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Abstract: Hypoxia is the insufficiency of oxygen in the cell, and hypoxia-inducible factors (HIFs) are
central regulators of oxygen homeostasis. In order to obtain functional insights into the hypoxic
response in a data-driven way, we attempted a meta-analysis of the RNA-seq data from the hypoxic
transcriptomes archived in public databases. In view of methodological variability of archived data in
the databases, we first manually curated RNA-seq data from appropriate pairs of transcriptomes before
and after hypoxic stress. These included 128 human and 52 murine transcriptome pairs. We classified
the results of experiments for each gene into three categories: upregulated, downregulated, and
unchanged. Hypoxic transcriptomes were then compared between humans and mice to identify
common hypoxia-responsive genes. In addition, meta-analyzed hypoxic transcriptome data were
integrated with public ChIP-seq data on the known human HIFs, HIF-1 and HIF-2, to provide insights
into hypoxia-responsive pathways involving direct transcription factor binding. This study provides
a useful resource for hypoxia research. It also demonstrates the potential of a meta-analysis approach
to public gene expression databases for selecting candidate genes from gene expression profiles
generated under various experimental conditions.

Keywords: hypoxia; transcriptome; RNA-seq; ChIP-seq; public database; meta-analysis

1. Introduction

The development of high-throughput sequencing technology has enabled cost-effective reading of
tens of millions of base pairs in a single run. RNA-seq takes advantage of this technology to elucidate
the expression profiles of genes and transcriptomes assayed under particular conditions by producing
counts of sequences corresponding to genes of interest.

Published transcriptome data have been archived to two large public databases (DBs), the Gene
Expression Omnibus (GEO) in the US National Center for Biotechnology Information (NCBI) [1] and
ArrayExpress (AE) in the European Bioinformatics Institute (EBI) [2]. The number of records in these
DBs is now over two million in samples and near a hundred thousand in data series. They are freely
accessible and thus ready to be reused for data-driven research. Nevertheless, large-scale comparison
among archived data has not often been carried out because of the technical challenges presented
by the magnitude, complexity, and cumbersome nature of the data. Even if very large amounts of
data can be successfully downloaded, it can be difficult to interpret data from different laboratories,
as experimental protocols used are not uniform.

Even though oxygen is an essential molecule for life support, higher organisms such as mammals
do not have a mechanism to biosynthesize oxygen in the body. Organs and tissues are regularly exposed
to risk of “oxygen deficiency”, and living organisms have evolved mechanisms to respond to hypoxia.
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The supply and consumption of oxygen determine its intracellular partial pressure, which is kept in a
relatively narrow range. Oxygen deficiency (hypoxia) and oxygen excess (hyperoxia) cause an adaptive
response to maintain oxygen homeostasis at the cellular level. This includes adjustments to the energy
metabolism system according to changes in oxygen partial pressure. In addition, higher organisms
that are anatomically complex have specialized mechanisms to acquire necessary and sufficient oxygen
for all cells. Proper functioning and regulation of these systems require the coordinated expression of
many genes, and this is thought to be controlled by transcription factors known as hypoxia-inducible
factors (HIFs, HIF-1 and HIF-2) [3]. The differential regulation of gene expression by HIF-1 and
HIF-2 has been studied. Both HIF-1 and HIF-2 control the gene expression of glucose transporter 1
(GLUT1) and vascular endothelial growth factor A (VEGFA). Gene expression of glycolytic enzymes
such as hexokinases (HK1 and HK2), phosphofructokinase (PFK), fructose-bisphosphate aldolase
A (ALDOA), phosphoglycerate kinase 1 (PGK1), and lactate dehydrogenase (LDHA) controlled by
mainly HIF-1. On the other hand, gene expression of erythropoietin (EPO) and POU5F1 (OCT4) is
HIF-2-dependent [4].

Various groups have published comprehensive data on gene expression in response to hypoxic
stress, but have not produced uniform results, and because of this the pathways involved are not
entirely clear. In addition, there may be other data on hypoxia-related genes that have not been
reported as such, due to the main experimental target not being hypoxic stress [5]. Collective analysis
of gene expression and transcription factor binding information obtained from multiple studies that
also introduces comparative analysis between species has not previously been attempted in this field.
Further, although the analysis of many comprehensive datasets should enable the elucidation of novel
control pathways, comprehensive methods to achieve this are lacking.

Based on the above background, this study aimed to develop a comparative data analysis method
to identify expression fluctuations and transcription factor binding regions associated with hypoxic
stress, and to use it to perform a meta-analysis of available data in the public DBs, and gene functional
analyses. We first curated hypoxic RNA-seq transcriptome data from GEO and AE to make a list of
hypoxia-normoxia transcriptome pairs. We then did systematic transcriptome quantification analysis
on the datasets we collected. By introducing a new metric that counts instances of upregulation,
downregulation, or unresponsiveness of genes, we determined the average effect of hypoxia on genes
under different experimental conditions. We also compared these values between genes orthologous
in humans and mice. In addition, we examined data from chromatin immunoprecipitation sequencing
(ChIP-seq), which comprehensively elucidates the regions in which transcription factors bind to
genomic DNA.

2. Materials and Methods

2.1. Curation of Public Gene Expression Data

In order to screen hypoxia-related gene expression data from public databases, we used a
graphical web tool called All Of gene Expression (AOE; https://aoe.dbcls.jp/) [6]. AOE not only
integrates metadata from the NCBI Gene Expression Omnibus (GEO) [1], EBI ArrayExpress (AE) [2],
and DDBJ Genomic Expression Archive (GEA) [7], but also those of RNA-seq data archived only in
the Sequence Read Archive (SRA) [8]. Conventional search by the keywords ‘hypoxia’ or ‘hypoxic’
in AOE was adopted to scan the databases initially. The curation of the data, which included paired
‘hypoxia’ and ‘normoxia’ experiment entries, and descriptions of cell line and experimental conditions
(oxygen concentration) used, was done manually.

In our previous pilot study, we investigated the human and mouse data produced by Affymetrix
GeneChip [9], but the subsequent accumulation of RNA-seq data enabled this study to be focused only
on RNA-seq. In order to minimize the noise from different sequencing platforms, it was necessary
to exclude data from older sequencing platforms. Consequently, nearly all data were the product of
Illumina sequencing platforms. The complete lists of these paired data are available from figshare
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(human: https://doi.org/10.6084/m9.figshare.5811987.v2; mouse: https://doi.org/10.6084/m9.figshare.
9948158.v1).

2.2. Gene Expression Quantification

After we searched hypoxia-related entries using AOE, corresponding run data were downloaded
from SRA in the DDBJ FTP site (ftp://ftp.ddbj.nig.ac.jp/). Since the downloaded data were in the
SRA format, these files were transferred to FASTQ formatted files for expression quantification using
the fasterq-dump program in the SRA Toolkit (https://www.ncbi.nlm.nih.gov/sra/docs/toolkitsoft/).
Both single-end and paired-end reads were re-used for the analysis. RNA-seq reads were then quantified
using ikra (v1.2.0) [10], an RNA-seq pipeline centered on Salmon [11]. Ikra automates the RNA-seq data
analysis process, which includes quality control of reads (Trim Galore version 0.4.1 [12] with Cutadapt
version 1.9.1 [13]) and transcript quantification (Salmon version 0.14.0 with reference transcript sets in
GENCODE release 30 for human and M21 for mouse). These tools were used with default parameters
in ikra. The workflow presented here was selected because we aimed to extract hypoxia inducible
genes from heterogeneous RNA-seq data (single-end and paired-end) archived in SRA from various
laboratories by counting upregulated and downregulated genes. In this study, the data acquisition
and quality control process took around six weeks for the current data set. Processed transcript
quantification from RNA-seq data was also uploaded to figshare and are publicly available (human:
https://doi.org/10.6084/m9.figshare.9948170.v1; mouse: https://doi.org/10.6084/m9.figshare.9948200.v1).

Where hypoxia and normoxia transcriptome data were paired, the ratio of all gene pairs (termed
the HN ratio) was calculated.

HN ratio =
(Gene expresion value in hypoxia) + 1

(Gene expression value in normoxia) + 1
(1)

Values of HN ratios for all paired samples were then classified into three groups. When the HN
ratio was over the threshold for upregulation, the gene was regarded as upregulated. Similarly, when
the HN ratio was below the threshold for downregulation, the gene was regarded as downregulated.
If the gene was labeled as neither upregulated nor downregulated, it was classified as ‘unchanged’.
Finally, the numbers of counts for up, down, and unchanged were calculated for all genes. For the
up-/downregulated gene classification, several thresholds were tested to optimize the calibration.
For this study, we adopted a two-fold threshold after several parameters (1.5, 2, 5, and 10-fold) was
tested to classify up/downregulated genes. The number of paired samples in which genes were
up/down regulated was counted for all genes in the human genome.

For the evaluation of hypoxia-inducible genes, a hypoxia-and-normoxia score (HN-score) was
calculated for all genes in humans and mice respectively. HN-score was the count of (count of human
RNA-seq UP] − (count of human RNA-seq DOWN]. HN-scores for all genes were also calculated in
mice. Orthologous genes between humans and mice and the functional annotations of genes were
downloaded from Ensembl Biomart [14]. Full lists of counts (up/down/unchanged) with HN-scores for
all genes were accessible from figshare (human: https://doi.org/10.6084/m9.figshare.5812710.v3; mouse:
https://doi.org/10.6084/m9.figshare.9948233.v2).

All codes used for processing the data are freely available from GitHub (https://github.com/

bonohu/chypoxia/).

2.3. Meta-Analysis of ChIP-Seq Data

Public ChIP-seq data were collected, curated, and pre-calculated for reuse in the ChIP-Atlas
database [15]. Average MACS2 scores for all genes were retrieved using the ‘Target Genes’ tool
in ChIP-Atlas for hypoxia-inducible factor 1-α (HIF1A) and Endothelial PAS domain-containing
protein 1 (EPAS1, also known as hypoxia-inducible factor-2α (HIF-2α)) as ‘Antigens’ with ± 5k for
the ‘Distance from TSS’ parameter. For the integration of ChIP-seq data into RNA-seq data produced
above, the names of genes were used to join two datasets.
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2.4. Visualization and the Integrated Functional Analysis of Genes

For producing scatter plots, we used TIBCO Spotfire Desktop version 7.6.0 (TIBCO Spotfire, Inc.,
Palo Alto, CA, USA) with TIBCO Spotfire’s “Better World” program license (http://spotfire.tibco.com/

better-world-donation-program/) in this study.
Metascape was used for the gene set enrichment analysis [16]. Conventional ‘express analysis’ in

Metascape was used to draw histograms. In the gene set enrichment analysis of genes upregulated and
downregulated in hypoxic transcriptomes (Supplementary Figure S1), the HN-scores described above
were used for the extraction of a gene list for Metascape input. Two lists of genes were generated by
extracting genes whose HN-score was over (or below) a threshold, where roughly 1% of all genes could
be listed. These HN-score thresholds were 32 for upregulation (374 genes) and −34 for downregulation
(324 genes), respectively.

3. Results

3.1. Curation of Hypoxic Transriptome Data in Public Databases

We initially mined hypoxia-related gene expression data from public databases using an integrated
graphical web tool for gene expression data called AOE, which has been maintained as an index of
public gene expression databases. Using the conventional keyword search by ‘hypoxia’ in AOE, we
showed that the number of paired samples was very few in most model organisms except humans
and mice.

Pairs of samples before and after hypoxic stress were made after careful curation of dataset
descriptions. We were able to obtain 128 pairs from 35 data series in humans and 53 pairs from 10
data series in mice in 2018. The complete list of pairs in RNA-seq data by Illumina sequencers is
also accessible from figshare (human: https://doi.org/10.6084/m9.figshare.5811987.v2; mouse: https:
//doi.org/10.6084/m9.figshare.9948158.v1).

The overall procedure of the work described above is depicted in Figure 1.
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3.2. Meta-Analysis of Hypoxia-Responsive Genes

After the quantification of gene expression from RNA-seq data, the number of conditions under
which each gene was upregulated, downregulated, and unchanged were counted. The reason for
this three-way categorization is that the data are highly series-specific owing to various cell lines and
experimental conditions. Complete lists of the meta-analyzed results are accessible from figshare
(human: https://doi.org/10.6084/m9.figshare.5812710.v3; mouse: https://doi.org/10.6084/m9.figshare.
9948233.v2).

In order to visualize differentially expressed genes, we introduced a value called HN-score.
HN-score is the number of UP counts minus the number of DOWN counts and was calculated for
all genes. Using this score, we were able to quantify the degree to which each gene was affected by
hypoxia. For example, VEGFA had 92 UP, 6 DOWN, and 30 unchanged counts. Its HN-score was thus
86 (= 92 − 6).

Following this, genes orthologous between humans and mice were related utilizing an orthologous
gene table generated from Ensembl Biomart. This operation yields a list of genes concurrently
upregulated in humans and mice. In order to sort the table, the sum of human and mouse HN-scores
was calculated (called total HN-score). For example, the score for VEGFA (human) was 86 and
that for Vegfa (mouse) was 23, so the total HN-score for VEGF gene was 109. Table 1 shows
the top 25 genes with high total HN-score, and a complete merged list is available from figshare
(https://doi.org/10.6084/m9.figshare.9958169.v1).

Table 1. List of top 25 hypoxia inducible genes. Top 25 genes with high hypoxia-and-normoxia-score
(HN-score; human + mouse) with the number of paired samples that were judged as up-regulated and
down-regulated after hypoxic stress. For the calculation of HN-score, see the text.

Human
Gene

Human
Up

Human
Down

Human
HN-Score Mouse Gene Mouse

Up
Mouse
Down

Mouse
HN-Score

Total
HN-Score

ANKRD37 101 7 94 Ankrd37 35 6 29 123
NDRG1 104 5 99 Ndrg1 22 2 20 119
BNIP3 92 5 87 Bnip3 33 1 32 119
P4HA1 92 5 87 P4ha1 27 2 25 112
DDIT4 94 9 85 Ddit4 29 2 27 112
VEGFA 92 6 86 Vegfa 23 0 23 109

FAM162A 82 6 76 Fam162a 30 1 29 105
SLC2A1 88 7 81 Slc2a1 28 5 23 104
P4HA2 83 4 79 P4ha2 27 2 25 104
PDK1 80 7 73 Pdk1 32 2 30 103
AK4 82 9 73 Ak4 31 2 29 102

PGK1 78 5 73 Pgk1 30 3 27 100
EGLN3 82 9 73 Egln3 29 2 27 100
ALDOC 93 9 84 Aldoc 17 2 15 99

MXI1 88 6 82 Mxi1 16 1 15 97
ENO2 99 5 94 Eno2 13 11 2 96
CA9 88 10 78 Car9 21 5 16 94

ANGPTL4 98 6 92 Angptl4 8 6 2 94
ADM 83 7 76 Adm 20 3 17 93

TMEM74B 76 7 69 Tmem74b 24 1 23 92
HK2 82 8 74 Hk2 21 3 18 92

EGLN1 69 4 65 Egln1 27 0 27 92
BNIP3L 84 5 79 Bnip3l 12 0 12 91
KDM3A 78 5 73 Kdm3a 18 1 17 90
C4orf47 91 5 86 1700029J07Rik 7 3 4 90

Figure 2 visualizes this table as a scatter plot of HN-score values for humans and mice. Genes
located in the upper right are those upregulated after hypoxia both in humans and mice. Genes in that
category included previously reported typical hypoxia-responsive genes, for example PGK1, VEGFA,

https://doi.org/10.6084/m9.figshare.5812710.v3
https://doi.org/10.6084/m9.figshare.9948233.v2
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and EGLN3, supporting the validity of our method. On the other hand, genes downregulated both in
humans and mice included some not previously identified as hypoxia-related.
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Figure 2. Meta-analysis of hypoxic transcriptomes by RNA-seq. Comparison of human and mouse
hypoxic transcriptomes analyzed by RNA-seq. The X axis shows (count of human RNA-seq UP) −
(count of human RNA-seq DOWN) and the Y axis shows (count of mouse RNA-seq UP) − (count of
mouse RNA-seq DOWN).

We then performed set enrichment analysis using Metascape. The analysis clearly revealed that
some genes upregulated in many samples with high HN-scores are well-known hypoxia-responsive
genes, while some are not (Supplementary Figure S1A). The latter can be novel candidates for
hypoxia-responsive genes to study signaling pathways in hypoxia research. Metascape also clearly
depicted the functions of downregulated genes with low HN-scores (Supplementary Figure S1B).
Those genes were apparently related to DNA repair and replication [17].

3.3. Integration of Meta-Analyzed ChIP-Seq Data

In order to investigate expression regulation of genes of interest by direct transcription factor
binding, we studied ChIP-seq data. In addition to the public nucleotide sequence databases, ChIP-seq
data processed by the MACS2 program are also available from the ChIP-Atlas database, which is a
database for meta-analysis results from publicly available ChIP-seq data [15]. Thus, we retrieved
ChIP-seq data for hypoxia-inducible factor 1-alpha (HIF1A) and endothelial PAS domain-containing
protein 1 (EPAS1, also known as hypoxia-inducible factor-2alpha (HIF-2alpha)) from ChIP-Atlas.

We integrated meta-analysis results of human RNA-seq (hypoxic transcriptome) described above
and human ChIP-seq data for HIF1A and EPAS1. Then, we visualized the results by conventional
scatterplot (Figure 3). The source data are available from figshare (https://doi.org/10.6084/m9.figshare.
9958181.v2). In addition to reported hypoxia-responsive genes such as ANKRD37 [18], novel HIF1-target
candidate genes were found with high HN-score and high ChIP-seq score (Figure 3A). In Figure 3A,
genes with high HN-score but low ChIP-seq score were also found, and these may belong to the
non-HIF1 regulation pathway. NDRG1, which encodes a cytoplasmic protein involved in stress
responses, hormone responses, cell growth, and differentiation, is a typical gene with such a pattern.

https://doi.org/10.6084/m9.figshare.9958181.v2
https://doi.org/10.6084/m9.figshare.9958181.v2
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Furthermore, we found HIF1-specific and HIF2-specific genes in the scatter plots for HIF1A (Figure 3A)
and EPAS1 (Figure 3B). Genes with high ChIP-scores in EPAS1 but not in HIF1A could be HIF2 targets,
but there were no distinct genes in this category.

Biomedicines 2020, 8, x FOR PEER REVIEW 7 of 11 

hypoxia-responsive genes to study signaling pathways in hypoxia research. Metascape also clearly 
depicted the functions of downregulated genes with low HN-scores (Supplementary Figure S1B). 
Those genes were apparently related to DNA repair and replication [17]. 

3.3. Integration of Meta-Analyzed ChIP-Seq Data 

In order to investigate expression regulation of genes of interest by direct transcription factor 
binding, we studied ChIP-seq data. In addition to the public nucleotide sequence databases, ChIP-
seq data processed by the MACS2 program are also available from the ChIP-Atlas database, which is 
a database for meta-analysis results from publicly available ChIP-seq data [15]. Thus, we retrieved 
ChIP-seq data for hypoxia-inducible factor 1-alpha (HIF1A) and endothelial PAS domain-containing 
protein 1 (EPAS1, also known as hypoxia-inducible factor-2alpha (HIF-2alpha)) from ChIP-Atlas. 

We integrated meta-analysis results of human RNA-seq (hypoxic transcriptome) described above 
and human ChIP-seq data for HIF1A and EPAS1. Then, we visualized the results by conventional 
scatterplot (Figure 3). The source data are available from figshare 
(https://doi.org/10.6084/m9.figshare.9958181.v2). In addition to reported hypoxia-responsive genes 
such as ANKRD37 [18], novel HIF1-target candidate genes were found with high HN-score and high 
ChIP-seq score (Figure 3A). In Figure 3A, genes with high HN-score but low ChIP-seq score were also 
found, and these may belong to the non-HIF1 regulation pathway. NDRG1, which encodes a 
cytoplasmic protein involved in stress responses, hormone responses, cell growth, and differentiation, 
is a typical gene with such a pattern. Furthermore, we found HIF1-specific and HIF2-specific genes in 
the scatter plots for HIF1A (Figure 3A) and EPAS1 (Figure 3B). Genes with high ChIP-scores in EPAS1 
but not in HIF1A could be HIF2 targets, but there were no distinct genes in this category. 

 
(A) 

 
(B) 

Figure 3. Integration of meta-analyzed ChIP-seq peak values to hypoxic transcriptomes. (A) Meta-analyzed
hypoxic transcriptomes (RNA-seq) vs. average of HIF1A ChIP-seq peak values. (B) RNA-seq and
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In order to study the differences between HIF1A and EPAS1 more thoroughly, we then investigated
genes with high MACS2 score for HIF1A and EPAS1 (with positive HN-score). Surprisingly, the
top 100 genes for HIF1A and EPAS1 were exactly the same, and we therefore increased the number
of genes to 300. The top 300 genes for HIF1A (https://doi.org/10.6084/m9.figshare.9958235.v1) and
EPAS1 (https://doi.org/10.6084/m9.figshare.9958250.v1) were generated and compared to identify the
differences. The two gene lists were analyzed and visualized using the ‘calculate and draw custom Venn
diagrams’ website (http://bioinformatics.psb.ugent.be/webtools/Venn/; Figure 4A). Gene set enrichment
analysis of the intersection of the two gene lists revealed typical features of hypoxia-inducible genes
(Figure 4B), while analysis of the HIF1A-specific and EPAS1-specific portions also showed interesting
features (Figure 4C,D). Genes with the functional annotations ‘M00001: glycolysis (Embden-Meyerhof
pathway)’ and ‘GO:0031167: rRNA methylation’ were enriched among HIF1A-specific genes (Figure 4C).
This preferential regulation of glycolysis by HIF1A) was previously described from microarray data [19].
On the other hand, genes with ‘GO:0040008: regulation of growth’ and ‘GO:0003151: outflow tract
morphogenesis’ were enriched among EPAS1-specific genes (Figure 4D). These observations may
reflect target gene differences between these two transcription factors.
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4. Discussion

While over two million transcriptome samples have been archived in public databases (NCBI Gene
Expression Omnibus and EBI ArrayExpress), these data were reported by various laboratories and are
thus derived from different populations, analysis platforms, and sampling conditions. The resultant
variability can compromise meaningful comparisons, and it is indispensable to curate the data manually
to do meta-analysis for the study of specific biological stresses.

Using AOE, we made a complete survey of hypoxia-related gene expression data in the public
databases. The large quantity of relevant data available made it possible to do meta-analysis at the
level of transcriptome sequences. In our previous study, only 23 hypoxia-normoxia pairs could be
analyzed due to a lack of available human RNA-seq, and no relevant murine RNA-seq data could be
found. However, although the amount of microarray data available is much greater, most RNA-seq
data are from Illumina platforms (for example HiSeq2500, HiSeq2000, and NextSeq500), simplifying
comparison. Thus, we decided to use data only from RNA-seq for our meta-analysis on the hypoxic
transcriptome in the public databases.

We manually curated data by reference to recorded metadata and made pairs of hypoxia-normoxia
data from human and mouse cell lines. It is often troublesome to handle ratio data that contains
a very large number of columns. Thus, we tentatively set the threshold for upregulation and
downregulation in hypoxia, and reduced the ratio information for all samples into a cumulative
upregulation/downregulation count. This conversion made it substantially easier to interpret genes
biologically. After optimization, we determined a threshold of two-fold for this study to filter genes
for up/downregulated although it is not a process to extract statistically significant differentially
expressed genes.

Gene set enrichment analysis for genes with high HN-scores showed that genes involved in
‘HIF-1 alpha transcription factor network’ (GSEA Gene Set: PID_HIF1_TFPATHWAY) and ‘response to
oxygen levels’ (Gene Ontology: GO:0070482) were reasonably enriched (Figure S1). This evidence
justifies our meta-analysis on hypoxic transcriptomes. Detailed analyses of hypoxia-inducible genes in
humans and mice (Table 1) identified a series of hypoxia-inducible genes in a data-driven manner.

In addition, our integration of ChIP-seq into RNA-seq data added substantial information on
hypoxia-inducible genes (Figure 3). HIF binding directly mediates gene upregulation, but not for gene
downregulation as described in previous works [20,21]. High ChIP-seq scores, based on the MACS2
program via the ChIP-Atlas database, indicated genes whose regulatory regions were directly bound
by transcription factors. For example, ANKRD37 showed both high HN-score and high ChIP-seq score
(Figure 3A), while NDRG1 had a high HN-score but a low ChIP-seq score. By differentiating genes in
this way, we can generate additional hypotheses about pathways regulating differential regulation
until the hypothesis that the transcription factor binds near to the transcription start site (TSS) is valid.
For example, EPAS1/HIF2A preferentially binds to distant regulatory regions [22]. In this case, we
cannot use meta-analyzed ChIP-seq data for further analyses. In other cases where transcription factor
binds to genomic region near TSS, the integration of meta-analyzed ChIP-seq and RNA-seq data clearly
filtered genes with direct and indirect regulation, and this information can be a valuable resource for
the functional analysis of hypoxia-inducible genes.

Our future work will involve detailed analyses of co-upregulated genes across many more species,
which will be possible after the compilation of such transcriptome data. In view of the insights enabled
by the integration of ChIP-seq with RNA-seq data, another potential future approach is the inclusion
of additional types of omics data.

All data described in the manuscript are archived in figshare as a collection (Bono, H. figshare
https://doi.org/10.6084/m9.figshare.c.4690397.v1 (2019)). Source codes to replicate our study are freely
available from GitHub (https://github.com/bonohu/chypoxia).

https://doi.org/10.6084/m9.figshare.c.4690397.v1
https://github.com/bonohu/chypoxia
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