insoluble fibrin (Factor Ia)
formation. The blue cloud shapes represent aptamers that have been identified to inhibit specific
clotting factors. Each Roman numeral represents the corresponding clotting factor.

In addition to anticoagulation, some drugs act on the clotting cascade. The clotting cascade
is closely related to the coagulation cascade (Figure 3). In the coagulation cascade, platelets are
activated by the Von Willebrand factor (VWF) and collagen fibers exposed by initial endothelial injury.
The activated platelet then upregulates GPIIb/IIIa receptors and releases thromboxane A2 (TxA2) and
ADP to promote activation of additional platelets. Fibrin produced by the anticoagulation cascade and
fibrinogen bind to GPIIb/IIIa receptors on platelets to promote adhesion to other platelets. Ultimately,
this leads to the aggregation of platelets and clot formation at the site of injury [22].
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Figure 3. Illustration of the clotting cascade upon vascular endothelium injury. VWF: Von Willebrand
factor; ADP: adenosine diphosphate. VWF and collagen activate platelets. Upregulated GPIIb/IIIa
receptors on activated platelets increase the release of thromboxane A2 and ADP, and additional
platelets are activated to promote clot formation at the site of injury. The blue cloud shape represents
aptamers that have been identified to inhibit the Von Willebrand factor and stops platelet activation.

Since there are a relatively large amount of proteins that are either directly or indirectly involved
in the coagulation and clotting cascades, many of them have been investigated as therapeutic targets for
inhibition by nucleic acid aptamers. The following sub-section summarizes different anticoagulation
aptamers that had progressed into various stages of the pre-clinical testing and clinical trial (Table 1).

Table 1. Summary table of different pre-clinical and clinical stages anti-thrombotic aptamers.

Aptamer Type Target Developer Evaluation
Stages Reference

ARC-1779 DNA Von Willebrand
Factor Archemix Phase II [23]

Rn-DsDsDs-44 Unnatural
DNA

Von Willebrand
Factor

TagCyx Biotechnologies,
RIKEN Center for Life
Science Technologies

Pre-clinical [18]

DTRI-031 RNA * Von Willebrand
Factor Duke Medical Center Pre-clinical [24]

NU172 DNA IIa ARCA Biopharm Phase II [25,26]
HD22 DNA IIa University of Bonn Pre-clinical [27]

HD1-22 DNA IIa University of Bonn Pre-clinical [27]
RE31 Modified DNA IIa Polish Academy of Sciences Pre-clinical [28]
M08 DNA IIa The University of Tokyo Pre-clinical [29]

ThAD DNA IIa Arizona State University Pre-clinical [30]
R9d14t RNA * II/ IIa Duke Medical Center Pre-clinical [31]
REG1 RNA * IXa Regado Biosciences Phase III [32–34]
REG2 RNA * IXa Regado Biosciences Phase I [35]
11F7t RNA * Xa Duke Medical Center Pre-clinical [36]

FELIAP DNA XIa

McMaster University,
Canadian Blood Services

Thrombosis and
Atherosclerosis Research

Pre-clinical [37]

11.16 RNA * XIa Duke Medical Center Pre-clinical [38]
12.7 RNA * XIa Duke Medical Center Pre-clinical [38]

R4cXII-1 RNA * XII/XIIa Duke Medica Center Pre-clinical [39]
Kall1-T4 RNA * Kallikrein Duke Medical Center Pre-clinical [40]

* Note: RNA aptamers contain fluoro-modified cytosine and uracil nucleotides. Each Roman numeral represents
the corresponding clotting factor.
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2.2. Anticoagulation Aptamers

2.2.1. Von Willebrand Factor Inhibitors

ARC-1779 is a DNA aptamer developed by the Archemix Corporation to target the human von
Willebrand factor (vWF) [23]. vWF interacts with GP1b on platelets to affect the P2Y12 receptor, which
leads to platelet activation. By inhibiting the von Willebrand factor, ARC-1779 blocks platelet activation
and platelet aggregation, as well as thrombin generation. ARC-1779 is a 40-nucleotide aptamer that
underwent PEGylation and methylation to increase the duration of action in vivo [23]. The clinical
utility of ARC-1779 was investigated for cerebral embolism and thrombotic thrombocytopenic purpura
(TTP). The high dose completely blocked the target domain on the vWF, whereas the low dose (0.5 µg/

mL) did not, suggesting that the relationship between ARC-1779 and vWF inhabitation may be
dose-dependent. Also, ARC-1779 did not resolve all the features of TTP during the trials [41]. During
this study, the aptamer did not have any significant bleeding events, and was generally well tolerated.
In 2009, phase II studies for clinical use in TPP was completed. However, the sponsor decided to
withdraw the study for further investigation.

Matsunaga et al. developed several DNA aptamers that bind to the von Willebrand
factor. In order to improve the variety of the genetic library, an unnatural nucleotide,
7-(2-thienyl)imidazo[4,5-b]pyridine (Ds), and its partner, 2-nitro-4-propynylpyrrole (Px), were
introduced into the library [18]. Three DNA aptamers—Rn-DsDsDs-44, ARC1172-41, and
Pr-DsDsDs-40—were characterized and then modified. Rn-DsDSDs-44 had the highest affinity
for vWF (KD = 75 pM), followed by ARC1172-41, and then Pr-DSDSDS-40. The Rn-DsDsDs-44 vWF
complex had the highest stability at physiologic temperature. ARC1172 and Rn-DsDsDs-44 both
underwent mini-hairpin modification to produce ARC1172-50mh2 and Rn-DsDs-51mh2, respectively
to improve the stability of each aptamer. Both of the modified aptamers had greater percentages
remaining after a 72-hour incubation in human serum at physiologic temperature compared to the
parent aptamers, thus confirming its enhanced nuclease resistance [18].

Nimjee et al. recently developed a new anti-VWF RNA aptamer named DTRI-031 [24].
This aptamer was truncated to a 30-mer from the original 60-mer candidate aptamer. A 5-uracil
tail was added to the 3’ position for antidote oligonucleotide binding. DTRI-031 was able to inhibit
platelet aggregation in whole blood and prevent thrombosis in mice models in a dose-dependent way.
Additionally, DTRI-03 was able to induce vascular recanalization in mouse and dog carotid arteries.
The antidote oligonucleotide was also able to reverse the antiplatelet and anticoagulation effects of
DTRI-031 [24].

2.2.2. Factor II/ IIa Inhibitors

ARC2172, also known as NU172, is a DNA aptamer that is produced by ARCA Biopharma and
Nuvelo [25]. This aptamer was designed as a direct thrombin (factor II) inhibitor. Thrombin is the
activated form of prothrombin and is responsible for converting fibrinogen into fibrin. By decreasing
the production of fibrin, the fibrin mesh does not form, which allows platelets to adhere to start clot
formation. NU172 is a 26-nucleotide unmodified DNA aptamer [26]. Due to the unmodified nature of
NU172, it has a relatively short duration of action, with a half-life of 10 min in vivo [22]. The reported
short half-life was consistent with the literature [17]. The anticoagulation effect of this aptamer was
determined by the activated clotting time (ACT). The dose-dependent anticoagulating effect of this
aptamer was seen during Phase 1b trials [25]. No adverse events were reported in either of the phase
I trials. An open-label small-size phase II study was started, but the current status of the study is
unknown (U.S National Library of Medicine, Clinical trials.gov Identifier: NCT00808964).

Muller et al. investigated the two DNA aptamers (HD1 and HD22) that bind to the exosite 1
and exosite 2 domain of thrombin, respectively [27]. In combination, the bivalent aptamer (HD1-22)
binds to thrombin with a very high affinity of Kd = 0.65 nM. They were also able to confirm the
bivalent aptamer’s anticoagulant activity that is close to bivalirudin and superior to argatroban. An
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antidote-oligodeoxynucleotides was also developed to reverse HD1-22 anticoagulation effect in in vitro
testing [27].

Bompiani et al. developed an optimized RNA aptamer, termed R9d14t, which can bind to both
prothrombin (factor II) and thrombin (factor IIa) with high affinity (10 nM and 1 nM, respectively) [31].
It inhibited both thrombin formation and coagulation activities mediated by thrombin exosite
I. The research group also developed a complementary oligonucleotide antidote to reverse the
anticoagulation activities of R9d14t in in vitro settings [31]. No clinical studies have been conducted
on R9d14t at this point.

Kotkowiak et al. recently modified a previously identified thrombin binding aptamer RE31 with
unlocked nucleic acid (UNA), locked nucleic acid (LNA), and β-L-RNA [28,42]. Modifications with
UNA at position 15 T residual and LNAs altered the melting temperature of RE31 and generated
twofold higher anticoagulation activity. All of the tested bases modifications did not change the
G-quadruplex structure, and also increased the aptamer stability in human serum [28].

Wakui et al. reported using a variant of CE SELEX—microbead-assisted capillary electrophoresis
(MACE) SELEX—to identify several thrombin-binding DNA aptamers with nanomolar affinity [29].
The reported aptamer, M08, also demonstrated 10 to 20-fold higher anticoagulation activity than other
earlier thrombin binding aptamers in in vitro studies. The author also developed an antidote system
for the M08 aptamer [29].

Most recently, Zhou et al. reported using a predetermined DNA nanoscaffold to identify a bivalent
DNA aptamer (145-mer) that can bind to both the exosite I and exosite II of thrombin with femtomolar
affinity [30]. The bivalent aptamer was able to produce an anticoagulation effect at as low as 5-nM
aptamer concentration in human plasma samples.

In addition to identifying novel thrombin-binding aptamers, several research groups recently
reported using novel strategies to investigate the anticoagulation activities of HD1 and HD22
under various conditions. Derszniak et al. compared the effects of HD1 and HD22 under flow
conditions. The author concluded that HD1 demonstrated stronger anti-thrombotic agents, while
HD22 demonstrated weaker antiplatelet and anticoagulation activities due to its binding to exosite
II [43]. Lin et al. utilized graphene oxide (GO) to adsorb HD1 and HD22 aptamers via π–π stacking [44].
The GO–aptamer assembly was tested to show superior anticoagulation activity to that of traditional
anticoagulant drugs in vitro and in the animal model. The author also reported the high biocompatibility
of the assembly in in vitro cytotoxicity and hemolysis assays [44]. Krissanaprasit et al. reported using
an in silico design to construct RNA origami containing multiple thrombin-binding RNA aptamers [45].
After introducing the 2’-fluoro modification in C and U nucleotides, the RNA origami structure showed
increased resistance to nuclease degradation and also greater anticoagulant activity than free aptamers,
which can also be reversed by using ssDNA antidotes [45]. Amato et al. investigated the effect of
the different linkers in constructing a dimeric HD1 aptamer [46]. Adenosine or thymidine residues
and glycerol moiety were used as the linker in joining the two aptamers. The authors reported the
linkers, although they did not alter the global conformation of the aptamers; the binding affinities were
different among linker constructs. The authors concluded that the highest affinity dimeric construct
demonstrated the highest anticoagulant activity and the most resistance to degradation in biological
samples [46].

2.2.3. Factor IXa Inhibitors

REG1, also known as pegnivacogin, is an RNA aptamer that acts as a direct factor IXa inhibitor [32].
A factor IXa inhibitor will prevent the formation of the IXa/VIIa complex, which is an activator of factor
Xa. Factor Xa is the rate-limiting enzyme for coagulation, and by inhibiting the VIIa/IXa complex, the
process is considerably slower. Factor IXa inhibitors have been investigated for their efficacy within
anticoagulation and the simultaneous decreased risk of bleeding. Pegnivacogin is a PEGylated RNA
aptamer composed of 31 nucleotides [32]. After administration, pegnivacogin reaches a maximum
concentration in the plasma within 5 min or less, and can last for over 24 hours at doses of 0.7 mg/kg.
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An activated partial thromboplastin time (aPTT) is used to determine the efficacy of pegnivacogin.
At doses of 0.7 mg/kg or greater, the aptamer resulted in a 2.5-times increase in aPTT from baseline.
In addition to pegnivacogin, its reversal, anivamersen, was developed. Anivamersen is a 15-nucleotide
RNA sequence, and it binds to its target using Watson–Crick base pairing [32]. The relationship
between anivamersen and the reversal of pegnivacogin is dose-dependent, and the anticoagulation
effect is reversed within 5 min of administration of anivamersen in a 1:1 ratio. Pegnivacogin has
already undergone phase Ia, Ib, Ic, IIa, and IIb clinical trials. The phase IIb clinical trial studied patients
undergoing PCIs or CABGS, and was deemed the RADAR trial. However, enrollment was stopped
early after three patients had a severe allergic reaction in the REG1 arm [34]. The investigator later
concluded the allergic reaction was due to patients’ pre-existing antiPEG antibodies, and was not due
to the aptamer itself [47,48]. The RADAR trial determined that pegnivacogin, in combination with its
reversal agent, may lower the risk of bleeds in comparison to unfractionated heparin during artery
sheath removal.

Additionally, a phase 3 trial comparing the efficacy of REG1 to bivalirudin in preventing
periprocedural ischemic was terminated due to formulation-induced allergic reactions and no evidence
of efficacy [33]. During the REG 1 studying phases, the subcutaneous delivery of pegnivacogin
in combination with the intravenous delivery of its reversing agent (REG2) was also studied in
healthy individuals and showed no toxicities [35]. More recently, an in vitro study was published that
showed a reduction in platelet aggregation as well as reversal when anivamersen was introduced [49].
A follow-up post-clinical trial study showed that antiPEG antibodies interacted with the PEGylated
RNA aptamer and directly inhibited the anticoagulation properties of the aptamer both in vivo and
in vitro [50].

2.2.4. Factor Xa Inhibitors

The RNA aptamer 11F7t was first reported in 2010 as a factor Xa inhibitor [36]. It binds to factor Xa
with high affinity (KD = 1.1 nM) and blocks Xa/ Va assembly. More recently, Gunaratne et al. invested
the anticoagulation ability of 11F7t in combination with other factor Xa inhibitors currently on the
market, i.e., rivaroxaban (oral), apixaban (oral), edoxaban (oral), or fondaparinux (subcutaneous) in
in vitro assays [51]. The combination of 11F7t and Xa inhibitors achieved anticoagulation potency
that is equal to unfractionated heparin, which is not achievable by any agents alone. Also, the
administration of an inactive decoy Xa protein was able to neutralize the anticoagulation effects. 11F7f
and in combination were also not affected by the immunoglobulins that resulted from heparin-induced
thrombocytopenia. All of the findings suggested the potential for 11F7f in conjunction with other Xa to
be an alternative for unfractionated heparin [51].

2.2.5. Factor XIa Inhibitors

Factor Eleven Inhibitory Aptamer, FELIAP, is a DNA aptamer that was developed by the Canadian
Blood Services at the Thrombosis and Atherosclerosis Research Institute, and McMaster University [37].
FELIAP acts as a factor XIa inhibitor. Factor XIa helps to convert factor IX to IXa, leading to preventing
the activation of factor X, which will prevent the activation of thrombin. This ssDNA aptamer is 74
nucleotides in length (KD = 1.8 nM) [37]. It was hypothesized that FELIAP binds near the active site of
factor Xia, since it competitively inhibited a substrate that was cleaved by factor XIa [37]. This theory
was further supported because FELIAP did not prevent the activation of factor XI and inhibited two
reactions mediated by factor XIa in in vitro experiments. A thrombin generation assay showed that
FELIAP reduced the endogenous thrombin potential, while it increased the meantime to peak of
thrombin [37]. No in vivo tests have been performed on FELIAP at this point.

Additionally, Woodruff et al. identified two additional aptamers, 11.16 and 12.7, that
noncompetitively inhibit factor XIa. 11.16 is an RNA aptamer with a 29-nucleotide random region
sequence, and 12.7 is an RNA aptamer with a 49-nucleotide random region sequence [38]. Aptamer
12.7 inhibits FXI and FXIa, whereas 11.16 was found to inhibit FXIa. Both aptamers significantly
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inhibited the factor FXIa-mediated activation of factor IX. It was determined that the aptamer bound to
an anion binding and serpin bindings sites on the factor XIa catalytic domain. However, the control
aptamers that were used showed a small amount of inhibition. The author suspected that the negative
charge of aptamers might contribute to the inhibition of this target. Aptamer 12.7 increased the aPTT
time by approximately 15 seconds as compared to the control library during an aPTT assay. Aptamer
11.16 showed a similar increase in aPTT time compared to the control library, indicating it may interact
with other components within the test [32]. At this point, no further analysis of either aptamer has
been conducted.

2.2.6. Factor XII/ XIIa Inhibitors

Woodruff et al. reported an RNA aptamer, R4cXII-1 aptamer (KD = 8.9 nM/0.5 nM), that can
inhibit the autoactivation of factor XIIa and the factor XIIa-mediated activation of factor XI [39]. It
prolonged fibrin formation and thrombin generation in coagulation assays. However, this aptamer
was not able to stop the activation of the plasma kallikrein through factor XII-mediated action [39]. No
clinical testing data is available at this time.

2.2.7. Kallikrein Inhibitors

Kall1-T4 is an RNA aptamer developed by the Duke Medical Center [40]. Kall1-T4 targets both
kallikrein (KD = 0.88 nM) and prekallikrein (KD = 0.28 nM). Kallikrein is responsible for factor VIIa
amplification, which is one of the first components of the coagulation cascade. Prekallikrein is the
precursor to kallikrein, and is cleaved by the factor VIIa and kininogen complex. Kallikrein plays
a role in the inflammatory response. Kallikrein helps to activate bradykinin, which is responsible
for vasodilation and inflammation. This RNA aptamer is 54 nucleotides in length [40]. An activated
partial thromboplastin time (APTT) was performed to determine the anticoagulation effects of this
aptamer. The results showed a dose-dependent increase in clotting time. During a kallikrein-mediated
bradykinin assay, Kall1-T4 was determined to reduce the release of bradykinin significantly. No in vivo
trials have been performed with Kall1-T4 thus far.

3. Aptamer in Anticoagulation Monitoring

The role of aptamer in anticoagulation monitoring has been investigated heavily in the past two
decades. The biosensing application of aptamers to detect thrombin has been extensively explored
since the identification of the first thrombin-binding DNA aptamer (TBA) in 1992 [52]. One of the most
intriguing features of the TBA was the antiparallel G-quadruplex structure formation upon binding to
thrombin (Figure 4) [53]. Although other aptamers have been shown to have a G-quadruplex structure,
only TBA has the induced G-quadruplex formation upon target recognition [54,55]. It was reported
that the G-quadruplex structure in TBA was essential in targeting recognition and its inhibitory
effect [53,56]. The uniqueness of the TBA leads to extensive research on its utility in biosensors utilizing
various optical, electrical, electrochemical, and mass transferred principles. This topic was reviewed
by Deng et al. and Ong et al. recently [57,58].
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Figure 4. The structure of thrombin interaction with the 15-mer DNA aptamer (PDB 1HUT or NDB
PDE013) [53].

In contrast to the original research of NU172, HD1, and HD2 as previously discussed therapeutic
agents, Trapaidze et al. interrogated their selectivity using surface plasmon resonance measurement [26].
HD22 fit a 1:1 aptamer to thrombin interaction, whereas HD1 and NU172 interacted with thrombin at
multiple sites and fit a heterogeneous analyte binding model. It was reported that each aptamer could
detect thrombin in the nanomolar range. Individually tested aptamers were introduced to albumin, and
both HD1 and NU172 produced a signal in the presence of albumin alone. All three aptamers were able
to detect thrombin in the presence of albumin during this experiment, thus confirming their selectivity
of thrombin over albumin. HD1 and HD22 were added to the diluted mouse plasma to determine
each aptamer’s sensing ability in a more complex environment. HD1 provided similar signals on
the SPR sensorgram with or without thrombin, but HD22 showed signal peaks corresponding to the
concentration of thrombin. The author concluded that HD22 had the highest potential to be explored
as a biosensor for thrombin [26].

In addition to the detection of clotting factors for thrombotic events, recently researchers have
also begun investigating using aptamers to measure levels of direct oral anticoagulants. Direct oral
anticoagulants (DOACs), such as direct thrombin inhibitors (dabigatran) and direct factor Xa inhibitors
(e.g., apixaban) were developed as an alternative to the traditional vitamin-K antagonist (warfarin).
Most patients do not require therapeutic monitoring for DOACs. However, it can be useful in managing
surgical patients and patients with multiple comorbidities [59]. Currently, dabigatran can be monitored
with thrombin time (TT) with high sensitivity.

On the other hand, direct factor Xa inhibitors can only be measured with surrogate tests, such as
anti-Xa level and thrombin generation assays. These assays are not routinely used due to a lack of
extensive clinical studies [59,60]. Traditional liquid chromatography coupled with mass spectroscopy
may also be used to precisely measure the drug level in human plasma, although it is labor-intensive,
time-consuming, and requires costly equipment [61].

In 2018, Alhojani et al. used the SELEX process to identify four single-stranded DNA
aptamers—DGB-1, DBG-2, DBG-4, and DBG-5—that could bind to dabigatran [62]. DBG-1 had
the highest binding affinity to dabigatran, followed closely by DGB-5. DBG-1 underwent modification
before it was immobilized on a gold-covered electrode that detected current. Dabigatran was added
to the probe solution in varying concentrations. The change in target concentration showed a
corresponding reduction of the electric current. Additionally, a conformational change was suspected
when the dabigatran molecule bound to the aptamer. The author concluded that this aptamer has
the potential for therapeutic monitoring of dabigatran as well as being a potential reversal agent with
further exploration and research [62].
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4. Conclusions and Future Perspective

Since the first description of the thrombin-binding DNA aptamer, multiple aptamers have been
isolated to target key clotting factors and co-factors for the treatment and monitoring of thrombotic
events. [53]. Researchers have utilized various techniques, such as base modification and unnatural
bases library expansion to modify the basic building blocks of nucleic acid aptamers, resulting in
increased resistance to nuclease degradation and body retention. However, the lack of approved
aptamer-based anticoagulation agents suggested that challenges remain in therapeutic uses of aptamers
in the field. Likewise, although aptamers can act as capturing elements in different biosensing
platforms, the road to fully commercialized aptamer-based rapid drug monitoring technologies is still
somewhat distant. One crucial point to be noted is that aptamer screening and application is a highly
multidisciplinary field of research. Collaborations between biologists, chemists, and engineers are
essential to the success of aptamer-based technologies.

Author Contributions: Conceptualization, K.L.H.; writing—original draft preparation, A.T.P.; writing—review
and editing, K.L.H.; visualization, A.T.P., K.L.H.; supervision, K.L.H.; project administration, K.L.H.; funding
acquisition, K.L.H.

Funding: This research and APC were funded by Wilkes University Research and Scholarship Fund and the
Department of Pharmaceutical Sciences at Wilkes University.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. De la Torre, B.G.; Albericio, F. The Pharmaceutical Industry in 2017. An Analysis of FDA Drug Approvals
from the Perspective of Molecules. Molecules 2018, 23, 533. [CrossRef] [PubMed]

2. Lakhin, A.V.; Tarantul, V.Z.; Gening, L.V. Aptamers: problems, solutions and prospects. Acta Nat. 2013, 5,
34–43. [CrossRef]

3. Tuerk, C.; Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage
T4 DNA polymerase. Science 1990, 249, 505–510. [CrossRef] [PubMed]

4. Gold, L.; Janjic, N.; Jarvis, T.; Schneider, D.; Walker, J.J.; Wilcox, S.K.; Zichi, D. Aptamers and the RNA world,
past and present. Cold Spring Harb. Perspect. Biol. 2012, 4. [CrossRef] [PubMed]

5. Ellington, A.D.; Szostak, J.W. In vitro selection of RNA molecules that bind specific ligands. Nature 1990, 346,
818–822. [CrossRef]

6. Ismail, S.I.; Alshaer, W. Therapeutic aptamers in discovery, preclinical and clinical stages. Adv. Drug Deliv.
Rev. 2018. [CrossRef] [PubMed]

7. Hong, K.L.; Sooter, L.J. Single-Stranded DNA Aptamers against Pathogens and Toxins: Identification and
Biosensing Applications. BioMed Res. Int. 2015, 2015, 419318. [CrossRef]

8. Harbaugh, S.V.; Martin, J.A.; Weinstein, J.; Ingram, G.; Kelley-Loughnane, N. Screening and selection of
artificial riboswitches. Methods 2018, 143, 77–89. [CrossRef]

9. Ni, X.; Castanares, M.; Mukherjee, A.; Lupold, S.E. Nucleic acid aptamers: Clinical applications and
promising new horizons. Curr. Med. Chem. 2011, 18, 4206–4214. [CrossRef]

10. Kanwar, J.R.; Roy, K.; Maremanda, N.G.; Subramanian, K.; Veedu, R.N.; Bawa, R.; Kanwar, R.K. Nucleic
acid-based aptamers: Applications, development and clinical trials. Curr. Med. Chem. 2015, 22, 2539–2557.
[CrossRef]

11. Park, J.W.; Tatavarty, R.; Kim, D.W.; Jung, H.T.; Gu, M.B. Immobilization-free screening of aptamers assisted
by graphene oxide. Chem. Commun. 2012, 48, 2071–2073. [CrossRef] [PubMed]

12. Ruscito, A.; DeRosa, M.C. Small-Molecule Binding Aptamers: Selection Strategies, Characterization, and
Applications. Front. Chem. 2016, 4, 14. [CrossRef] [PubMed]

13. Catuogno, S.; Esposito, C.L. Aptamer Cell-Based Selection: Overview and Advances. Biomedicines 2017, 5.
[CrossRef] [PubMed]

14. Xi, Z.; Huang, R.; Deng, Y.; He, N. Progress in selection and biomedical applications of aptamers. J. Biomed.
Nanotechnol. 2014, 10, 3043–3062. [CrossRef] [PubMed]

http://dx.doi.org/10.3390/molecules23030533
http://www.ncbi.nlm.nih.gov/pubmed/29495494
http://dx.doi.org/10.32607/20758251-2013-5-4-34-43
http://dx.doi.org/10.1126/science.2200121
http://www.ncbi.nlm.nih.gov/pubmed/2200121
http://dx.doi.org/10.1101/cshperspect.a003582
http://www.ncbi.nlm.nih.gov/pubmed/21441582
http://dx.doi.org/10.1038/346818a0
http://dx.doi.org/10.1016/j.addr.2018.08.006
http://www.ncbi.nlm.nih.gov/pubmed/30125605
http://dx.doi.org/10.1155/2015/419318
http://dx.doi.org/10.1016/j.ymeth.2018.05.012
http://dx.doi.org/10.2174/092986711797189600
http://dx.doi.org/10.2174/0929867322666150227144909
http://dx.doi.org/10.1039/C2CC16473F
http://www.ncbi.nlm.nih.gov/pubmed/22143382
http://dx.doi.org/10.3389/fchem.2016.00014
http://www.ncbi.nlm.nih.gov/pubmed/27242994
http://dx.doi.org/10.3390/biomedicines5030049
http://www.ncbi.nlm.nih.gov/pubmed/28805744
http://dx.doi.org/10.1166/jbn.2014.1979
http://www.ncbi.nlm.nih.gov/pubmed/25992428


Biomedicines 2019, 7, 55 13 of 15

15. White, R.R.; Sullenger, B.A.; Rusconi, C.P. Developing aptamers into therapeutics. J. Clin. Investig. 2000, 106,
929–934. [CrossRef] [PubMed]

16. Ni, S.; Yao, H.; Wang, L.; Lu, J.; Jiang, F.; Lu, A.; Zhang, G. Chemical Modifications of Nucleic Acid Aptamers
for Therapeutic Purposes. Int. J. Mol. Sci. 2017, 18, 1683. [CrossRef]

17. Wang, R.E.; Wu, H.; Niu, Y.; Cai, J. Improving the stability of aptamers by chemical modification. Curr. Med.
Chem. 2011, 18, 4126–4138. [CrossRef]

18. Matsunaga, K.I.; Kimoto, M.; Hirao, I. High-Affinity DNA Aptamer Generation Targeting von Willebrand
Factor A1-Domain by Genetic Alphabet Expansion for Systematic Evolution of Ligands by Exponential
Enrichment Using Two Types of Libraries Composed of Five Different Bases. J. Am. Chem. Soc. 2017, 139,
324–334. [CrossRef]

19. Dua, P.; Kim, S.; Lee, D.K. Nucleic acid aptamers targeting cell-surface proteins. Methods 2011, 54, 215–225.
[CrossRef]

20. Takahashi, M. Aptamers targeting cell surface proteins. Biochimie 2018, 145, 63–72. [CrossRef]
21. Yoon, S.; Rossi, J.J. Targeted Molecular Imaging Using Aptamers in Cancer. Pharmaceuticals 2018, 11, 71.

[CrossRef] [PubMed]
22. De Caterina, R.; Husted, S.; Wallentin, L.; Andreotti, F.; Arnesen, H.; Bachmann, F.; Baigent, C.; Huber, K.;

Jespersen, J.; Kristensen, S.D.; et al. General mechanisms of coagulation and targets of anticoagulants (Section
I). Position Paper of the ESC Working Group on Thrombosis—Task Force on Anticoagulants in Heart Disease.
Thromb. Haemost. 2013, 109, 569–579. [CrossRef] [PubMed]

23. Diener, J.L.; Daniel Lagasse, H.A.; Duerschmied, D.; Merhi, Y.; Tanguay, J.F.; Hutabarat, R.; Gilbert, J.;
Wagner, D.D.; Schaub, R. Inhibition of von Willebrand factor-mediated platelet activation and thrombosis
by the anti-von Willebrand factor A1-domain aptamer ARC1779. J. Thromb. Haemost. 2009, 7, 1155–1162.
[CrossRef] [PubMed]

24. Nimjee, S.M.; Dornbos, D.; Pitoc, G.A.; Wheeler, D.G.; Layzer, J.M.; Venetos, N.; Huttinger, A.; Talentino, S.E.;
Musgrave, N.J.; Moody, H.; et al. Preclinical Development of a vWF Aptamer to Limit Thrombosis and
Engender Arterial Recanalization of Occluded Vessels. Mol. Ther. 2019, 27, 1228–1241. [CrossRef] [PubMed]

25. Gomez-Outes, A.; Suarez-Gea, M.L.; Lecumberri, R.; Rocha, E.; Pozo-Hernandez, C.; Vargas-Castrillon, E.
New parenteral anticoagulants in development. Ther. Adv. Cardiovasc. Dis. 2011, 5, 33–59. [CrossRef]
[PubMed]

26. Trapaidze, A.; Hérault, J.P.; Herbert, J.M.; Bancaud, A.; Gué, A.M. Investigation of the selectivity of
thrombin-binding aptamers for thrombin titration in murine plasma. Biosens. Bioelectron. 2016, 78, 58–66.
[CrossRef]

27. MÜLler, J.; Freitag, D.; Mayer, G.; PÖTzsch, B. Anticoagulant characteristics of HD1-22, a bivalent aptamer
that specifically inhibits thrombin and prothrombinase. J. Thromb. Haemost. 2008, 6, 2105–2112. [CrossRef]

28. Kotkowiak, W.; Wengel, J.; Scotton, C.J.; Pasternak, A. Improved RE31 Analogues Containing Modified
Nucleic Acid Monomers: Thermodynamic, Structural, and Biological Effects. J. Med. Chem. 2019, 62,
2499–2507. [CrossRef]

29. Wakui, K.; Yoshitomi, T.; Yamaguchi, A.; Tsuchida, M.; Saito, S.; Shibukawa, M.; Furusho, H.; Yoshimoto, K.
Rapidly Neutralizable and Highly Anticoagulant Thrombin-Binding DNA Aptamer Discovered by MACE
SELEX. Mol. Ther. Nucleic Acids 2019, 16, 348–359. [CrossRef]

30. Zhou, Y.; Qi, X.; Liu, Y.; Zhang, F.; Yan, H. DNA Nanoscaffold-Assisted Selection of Femtomolar Bivalent
Aptamers for Human α-Thrombin with Potent Anticoagulant Activity. ChemBioChem 2019. [CrossRef]

31. Bompiani, K.M.; Monroe, D.M.; Church, F.C.; Sullenger, B.A. A high affinity, antidote-controllable prothrombin
and thrombin-binding RNA aptamer inhibits thrombin generation and thrombin activity. J. Thromb. Haemost.
2012, 10, 870–880. [CrossRef] [PubMed]

32. Dyke, C.K.; Steinhubl, S.R.; Kleiman, N.S.; Cannon, R.O.; Aberle, L.G.; Lin, M.; Myles, S.K.; Melloni, C.;
Harrington, R.A.; Alexander, J.H.; et al. First-in-human experience of an antidote-controlled anticoagulant
using RNA aptamer technology: A phase 1a pharmacodynamic evaluation of a drug-antidote pair for the
controlled regulation of factor IXa activity. Circulation 2006, 114, 2490–2497. [CrossRef] [PubMed]

33. Lincoff, A.M.; Mehran, R.; Povsic, T.J.; Zelenkofske, S.L.; Huang, Z.; Armstrong, P.W.; Steg, P.G.; Bode, C.;
Cohen, M.G.; Buller, C.; et al. Effect of the REG1 anticoagulation system versus bivalirudin on outcomes
after percutaneous coronary intervention (REGULATE-PCI): A randomised clinical trial. Lancet 2016, 387,
349–356. [CrossRef]

http://dx.doi.org/10.1172/JCI11325
http://www.ncbi.nlm.nih.gov/pubmed/11032851
http://dx.doi.org/10.3390/ijms18081683
http://dx.doi.org/10.2174/092986711797189565
http://dx.doi.org/10.1021/jacs.6b10767
http://dx.doi.org/10.1016/j.ymeth.2011.02.002
http://dx.doi.org/10.1016/j.biochi.2017.11.019
http://dx.doi.org/10.3390/ph11030071
http://www.ncbi.nlm.nih.gov/pubmed/30029472
http://dx.doi.org/10.1160/TH12-10-0772
http://www.ncbi.nlm.nih.gov/pubmed/23447024
http://dx.doi.org/10.1111/j.1538-7836.2009.03459.x
http://www.ncbi.nlm.nih.gov/pubmed/19422452
http://dx.doi.org/10.1016/j.ymthe.2019.03.016
http://www.ncbi.nlm.nih.gov/pubmed/30987839
http://dx.doi.org/10.1177/1753944710387808
http://www.ncbi.nlm.nih.gov/pubmed/21045018
http://dx.doi.org/10.1016/j.bios.2015.11.017
http://dx.doi.org/10.1111/j.1538-7836.2008.03162.x
http://dx.doi.org/10.1021/acs.jmedchem.8b01806
http://dx.doi.org/10.1016/j.omtn.2019.03.002
http://dx.doi.org/10.1002/cbic.201900265
http://dx.doi.org/10.1111/j.1538-7836.2012.04679.x
http://www.ncbi.nlm.nih.gov/pubmed/22385910
http://dx.doi.org/10.1161/CIRCULATIONAHA.106.668434
http://www.ncbi.nlm.nih.gov/pubmed/17101847
http://dx.doi.org/10.1016/S0140-6736(15)00515-2


Biomedicines 2019, 7, 55 14 of 15

34. Vavalle, J.P.; Cohen, M.G. The REG1 anticoagulation system: A novel actively controlled factor IX inhibitor
using RNA aptamer technology for treatment of acute coronary syndrome. Future Cardiol. 2012, 8, 371–382.
[CrossRef] [PubMed]

35. Vavalle, J.P.; Rusconi, C.P.; Zelenkofske, S.; Wargin, W.A.; Alexander, J.H.; Becker, R.C. A phase 1 ascending
dose study of a subcutaneously administered factor IXa inhibitor and its active control agent. J. Thromb.
Haemost. 2012, 10, 1303–1311. [CrossRef] [PubMed]

36. Buddai, S.K.; Layzer, J.M.; Lu, G.; Rusconi, C.P.; Sullenger, B.A.; Monroe, D.M.; Krishnaswamy, S. An
Anticoagulant RNA Aptamer That Inhibits Proteinase-Cofactor Interactions within Prothrombinase. J. Biol.
Chem. 2010, 285, 5212–5223. [CrossRef] [PubMed]

37. Donkor, D.A.; Bhakta, V.; Eltringham-Smith, L.J.; Stafford, A.R.; Weitz, J.I.; Sheffield, W.P. Selection and
characterization of a DNA aptamer inhibiting coagulation factor XIa. Sci. Rep. 2017, 7, 2102. [CrossRef]
[PubMed]

38. Woodruff, R.S.; Ivanov, I.; Verhamme, I.M.; Sun, M.F.; Gailani, D.; Sullenger, B.A. Generation and
characterization of aptamers targeting factor XIa. Thromb. Res. 2017, 156, 134–141. [CrossRef] [PubMed]

39. Woodruff, R.S.; Xu, Y.; Layzer, J.; Wu, W.; Ogletree, M.L.; Sullenger, B.A. Inhibiting the intrinsic pathway of
coagulation with a factor XII–targeting RNA aptamer. J. Thromb. Haemost. 2013, 11, 1364–1373. [CrossRef]

40. Steen Burrell, K.A.; Layzer, J.; Sullenger, B.A. A kallikrein-targeting RNA aptamer inhibits the intrinsic
pathway of coagulation and reduces bradykinin release. J. Thromb. Haemost. 2017, 15, 1807–1817. [CrossRef]

41. Jilma-Stohlawetz, P.; Gilbert, J.C.; Gorczyca, M.E.; Knobl, P.; Jilma, B. A dose ranging phase I/II trial of the
von Willebrand factor inhibiting aptamer ARC1779 in patients with congenital thrombotic thrombocytopenic
purpura. Thromb. Haemost. 2011, 106, 539–547. [CrossRef] [PubMed]

42. Mazurov, A.V.; Titaeva, E.V.; Khaspekova, S.G.; Storojilova, A.N.; Spiridonova, V.A.; Kopylov, A.M.;
Dobrovolsky, A.B. Characteristics of a New DNA Aptamer, Direct Inhibitor of Thrombin. Bull. Exp. Biol.
Med. 2011, 150, 422–425. [CrossRef] [PubMed]

43. Derszniak, K.; Przyborowski, K.; Matyjaszczyk, K.; Moorlag, M.; de Laat, B.; Nowakowska, M.; Chlopicki, S.
Comparison of Effects of Anti-thrombin Aptamers HD1 and HD22 on Aggregation of Human Platelets,
Thrombin Generation, Fibrin Formation, and Thrombus Formation Under Flow Conditions. Front. Pharmacol.
2019, 10, 68. [CrossRef] [PubMed]

44. Lin, T.X.; Lai, P.X.; Mao, J.Y.; Chu, H.W.; Unnikrishnan, B.; Anand, A.; Huang, C.C. Supramolecular Aptamers
on Graphene Oxide for Efficient Inhibition of Thrombin Activity. Front. Chem. 2019, 7, 280. [CrossRef]
[PubMed]

45. Krissanaprasit, A.; Key, C.; Fergione, M.; Froehlich, K.; Pontula, S.; Hart, M.; Carriel, P.; Kjems, J.;
Andersen, E.S.; LaBean, T.H. Genetically Encoded, Functional Single-Strand RNA Origami: Anticoagulant.
Adv. Mater. 2019, 31, 1808262. [CrossRef] [PubMed]

46. Amato, T.; Virgilio, A.; Pirone, L.; Vellecco, V.; Bucci, M.; Pedone, E.; Esposito, V.; Galeone, A. Investigating
the properties of TBA variants with twin thrombin binding domains. Sci. Rep. 2019, 9, 9184. [CrossRef]

47. Ganson, N.J.; Povsic, T.J.; Sullenger, B.A.; Alexander, J.H.; Zelenkofske, S.L.; Sailstad, J.M.; Rusconi, C.P.;
Hershfield, M.S. Pre-existing anti-polyethylene glycol antibody linked to first-exposure allergic reactions to
pegnivacogin, a PEGylated RNA aptamer. J. Allergy Clin. Immunol. 2016, 137, 1610–1613. [CrossRef]

48. Povsic, T.J.; Lawrence, M.G.; Lincoff, A.M.; Mehran, R.; Rusconi, C.P.; Zelenkofske, S.L.; Huang, Z.; Sailstad, J.;
Armstrong, P.W.; Steg, P.G.; et al. Pre-existing anti-PEG antibodies are associated with severe immediate
allergic reactions to pegnivacogin, a PEGylated aptamer. J. Allergy Clin. Immunol. 2016, 138, 1712–1715.
[CrossRef]

49. Staudacher, D.L.; Putz, V.; Heger, L.; Reinöhl, J.; Hortmann, M.; Zelenkofske, S.L.; Becker, R.C.; Rusconi, C.P.;
Bode, C.; Ahrens, I. Direct factor IXa inhibition with the RNA-aptamer pegnivacogin reduces platelet
reactivity in vitro and residual platelet aggregation in patients with acute coronary syndromes. Eur. Heart J.
Acute Cardiovasc. Care 2017. [CrossRef]

50. Moreno, A.; Pitoc, G.A.; Ganson, N.J.; Layzer, J.M.; Hershfield, M.S.; Tarantal, A.F.; Sullenger, B.A. Anti-PEG
Antibodies Inhibit the Anticoagulant Activity of PEGylated Aptamers. Cell Chem. Biol. 2019, 26, 634–644.
[CrossRef]

51. Gunaratne, R.; Kumar, S.; Frederiksen, J.W.; Stayrook, S.; Lohrmann, J.L.; Perry, K.; Bompiani, K.M.;
Chabata, C.V.; Thalji, N.K.; Ho, M.D.; et al. Combination of aptamer and drug for reversible anticoagulation
in cardiopulmonary bypass. Nat. Biotechnol. 2018, 36, 606. [CrossRef] [PubMed]

http://dx.doi.org/10.2217/fca.12.5
http://www.ncbi.nlm.nih.gov/pubmed/22420328
http://dx.doi.org/10.1111/j.1538-7836.2012.04742.x
http://www.ncbi.nlm.nih.gov/pubmed/22500821
http://dx.doi.org/10.1074/jbc.M109.049833
http://www.ncbi.nlm.nih.gov/pubmed/20022942
http://dx.doi.org/10.1038/s41598-017-02055-x
http://www.ncbi.nlm.nih.gov/pubmed/28522812
http://dx.doi.org/10.1016/j.thromres.2017.06.015
http://www.ncbi.nlm.nih.gov/pubmed/28644959
http://dx.doi.org/10.1111/jth.12302
http://dx.doi.org/10.1111/jth.13760
http://dx.doi.org/10.1160/TH11-02-0069
http://www.ncbi.nlm.nih.gov/pubmed/21833442
http://dx.doi.org/10.1007/s10517-011-1158-6
http://www.ncbi.nlm.nih.gov/pubmed/22268033
http://dx.doi.org/10.3389/fphar.2019.00068
http://www.ncbi.nlm.nih.gov/pubmed/30842734
http://dx.doi.org/10.3389/fchem.2019.00280
http://www.ncbi.nlm.nih.gov/pubmed/31157200
http://dx.doi.org/10.1002/adma.201808262
http://www.ncbi.nlm.nih.gov/pubmed/30972819
http://dx.doi.org/10.1038/s41598-019-45526-z
http://dx.doi.org/10.1016/j.jaci.2015.10.034
http://dx.doi.org/10.1016/j.jaci.2016.04.058
http://dx.doi.org/10.1177/2048872617703065
http://dx.doi.org/10.1016/j.chembiol.2019.02.001
http://dx.doi.org/10.1038/nbt.4153
http://www.ncbi.nlm.nih.gov/pubmed/29863725


Biomedicines 2019, 7, 55 15 of 15

52. Bock, L.C.; Griffin, L.C.; Latham, J.A.; Vermaas, E.H.; Toole, J.J. Selection of single-stranded DNA molecules
that bind and inhibit human thrombin. Nature 1992, 355, 564–566. [CrossRef] [PubMed]

53. Padmanabhan, K.; Padmanabhan, K.P.; Ferrara, J.D.; Sadler, J.E.; Tulinsky, A. The structure of alpha-thrombin
inhibited by a 15-mer single-stranded DNA aptamer. J. Biol. Chem. 1993, 268, 17651–17654. [PubMed]

54. Tucker, W.O.; Shum, K.T.; Tanner, J.A. G-quadruplex DNA Aptamers and their Ligands: Structure, Function
and Application. Curr. Pharm. Des. 2012, 18, 2014–2026. [CrossRef] [PubMed]

55. Platella, C.; Riccardi, C.; Montesarchio, D.; Roviello, G.N.; Musumeci, D. G-quadruplex-based aptamers
against protein targets in therapy and diagnostics. Biochim. Biophys. Acta (BBA) Gen. Subj. 2017, 1861,
1429–1447. [CrossRef] [PubMed]

56. Anna, A.; Carme, F.; Maria, T.; Ramon, E. Thrombin Binding Aptamer, More than a Simple Aptamer:
Chemically Modified Derivatives and Biomedical Applications. Curr. Pharm. Des. 2012, 18, 2036–2047.
[CrossRef]

57. Deng, B.; Lin, Y.; Wang, C.; Li, F.; Wang, Z.; Zhang, H.; Li, X.F.; Le, X.C. Aptamer binding assays for proteins:
The thrombin example—A review. Anal. Chim. Acta 2014, 837, 1–15. [CrossRef] [PubMed]

58. Ong, C.C.; Gopinath, S.C.B.; Rebecca, L.W.X.; Perumal, V.; Lakshmipriya, T.; Saheed, M.S.M. Diagnosing
human blood clotting deficiency. Int. J. Biol. Macromol. 2018, 116, 765–773. [CrossRef] [PubMed]

59. Djulbegovic, M.; Lee, A.I. An Update on the “Novel” and Direct Oral Anticoagulants, and Long-Term
Anticoagulant Therapy. Clin. Chest Med. 2018, 39, 583–593. [CrossRef]

60. Artang, R.; Anderson, M.; Riley, P.; Nielsen, J.D. Assessment of the effect of direct oral anticoagulants
dabigatran, rivaroxaban, and apixaban in healthy male volunteers using a thrombin generation assay. Res.
Pract. Thromb. Haemost. 2017, 1, 194–201. [CrossRef]

61. Pursley, J.; Shen, J.X.; Schuster, A.; Dang, O.T.; Lehman, J.; Buonarati, M.H.; Song, Y.; Aubry, A.F.; Arnold, M.E.
LC-MS/MS determination of apixaban (BMS-562247) and its major metabolite in human plasma: An
application of polarity switching and monolithic HPLC column. Bioanalysis 2014, 6, 2071–2082. [CrossRef]
[PubMed]

62. Aljohani, M.M.; Chinnappan, R.; Eissa, S.; Alsager, O.A.; Weber, K.; Cialla-May, D.; Popp, J.; Zourob, M.
In Vitro Selection of Specific DNA Aptamers Against the Anti-Coagulant Dabigatran Etexilate. Sci. Rep.
2018, 8, 13290. [CrossRef] [PubMed]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1038/355564a0
http://www.ncbi.nlm.nih.gov/pubmed/1741036
http://www.ncbi.nlm.nih.gov/pubmed/8102368
http://dx.doi.org/10.2174/138161212799958477
http://www.ncbi.nlm.nih.gov/pubmed/22376117
http://dx.doi.org/10.1016/j.bbagen.2016.11.027
http://www.ncbi.nlm.nih.gov/pubmed/27865995
http://dx.doi.org/10.2174/138161212799958387
http://dx.doi.org/10.1016/j.aca.2014.04.055
http://www.ncbi.nlm.nih.gov/pubmed/25000852
http://dx.doi.org/10.1016/j.ijbiomac.2018.05.084
http://www.ncbi.nlm.nih.gov/pubmed/29775720
http://dx.doi.org/10.1016/j.ccm.2018.04.010
http://dx.doi.org/10.1002/rth2.12044
http://dx.doi.org/10.4155/bio.14.66
http://www.ncbi.nlm.nih.gov/pubmed/25322783
http://dx.doi.org/10.1038/s41598-018-31327-3
http://www.ncbi.nlm.nih.gov/pubmed/30185972
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	A Brief History of Aptamers 
	Aptamer Selection 
	Clinical Advantages and Disadvantages of Aptamers 

	Aptamer Clinical Research in Anticoagulation 
	Summary of the Coagulation and Clotting Cascades 
	Anticoagulation Aptamers 
	Von Willebrand Factor Inhibitors 
	Factor II/ IIa Inhibitors 
	Factor IXa Inhibitors 
	Factor Xa Inhibitors 
	Factor XIa Inhibitors 
	Factor XII/ XIIa Inhibitors 
	Kallikrein Inhibitors 


	Aptamer in Anticoagulation Monitoring 
	Conclusions and Future Perspective 
	References

