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Abstract: Glucose metabolism is a key metabolic pathway that orchestrates cellular homeostasis
by generating ATP, nucleotides, and amino acids. Abnormal glucose signaling has been found
in many diseases including cancers and inflammatory diseases. According to recent report,
glycolysis contributes to pathogenesis of psoriasis and ablation of Glut1 attenuates animal models
of psoriasis. While we were screening a molecular target for atopic dermatitis, we found the levels
of glucose transporters including Glut1 (SLC2a1) and Glut3 (SLC2a3) are highly expressed in skin
biopsies of dermatitis patients from multiple datasets. We demonstrated that administration of
2-deoxy-d-glucose (2DG) ameliorates animal models of 12-o-tetradecanoylphorbol-13-acetate (TPA)
and oxazolone induced dermatitis using morphological and histological analysis. These results
suggest that inhibition of glucose metabolism ameliorates dermatitis in animal models.
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1. Introduction

As glucose is the most frequently used carbon source for mammals, biological functions of
glucose and glucose metabolism have been extensively studied for many decades [1–3]. Recent studies
expanded the role of glucose into immunology, stem cell, and cancer biology [4–7]. For example,
glucose and its metabolites regulate activation, development, and maintenance of immune cells [8,9].
Additionally, the metabolic interplay between glycolysis and mitochondria respiration serves an
important role in stem cell differentiation [10]. Moreover, certain types of cancer exhibit glucose
addiction, called the “Warburg effect”, which has been studied as a molecular target for anti-cancer
treatment [11]. As 2-deoxy-d-glucose (2DG), a glucose analogue remains unmetabolized by hexokinase,
it has been demonstrated to be powerful agent for blocking and probing increased sugar metabolism
in cancer cells [12–16]. Dermatitis is a skin inflammatory disease, which includes atopic dermatitis and
psoriasis [17]. Atopic dermatitis and psoriasis have a different etiology along with distinct immune
responses [17–20]. Th1 and Th17 types of immune responses are frequently activated in psoriasis,
whereas Th2 type immune response is activated in atopic dermatitis [17–19]. Atopic dermatitis
often occurs in infants and follows a chronic relapse with severe immune responses and psoriasis
pathogenesis commonly occurs in the aged population [21]. Topical steroids are one of the major
dermatitis therapeutics. However, adverse effects of topical steroid-containing cream have been well
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established [22,23]. Although newer drugs have been developed for dermatitis, high cost is one of
the major burdens while dermatitis patients are increasing every year [24,25]. According to recent
reports, glucose metabolism is activated in the lesion of psoriasis and ablation of glucose transporter
(Glut1) attenuates psoriasis-like symptoms in animal models [26,27]. Moreover, expression levels of
high Km glucose transporter Glut2 are upregulated in the lumen of sweat glands of atopic dermatitis
patients [28]. These reports indicated that glucose metabolism may be associated with dermatitis.
Therefore, we determined whether glucose metabolism could be a target for dermatitis treatment.

2. Materials and Methods

2.1. Experimental Animals

For OXA-induced animal model of dermatitis, 7-week-old BALB/c mice were purchased
from the Central Laboratory Animals (Seoul, Korea) and used after 1 week of quarantine.
For 12-o-tetradecanoylphorbol-13-acetate (TPA)-induced animal model of dermatitis, 7-week-old
C57/BL6 mice were purchased from Nara Biotech (Seoul, Korea) and used after 1 week of quarantine.
Mice were housed in animal cages with controlled environmental conditions as temperature
(20 ± 2 ◦C)/humidity (50% ± 5%) and maintained under specific pathogen-free conditions with
12 h light/dark cycle. All animals were cared for by using protocols approved by the Institutional
Animal Care and Use Committee (Konkuk University, Republic of Korea). No. KU10160 (04 September
2019). All methods were performed in accordance with the relevant guidelines and regulations.

2.2. TPA-Induced Acute Dermatitis

Skin inflammation was induced in the mouse ear (n = 6) by topical application of
12-o-tetradecanoylphorbol-13-acetate (TPA). A total of 20 µL of TPA solution (50 µg/mL of TPA
in 1%DMSO/99% acetone) was applied to the anterior and posterior surfaces of the mice ears every
day for 4 days. Dexamethasone (0.4 mg/kg) and 2DG (50 mg/kg) were topically administrated to mice
ears 1h after TPA treatment and the control group was the treated vehicle (1% DMSO/99% acetone).
To determine inflammation, ear thicknesses were measured prior to each TPA application using a digital
caliper (Mitutoyo, Tokyo, Japan) on days 0, 2, and 4. After four consecutive days, mice were sacrificed
and 5mm-diameter ear biopsies were obtained with a punch (Kai Industries, Gifu, Japan). Ear biopsies
were weighed and collected for histopathological analysis. All experimental procedures were approved
by the Institutional Animal Care and Use Committee of the Konkuk University (KU19160).

2.3. OXA-Induced Animal Model of Dermatitis

Mice were divided into four groups (n = 3). Negative control was sensitized and
challenged with phosphate-buffered saline (PBS). OXA group was treated with oxazolone
(4-Ethoxymethylene-2-phenyl-2-oxazolin-5-one; Sigma-Aldrich, St. Louis, MO, USA). For therapeutic
groups, 0.68 mg/kg of dexamethasone (DEX) and 150 mg/kg of 2DG were applied on the dorsal back
1 h after OXA challenge. The protocol of OXA-induced model has been described previously in
detail, but with some modifications [29]. Briefly, mice were topically applied on the dorsal skin for
sensitization with 100 µL of 1% OXA dissolved in acetone (Merck, Kenilworth, IL, USA) on day 0,
and challenged with 0.2% OXA 3 days a week from day 7 to 14. All OXA apply and drug administration
was performed under light anesthesia with isoflurane. Mice were photographed by digital single-lens
reflex camera (F5.6 1/40, ISO800; Canon, Tokyo, Japan) on days 0, 7, and 14. Dorsal skins were used for
staining of H&E and toluidine blue. All experimental procedures were approved by the Institutional
Animal Care and Use Committee of the Konkuk University (KU19160).

2.4. AD Scoring

To visualize the severity of clinical dermatitis in AD model was scored for each item at 0, 7,
and 14 days. Clinical symptom of AD including erythema/hemorrhage, scarring/dryness, edema,
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and excoriation/erosion were scored as follows: (0) none), (1) (mild, <20%), (2) (moderate, 20%–60%)
and (3) (severe, >60%). The sum of the four individual scores was defined as the dermatitis severity
score [30,31].

2.5. Histology

The ear and dorsal skin were collected using 5-mm biopsy punches (KAI Medical, Gifu, Japan)
and fixed in 10% formaldehyde solution. Tissues were processed using standard methods (from
70% to 100% ethanol and xylene step) and were embedded in paraffin. Tissues were sectioned
into 4µm and then stained by H&E and toluidine blue. The stained tissues were observed at 200X
magnification under a light microscope (Olympus, CKX41, Tokyo, Japan). Pictures were taken using
an image acquisition system (DP2- SAL; Olympus, Tokyo, Japan). Image analysis was calculated as the
average of selected three random fields per each mouse. To observe morphology, H&E staining was
performed. Tissue slides were de-paraffinized using xylene and hydrated using ethanol in decreasing
concentrations (100%, 90%, 80%, and 70%), stained with Harris hematoxylin (Youngdong diagnostics,
Youngin, Korea) and Eosin (Sigma-Aldrich, Kenilworth, IL, USA). Next, tissue slides were dehydrated
by reverse step of ethanol and xylene, and mounted by Eukitt® Quick-hardening mounting medium
(Sigma, USA). Epidermal thickness was measured using ImageJ software program. Toluidine blue
staining was used to count infiltrated mast cells into the dermis. Toluidine blue staining was done as
previously reported with slight modification [32]. Briefly, hydrated tissue sections were stained with
0.1% Toluidine Blue O in 1% sodium chloride solution (pH 2; Sigma, USA) for 1min. Consequently,
sections were washed with deionized water and briefly washed each three times with 95% and 100%
ethanol for dehydration, then sections were cleared in xylene three times, and then sealed using Eukitt®

Quick-hardening mounting medium (Sigma, USA).

2.6. Cells and Reagents

NIH3T3/NFκB-luc cell line was purchased from Panomics (RC0015). HaCaT Cells were
transfected with lentivirus generated from 293T cell by transfecting plasmids including pEZX-LvPG04
(HPRM36883-LvPG04, GeneCoporia), VSVG and delta8.2. Infected cells were selected puromycin.
NIH3T3/NFκB-luc cell line maintained with FBM media (CC-3132, Lonza). HaCaT-luc cell line was
maintained EpiLife® media with HKGS (Human Keratinocyte Growth Supplement). Cells was
maintained in a humidified incubator at 37 ◦C and 5% CO2. Recombinant Human TNF-alpha was
purchased from Peprotech (300-01A-10). Bay was purchased from Sigma (11-7082).

2.7. Cell Viability Assay

Viability test was performed as previously described with slight modification [33]. Briefly, 1 ×
104 cells were plated in a 96-well plate. Then, 8h after 2DG treatment, cells were incubated with mixture
(1:10) of EZ-Cytox cell viability assay kit (Dogen, EZ3000) and Fibroblast Growth Basal Medium
(CC-3131, Lonza). Then plate was incubated for 30min in the incubator and determined absorbance at
450 nm with reference to 655 nm wavelength (iMark, Biorad).

2.8. Luciferase Assay

Luciferase assay was performed as previously described with slight modification [34]. First,
1 × 104 cells were seeded in 96-well plates treated 25 ng/mL TNF-α for 8 h with or without 2DG.
Cells were harvested and cell extracts were prepared using 60 µL of passive lysis buffer (Promega).
Luciferase activities were measured using Veritas Luminometer (Turnur Designs, Sunnyvale, CA, USA).
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2.9. Web-Based Meta-Analysis

Microarray datasets from studies (GSE120721 [35], GSE60709 [36], GSE121212 [37], GSE6012 [38],
GSE107361 [39], GSE36842 [40], GSE5667 [41], and GSE46239 were analyzed using GEO2R (https:
//www.ncbi.nlm.nih.gov/geo/geo2r) to determine the levels of glucose transporters as well as glycolytic
enzymes. Microarray datasets are a series of comparison results between skin biopsies from atopic
dermatitis patients with control subjects.

2.10. Statistical Analysis

All statistical evaluations were performed using Prism 6 (GraphPad Software, La Jolla, CA, USA).
Data are given as mean ± standard error of the mean (SEM). Statistical significance was analyzed
using Student’s t-test and one-way ANOVA. p values of <0.05, <0.01, and <0.001 were considered as
statistically significant differences.

3. Results

3.1. The Levels of Enzymes Associated with Glucose Signaling are increased in Dermatitis Patients

We determined the expression levels of glucose transporters Glut1 (SLC2a1) and Glut3 (SLC2a3)
in skin biopsies of dermatitis patients and control subjects from several datasets. Interestingly,
we found that the expression levels of glucose transporters are increased in the lesion of atopy
patients compared with control subjects (GSE120721 [35], GSE107361 [39], GSE36842 [40], GSE46239,
GSE5667 [41], and GSE121212 [37]) (Figure 1A,B). Moreover, we found the levels of enzymes associated
with glucose metabolism are highly increased in lesion of atopy patients compared with control
subjects (GSE120721 [35], GSE107361 [39], GSE36842 [40], GSE46239, GSE5667 [41], GSE121212 [37])
(Tables S1 and S2). These results suggested that the expression levels of enzymes associated with
glucose metabolism are increased in the lesion of dermatitis patients.
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2DG, a glucose analogue, as a glycolytic inhibitor [42]. To determine whether 2DG attenuates 
dermatitis in animal model, we employed a 12-o-tetradecanoylphorbol-13-acetate (TPA)-induced 
mice model. Interestingly, mice cotreated with TPA with 2DG have shown less redness on ears 
compared to mice treated with TPA alone (Figure 2A). The levels of ear thickness and weight were 
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Figure 1. The expression levels of glucose transporters are increased from dermatitis patients.
(A) Relative expression levels of Glut1 (SLC2a1) in normal controls (n = 38) and dermatitis patients
(n = 34). (B) Relative expression levels of Glut3 (SLC2a3) in normal controls (n = 82) and dermatitis
patients (n = 83) Data shown are mean ± SEM and analyzed by Student’s t-test (* p < 0.05).

3.2. 2DG Ameliorates Acute Dermatitis Phenotype in TPA-Induced Animal Model

In order to investigate whether inhibition of glucose metabolism attenuates dermatitis, we used
2DG, a glucose analogue, as a glycolytic inhibitor [42]. To determine whether 2DG attenuates dermatitis
in animal model, we employed a 12-o-tetradecanoylphorbol-13-acetate (TPA)-induced mice model.
Interestingly, mice cotreated with TPA with 2DG have shown less redness on ears compared to mice
treated with TPA alone (Figure 2A). The levels of ear thickness and weight were robustly decreased
in mice treated of TPA with 2DG compared to TPA-treated mice (Figure 2B,C). We found huge
edema sites in TPA-treated mice ears and TPA-induced edema was attenuated by 2DG (Figure 2D).

https://www.ncbi.nlm.nih.gov/geo/geo2r
https://www.ncbi.nlm.nih.gov/geo/geo2r
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We also found that epidermis and dermis thickness are decreased in mice cotreated of TPA with
2DG by histological analysis (Figure 2E,F). These results indicated that topical administration of 2DG
ameliorates TPA-induced inflammation.
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Figure 2. 2-deoxy-d-glucose (2DG) alleviates 12-o-tetradecanoylphorbol-13-acetate (TPA)-induced
animal model of dermatitis. (A) Representative images of mouse ears of anterior and posterior surfaces at
0, 2, and 4 days. Control: Control group, TPA: TPA-treated group, 2DG: 2-deoxy-d-glucose treated group,
TPA + DEX: TPA and Dexamethasone treated group, TPA + 2DG: TPA and 2-deoxy-d-glucose treated
group. (B) The levels of ear swelling were determined after mice sacrifice. (C) The levels of ear weight
were determined after mice sacrifice. (D) H&E-stained sections of mouse ears. Original magnification =

×200. Scale bar = 100 µm. (E) Mean of epidermal thickness was measured using three different sections
of each mouse (n = 3). (F) Mean of dermal thickness was measured using three different sections of
each mouse (n = 3). Data are presented as mean ± SEM of changes in values. *** p < 0.01, **** p < 0.005
compared to control, ### p < 0.01, #### p < 0.005 compared to TPA.
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3.3. 2DG Ameliorates Oxazolone-Treated Animal Model of Dermatitis

As we found that 2DG is effective on TPA-induced dermatitis, we further determined whether
2DG alleviates atopic dermatitis in animal models. Oxazolone (OXA) is widely used in animal model
atopic dermatitis [43]. Redness of mice back treated with oxazolone was alleviated by coadministration
of 2DG (Figure 3B). AD score was significantly decreased in mice cotreated with OXA with 2DG
(Figure 3C). Furthermore, we found the levels of epidermis thickness are decreased in mice cotreated of
OXA with 2DG by histological analysis (Figure 3D,E). Infiltrated mast cells into dermis were decreased
in mice cotreated of OXA with 2DG (Figure 3F). These results indicated that administration of 2DG
ameliorates oxazolone-induced dermatitis in mice models.
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Figure 3. 2DG attenuates dermatitis in oxazolone (OXA)-induced animal model. (A) Schematic diagram
of OXA-induced animal model. Four groups: untreated controls, OXA only and mice treated with
DEX (Dexamethasone) or 2-dexoy-d-glucose (2DG) 1 h after every OXA challenge (n = 3 per group).
(B) Representative photographs of mouse ears from each group on day 14. (C) AD score was measured
during treatment. (D) H&E staining and toluidine blue staining in dorsal skin lesions (E) Epidermal
thickness (µm) was determined by micrometer. (F) Mast cells (red arrow) in dermis were counted.
Scale bar, 200µm. Data are presented as mean ± SEM of changes in values. ** p < 0.01, *** p < 0.005
compared to control, # p < 0.05, ## p < 0.01 and ### p < 0.005 compared to OXA.

3.4. NFκB Activity is Not Regulated by 2DG in Keratinocytes and Fibroblasts

To determine the molecular mechanism of 2DG-mediated anti-inflammation in dermatitis,
we investigated whether 2DG attenuates NFκB activation, which serves an important role in
inflammatory signaling. We used 3T3 murine fibroblasts and HaCaT keratinocytes, which stably
expressed luciferase reporter plasmid encoded with NFκB-binding motif. Prior to luciferase assay,
we determined optimal concentration of 2DG using viability assay. In HaCaT and 3T3 cells 100 and
50 µM of 2DG were used for luciferase assay (Figure 4A,C). We found 2DG is not able to modulate
NFκB activity in HaCaT and 3T3 cells (Figure 4B,D). These results indicated that NFκB might not be
the primary molecular signaling pathway for 2DG-mediated anti-inflammatory signal in skin cells.
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According to a recent report, mast cell-derived histamine induces keratinocyte proliferation in AD 
[48]. As 2DG inhibits mast cell infiltration (Figure 3F), 2DG may negatively regulate keratinocyte 

Figure 4. 2DG is not able to modulate NFκB activity in skin cells. (A) Cellular viability of HaCaT cells
was measured after 8 h of indicated 2DG treatment. (B) Luciferase activity was measured in HaCaT
cells after 8 h of 100 µM of 2DG in the presence of TNF-α. (C) Cellular viability of NIH3T3 cells was
measured after 8 h of indicated 2DG treatment. (D) Luciferase activity was measured in HaCaT cells
after 8 h of 50 µM of 2DG in the presence of TNF-α. Data are presented as mean ± SEM of changes in
values. *** p < 0.005 compared to control, **** p < 0.001, #### p < 0.005 compared to TNF-α and n.s.,
non-significant compared to TNF-α.

4. Discussion

We found the expression levels of glycolytic enzymes are increased in the lesion of dermatitis
patients (Figure 1, Tables S1 and S2). Although further studies are required to determine whether glucose
metabolism is activated in the lesion of dermatitis patients, we assume there is an abnormal metabolic
shift in dermatitis patients according to recent publications [26,28,44]. Especially, glucose metabolism is
activated in animal model of psoriasis and ablation of glucose transporter (Glut1) alleviates dermatitis
symptoms in animal models of psoriasis [26]. This report supports that there is, at least in certain skin
diseases, an abnormal metabolic shift including anaerobic glycolysis. We used 2DG, a glucose analogue
that inhibits glucose metabolism whether 2DG alleviates TPA-induced inflammation in mouse ears
(Figure 2). TPA-induced skin inflammation is usually used as a model for irritant contact dermatitis
or psoriasis along with activation of Th1 and Th17 immune responses [45,46]. We found that the
levels of mice ear thickness and epidermis are decreased by topical administration of 2DG (Figure 2B).
Epidermis thickness is one of primary indicators of viability of keratinocytes and increased levels
of epidermis thickness are frequently found along with high rate of keratinocyte proliferation [47].
We found that 500 µM 2DG inhibits keratinocyte viability in vitro (Figure 4A). Thus, 2DG is able to
inhibit keratinocyte proliferation directly. Whereas, there was no toxicity found in keratinocytes from



Biomedicines 2020, 8, 20 8 of 11

2DG treated mice using histological analysis (Figure 2D). According to a recent report, mast cell-derived
histamine induces keratinocyte proliferation in AD [48]. As 2DG inhibits mast cell infiltration (Figure 3F),
2DG may negatively regulate keratinocyte proliferation indirectly in animal models of dermatitis.
Glucose signaling is important for redox metabolism and cytokine induction in keratinocytes [49].
As NFκB signaling is one of the primary modulators in inflammation, we determined whether 2DG
attenuates NFκB activation in skin cells including keratinocytes and fibroblasts. We found 2DG
treatment is not able to modulate NFκB activity in skin cells (Figure 4B,D). These data indicated that
skin cells might not be primarily cells that are responsible for 2DG-mediated anti-inflammation in atopic
dermatitis. On the other hand, inhibition of glucose and glutamine metabolism has been extensively
studied in modulating immune response [8]. Moreover, 2DG suppresses immune cell activation and
reduces disease severity in an autoimmune model of rheumatoid arthritis [50]. These observations
suggested that 2DG primarily modulates immune response although rigorous study remains to
elucidate the molecular mechanism. Oxazolone-induced dermatitis is an atopic dermatitis animal
model, along with robust Th2 immune response [51]. We measured mast cells infiltration, which is
one of the indicators of Th2 immune response. Moreover, histamine, released by mast cells serves
a crucial role in promoting atopic march through vicious itch-scratch cycle [52]. We speculated that
Th2 immune response is attenuated by 2DG treatment according to inhibition of infiltrated mast cells.
As 2DG is widely investigated as chemotherapy for cancer treatment, we tested the adverse effect of
2DG in an animal model. We used 50 mg/kg of 2DG in a TPA-induced mice model, which is 10-fold
lower compared to the study that shows an anticancer effect of 2DG [53]. The 50 mg/kg of 2DG treated
mice had no adverse effect and were similar to normal mice (Figure 2). The confidence limit of 2DG
concentration is 5100–126,000 mg/kg [9]. Previously, 1–5% 2DG was used topically for inhibition of
herpes simplex virus and there was no report on keratinocyte apoptosis as well as mortality in mice
and guinea pigs [10]. Moreover, 45 mg/kg of 2DG is well tolerated at the phase II clinical study [54].
These results suggest that 2DG could be one of the primary candidates as a repurposing drug although
future studies are required to determine the appropriate dose of treatment for dermatitis therapeutics.
In this manuscript, we found that the levels of enzymes associated with glucose metabolism are
increased from skin biopsies of atopic dermatitis patients. We demonstrated that 2-deoxy-d-glucose
(2DG), a glycolysis inhibitor, administration attenuates dermatitis in mice models. Overall, this is the
first study showing that 2DG alleviates an animal model of dermatitis and further studies are required
to investigate the molecular mechanism of the 2DG-mediated anti-inflammatory effect on dermatitis.
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