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Abstract: Chondrosarcoma is a malignant bone tumor with high metastatic potential. Lymphangio-
genesis is a critical biological step in cancer metastasis. WNT1-inducible signaling pathway protein 3
(WISP-3) regulates angiogenesis and facilitates chondrosarcoma metastasis, but the role of WISP-3 in
chondrosarcoma lymphangiogenesis is unclear. In this study, incubation of chondrosarcoma cells
with WISP-3 increased the production of VEGF-C, an important lymphangiogenic factor. Conditioned
medium from WISP-3-treated chondrosarcoma cells significantly enhanced lymphatic endothelial
cell tube formation. WISP-3-induced stimulation of VEGF-C-dependent lymphangiogenesis inhib-
ited miR-196a-3p synthesis in the ERK, JNK, and p38 signaling pathways. This evidence suggests
that the WISP-3/VEGF-C axis is worth targeting in the treatment of lymphangiogenesis in human
chondrosarcoma.

Keywords: WISP-3; chondrosarcoma; VEGF-C; lymphangiogenesis; miR-196a-3p

1. Introduction

Chondrosarcomas are cartilage-forming tumors found typically in the femur, tibia,
or pelvis [1,2], and these tumors easily metastasize to distant organs [1]. In particular,
high-grade chondrosarcomas are prone to metastasize to the lungs [3,4] and lack effective
therapeutic options [5], so it is imperative that research efforts search for potentially
effective treatments.

Tumor metastasis involves the movement of cancer cells from the primary site and
their establishment in other organs [6,7]. A growing body of research has highlighted
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the role of lymphangiogenesis in cancer metastasis [6,8]. Lymphangiogenesis enables
lymphatic endothelial cells (LECs) to proliferate and migrate through lymphatic vessels
surrounding the tumors [9,10]. Vascular endothelial growth factor (VEGF)-C is a key factor
in the regulation of lymphangiogenesis [9,10], as increasingly higher levels of VEGF-C
expression stimulate LEC-associated lymphangiogenesis and the metastatic potential of
chondrosarcoma cells, while VEGF-C expression is significantly higher in human chon-
drosarcoma tissue than in normal cartilage [11,12]. Thus, it is critical to investigate the
mechanism of VEGF-C synthesis in human chondrosarcoma cells.

CCN (Cyr61, CTGF, and Nov) family proteins are important for tumor development
and metastasis [2,13]. One CCN family member, WNT1-inducible signaling pathway
protein 3 (WISP-3, also known as CCN6), regulates several cellular functions [14]. WISP-3
expression has been detected in different types of cancers [15,16]. We have previously
found higher WISP-3 levels in human chondrosarcoma tissue than in normal cartilage [17].
Moreover, reports of WISP-3-induced promotion of VEGF-A production and cellular
motility in human chondrosarcoma cells reinforces the data, showing that WISP-3 mediates
angiogenesis and metastasis in chondrosarcoma [17,18]. Thus, WISP-3 appears to be a
novel avenue for treating metastatic chondrosarcoma.

MiRNAs, single-stranded noncoding RNA molecules that manipulate gene expression
at the post-transcriptional level [19], have the ability to regulate inflammatory and immune
responses [20], and negatively or positively affect the proliferation, differentiation, migra-
tion, and survival of cancer cells [21,22]. Moreover, miRNAs have been found to regulate
lymphangiogenic activity during cancer progression [23]. However, it remains unclear
as to whether the WISP-3-miRNA axis regulates lymphangiogenesis in chondrosarcoma.
Our study has identified that WISP-3 increased VEGF-C production and facilitated LEC
lymphangiogenesis in human chondrosarcoma cells by inhibiting miR-196a-3p synthesis
in the ERK, JNK, and p38 signaling pathways. Inhibition of WISP-3 expression reduced
VEGF-C-dependent lymphangiogenesis in vivo. WISP-3 therefore seems to be a novel
therapeutic target for chondrosarcoma.

2. Materials and Methods
2.1. Materials

WISP-3, VEGF-C, ERK, p38, JNK, and β-actin antibodies were obtained from Gene-
Tex (Hsinchu, Taiwan). The phosphorylated forms of ERK, p38, and JNK antibodies
were bought from Cell Signaling (Danvers, MA, USA). ERK, p38, JNK, and control ON-
TARGETplus siRNAs were purchased from Dharmacon (Lafayette, CO, USA). Taqman®

One-Step PCR Master Mix and qPCR primers and probes were bought from Applied
Biosystems (Foster City, CA, USA). Recombinant human WISP-3 was acquired from Pepro-
Tech (Rocky Hill, NJ, USA). All other chemicals not already mentioned were acquired from
Sigma-Aldrich (St. Louis, MO, USA).

2.2. Cell Culture

Human LECs were purchased from Lonza (Walkersville, MD, USA) and cultured in
EGM-2 MV medium consisting of EBM-2 basal medium and SingleQuots Kit media. The
human chondrosarcoma cell line SW1353 was bought from ATCC (Manassas, VA, USA),
and cultured in Dulbecco’s Modified Eagle Medium (DMEM). The chondrosarcoma JJ012
cell line was kindly provided by Dr. Sean P. Scully (University of Miami School of Medicine,
Miami, FL, USA). Highly migratory JJ012(S10) cells and stable JJ012(S10) cells infected with
WISP-3 shRNA were established as per the methods detailed in our previous report [18].
JJ012 cell lines were cultured 50%/50% in DMEM/α-MEM. For all three chondrosarcoma
cell lines, the culture also included 10% fetal bovine serum, 1% streptomycin (100 µg/mL),
sodium bicarbonate (1.5 g/L), sodium pyruvate (1 mM), and HEPES (25 mM) at 37 ◦C in
5% CO2.
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2.3. Western Blot

After the indicated treatments, chondrosarcoma cells were lysed in RIPA buffer con-
taining phosphatase and protease inhibitors. The protein lysates were separated using
SDS-PAGE then transferred to PVDF membranes, as described in our previous publica-
tions [24–26]. Membranes were blocked for 1 h with TBST (TBS with 0.1% Tween 20)
containing 4% non-fat milk, then washed three times in TBST buffer before administration
of antibodies targeting p-ERK, p-JNK, p-p38, WISP-3, VEGF-C, and β-actin for 1 h, then
washed again (three times) with TBST buffer. The membranes were then incubated for 1 h
with HRP-conjugated secondary antibodies, and subsequently washed three times with
TBST buffer. Immunoreactive signals were visualized by enhanced chemiluminescence
with ECL reagent and blot membranes were visualized with a Fujifilm LAS-4000 imaging
system (GE Healthcare, Little Chalfont, UK).

2.4. mRNA and miRNA Quantification

A TRIzol kit (MDBio, Taipei, Taiwan) extracted total RNA and miRNA from the
chondrosarcoma cell lines, according to the manufacturer’s instructions, then examined
them with a NanoVue Plus spectrophotometer (GE Healthcare Life Sciences; Pittsburgh,
PA, USA). Following the manufacturers’ instructions, we reverse-transcribed total RNA
into complementary DNA (cDNA) using the M-MLV RT kit (Thermo Fisher Scientific;
Waltham, MA, USA) and the Mir-X™ miRNA First-Strand Synthesis kit (Terra Bella Avenue;
Mountain View, CA, USA). Quantitative real-time PCR (qRT-PCR) was performed using the
miR-196a-3p specific primer. U6 was used as a normalizing control for miRNA qRT-PCR
analysis. cDNA samples were subjected to qRT-PCR analysis with SYBR Green, as per our
previous reports [27,28].

2.5. Collection of Chondrosarcoma Conditioned Medium and the ELISA Assay

Chondrosarcoma cells were cultured and grown to confluence. The culture medium
was then exchanged with serum-free DMEM/α-MEM medium. Cells were pretreated
or transfected with the indicated inhibitors or siRNAs then stimulated with WISP-3 for
24 h. The medium was collected as conditioned medium (CM) and stored at −80 ◦C
until use. Secreted VEGF-C was analyzed by a VEGF-C ELISA assay kit, according to the
manufacturer’s instructions [29].

2.6. LEC Tube Formation

LECs were suspended at a density of 3 × 105 (50% EGM-2MV medium and 50%
chondrosarcoma cell CM) and cultured in 48-well plates precoated with 150 µL of Matrigel.
LEC tube formation was photographed after 6 h and the number of tube branches was
counted manually [29].

2.7. Tumor Xenograft Study

JJ012, JJ012(S10), or JJ012(S10)/WISP-3-shRNA cells (5 × 106) were transplanted
subcutaneously into the right flanks of BALB/c-nu mice (4-week-old males) according to
a previous protocol [18]. After 4 weeks, the mice were sacrificed by CO2 inhalation and
the tumors were removed. All animal work was carried out in accordance with a protocol
approved by China Medical University (Taichung, Taiwan) Institutional Animal Care and
Use Committees (CMUIACUC-2017-151-1).

2.8. Immunohistochemistry (IHC) Staining

Mouse tumor tissues were rehydrated and treated with primary anti-VEGF-C or
LYVE-1 antibodies, then incubated with biotin-labeled secondary antibody. The slides
were treated with the ABC Kit (Vector Laboratories, Burlingame, CA, USA) according to a
previous protocol [30], and then photographed using the microscope. Intra-tumoral lymph
vessels were defined as LYVE-1-positive (LYVE-1+) vessels that were in close contact with
tumor cells or located in the desmoplastic stroma. Peritumoral lymph vessels were defined
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as LYVE-1+ vessels at a maximum distance of 2 mm from the tumor periphery. In each case,
five microscopic fields “lymphatic vessel hot spots” were examined at high power. The
mean of these five values was recorded as the LYVE-1+. Density measurements of lymph
vessels’ area were performed with ImageJ software [31,32].

2.9. Statistical Analysis

All values are presented as the mean ± standard deviation (SD). Differences between
two experimental groups were assessed for significance using the Student’s t-test and
considered to be significant if the p-value was <0.05.

3. Results
3.1. WISP-3 Facilitates VEGF-C-Dependent Lymphangiogenesis in Chondrosarcoma Cells

WISP-3 facilitates angiogenesis and metastasis in human chondrosarcoma cells [17,18]
and VEGF-C reportedly regulates lymphangiogenesis in different cancer cells [33]. We
initially found that WISP-3 treatment increased VEGF-C mRNA and secreted protein
production in JJ012 and SW1353 cells, according to qPCR and ELISA data (Figure 1A,B).
LEC tube formation is a well-established model that is used to mimic lymphangiogenesis
in vitro [10]. CM from WISP-3-treated chondrosarcoma cells significantly enhanced tube
formation in LECs (Figure 1C,D). VEGF-C mAb, but not control IgG, reduced the effects
of WISP-3 on VEGF-C-promoted LEC tube formation (Figure 1C,D), which suggests that
WISP-3 induces chondrosarcoma lymphangiogenesis in a VEGF-C-dependent manner.
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Figure 1. WISP-3 promotes VEGF-C-dependent lymphangiogenesis in human chondrosarcoma.
(A,B) Cells were incubated with WISP-3 (10–100 ng/mL) and levels of VEGF-C mRNA and pro-
tein expression were examined by qPCR and ELISA assays. (C,D) Collected conditioned medium
(CM) was applied to lymphatic endothelial cells (LECs), then LEC tube formation was measured
(scale bar = 100 µm). Quantitative results are expressed as the mean ± SD. All experiments were
repeated 3 to 5 times (solid squares, solid dots, hollow circles and solid triangles). * p < 0.05 compared
with the control group; # p < 0.05 compared with the WISP-3-treated group.
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3.2. The MAPK Signaling Pathway Mediates the Effect of WISP-3 upon VEGF-C Synthesis of
Human Chondrosarcoma Cells

The MAPK (ERK, JNK, and p38) signaling pathway is important in the metastatic
process of chondrosarcoma [34,35]. Stimulation of chondrosarcoma cell lines with ERK,
JNK, or p38 inhibitors (ERK II, SP600125, or SB203580, respectively) significantly reduced
WISP-3-enhanced stimulation of VEGF-C production (Figures 2A,C, 3A,C and 4A,C).
Similar effects were observed when the chondrosarcoma cell lines were transfected with
ERK, JNK, or p38 siRNAs (Figures 2B,D, 3B,D and 4B,D), which substantially inhibited
ERK, JNK, or p38 expression, respectively (Figures 2F, 3F and 4F). WISP-3 stimulation
time-dependently promoted ERK, JNK, and p38 phosphorylation. These results suggest
that the MAPK signaling pathway regulates WISP-3-promoted VEGF-C expression and
lymphangiogenesis.
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Figure 2. The ERK pathway controls WISP-3-induced VEGF-C production. (A–D) Cells were
pretreated with a ERK inhibitor (ERK II) or transfected with an ERK siRNA, then stimulated with
WISP-3. Levels of VEGF-C expression were examined by qPCR and ELISA. (E) JJ012 cells were
incubated with WISP-3 for the indicated time intervals, and ERK phosphorylation was examined by
Western blot. (F) JJ012 cells were transfected with ERK siRNA, and ERK expression was examined by
Western blot. Quantitative results are expressed as the mean ± SD. All experiments were repeated 3
to 5 times (solid squares, solid dots, hollow circles and solid triangles). * p < 0.05 compared with the
control group; # p < 0.05 compared with the WISP-3-treated group.
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Figure 3. The JNK pathway controls WISP-3-induced VEGF-C production. (A–D) Cells were
pretreated with a JNK inhibitor (SP600125) or transfected with a JNK siRNA, then stimulated with
WISP-3. The levels of VEGF-C expression were examined by qPCR and ELISA. (E) JJ012 cells were
incubated with WISP-3 for the indicated time intervals, and JNK phosphorylation was examined by
Western blot. (F) JJ012 cells were transfected with JNK siRNA, and JNK expression was examined by
Western blot. Quantitative results are expressed as the mean ± SD. All experiments were repeated 3
to 5 times (solid squares, solid dots, hollow circles and solid triangles). * p < 0.05 compared with the
control group; # p < 0.05 compared with the WISP-3-treated group.
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Figure 4. The p38 pathway controls WISP-3-induced VEGF-C production. (A–D) Cells were pre-
treated with a p38 inhibitor (SB203580) or transfected with a p38 siRNA, then stimulated with WISP-3.
Levels of VEGF-C expression were examined by qPCR and ELISA. (E) JJ012 cells were incubated
with WISP-3 for the indicated time intervals, and p38 phosphorylation was examined by Western
blot. (F) JJ012 cells were transfected with p38 siRNA, and p38 expression was examined by Western
blot. Quantitative results are expressed as the mean ± SD. All experiments were repeated 3 to 5 times
(solid squares, solid dots, hollow circles and solid triangles). * p < 0.05 compared with the control
group; # p < 0.05 compared with the WISP-3-treated group.

3.3. Inhibition of miR-196a-3p Controls WISP-3-Promoted VEGF-C Synthesis

MiRNA expression is dysregulated in cancer patients and differs from miRNA expres-
sion in healthy individuals [36,37]. Using open-source miRNA software, we identified six
miRNAs that potentially target with VEGF-C transcription, and miR-196-3p synthesis was
mostly decreased with WISP-3 treatment (Figure 5A). WISP-3 concentration-dependently
reduced miR-196a-3p and precursor miR-196a-3p (pre-miR-196a-3p) synthesis in the chon-
drosarcoma cells (Figure 5B,C). Transfection of chondrosarcoma cells with miR-196a-3p
mimic antagonized the effects of WISP-3 upon VEGF-C production (Figure 5D). Treatment
of cells with ERK, JNK, and p38 inhibitors or siRNAs all reversed WISP-3-induced inhibi-
tion of miR-196a-5p expression (Figure 5E,F), indicating that MAPK signaling mediates
WISP-3-induced inhibition of miR-196a-3p.
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Figure 5. WISP-3 facilitates VEGF-C synthesis by inhibiting miR-196a-5p. (A) JJ012 cells were
incubated with WISP-3. MiRNA expression was determined by the qPCR assay. (B,C) Cells were
incubated with WISP-3. MiR-196a-5p or pre-miR-196a-5p expression was determined by the qPCR
assay. (D) Cells were transfected with miR-196a-5p mimic, then stimulated with WISP-3. VEGF-C
levels were determined by qPCR. (E,F) Cells were treated with the indicated inhibitors or siRNAs,
then stimulated with WISP-3. MiR-196a-5p expression was quantified by qPCR. Quantitative results
are expressed as the mean ± SD. All experiments were repeated 3 to 5 times (solid squares, solid dots,
hollow circles and solid triangles). * p < 0.05 compared with the control group; # p < 0.05 compared
with the WISP-3-treated group.

3.4. Inhibition of WISP-3 Reduces LEC Lymphangiogenesis In Vivo

We previously established highly migratory JJ012(S10) cells by using Transwell [18,38].
Here, we found that JJ012(S10) cells expressed higher protein levels of WISP-3 and VEGF-C,
and that CM from the JJ012(S10) cell line strongly promoted LEC tube formation compared
to parental JJ012 cells (Figure 6A–D). Knockdown of WISP-3 in JJ012(S10) cells by WISP-3
shRNA inhibited WISP-3 and VEGF-C expression, and also reduced LEC tube formation
(Figure 6A–D). In the tumor-induced lymphangiogenesis model, the IHC data revealed
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that knockdown of WISP-3 inhibited chondrosarcoma-promoted expression of WISP-3
and LEC markers VEGF-C and LYVE-1 (Figure 6E–I). These results indicate that inhibiting
WISP-3 lowers LEC lymphangiogenesis in vivo.

Biomedicines 2021, 9, x FOR PEER REVIEW 10 of 15 
 

 

by WISP-3 shRNA inhibited WISP-3 and VEGF-C expression, and also reduced LEC tube 
formation (Figure 6A–D). In the tumor-induced lymphangiogenesis model, the IHC data 
revealed that knockdown of WISP-3 inhibited chondrosarcoma-promoted expression of 
WISP-3 and LEC markers VEGF-C and LYVE-1 (Figure 6E–I). These results indicate that 
inhibiting WISP-3 lowers LEC lymphangiogenesis in vivo. 

 
Figure 6. Inhibition of WISP-3 reduces LEC lymphangiogenesis in vivo. (A–C) WISP-3 and VEGF-C expression were 
examined by Western blot and qPCR in the indicated cells. (D) CM was collected from the indicated cells then applied to 
LECs and LEC tube formation was measured. (E–I) At 28 days after the mice were injected, the tumors were embedded in 
paraffin and sections were immuno-stained using WISP-3, VEGF-C, and LYE-1 antibodies. Quantitative results are ex-
pressed as the mean ± SD. All experiments were repeated 3 to 6 times. * p < 0.05 compared with the JJ012 group; # p < 0.05 
compared with the JJ012(S10) group. 

4. Discussion 
Chondrosarcoma is responsible for around one-fourth (~26%) of all bone cancers [39] 

and is well-characterized as being an aggressive malignancy with a high likelihood of me-
tastasis [40]. Up until now, chondrosarcoma metastasis lacks effective adjuvant therapies 
[1,3]. Lymphangiogenesis is a critical step during tumor metastasis, promoting tumor 

Figure 6. Inhibition of WISP-3 reduces LEC lymphangiogenesis in vivo. (A–C) WISP-3 and VEGF-C expression were
examined by Western blot and qPCR in the indicated cells. (D) CM was collected from the indicated cells then applied to
LECs andLEC tube formation was measured. (E–I) At 28 days after the mice were injected, the tumors were embedded
in paraffin and sections were immuno-stained using WISP-3, VEGF-C, and LYE-1 antibodies. Quantitative results are
expressed as the mean ± SD. All experiments were repeated 3 to 6 times (solid squares, solid dots, hollow circles and solid
triangles). * p < 0.05 compared with the JJ012 group; # p < 0.05 compared with the JJ012(S10) group.

4. Discussion

Chondrosarcoma is responsible for around one-fourth (~26%) of all bone cancers [39]
and is well-characterized as being an aggressive malignancy with a high likelihood of
metastasis [40]. Up until now, chondrosarcoma metastasis lacks effective adjuvant ther-
apies [1,3]. Lymphangiogenesis is a critical step during tumor metastasis, promoting
tumor development via the synthesis of lymphatic vessels [10]. Evidence suggests that
increasing levels of VEGF-C expression are associated with tumor relapse and a poor
prognosis [41,42]. Thus, VEGF-C represents a critical candidate for preventing lymphan-
giogenesis and metastasis [41,42]. Our cellular and preclinical investigations found that
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WISP-3 reliably promotes VEGF-C-dependent lymphangiogenesis in chondrosarcoma.
We confirmed that WISP-3 facilitates VEGF-C production in chondrosarcoma and subse-
quently increases LEC lymphangiogenesis by inhibiting miR-196a-5p expression in the
MAPK signaling pathway.

WISP-3 protein is involved in the development, homeostasis, and repair of mesenchy-
mal tissues [43]. WISP-3 dose-dependently stimulates the migration of undifferentiated
mesenchymal stem cells (MSCs), and the chemotactic activity of WISP-3 in these cells is
reportedly mediated by integrin ανß5 [43]. WISP-3 also has effects on cartilage homeosta-
sis. For example, WISP-3 overexpression in normal cartilage (C-28/I2) cells dramatically
reduces the expression of ADAMTS-4 and ADAMTS-5, and markedly elevates matrix
metalloproteinase-1 (MMP-1) and MMP-10 expression, leading to the degradation of car-
tilage and the development of osteoarthritis [44]. Thus, WISP-3 plays a critical role in
influencing the development of bone disease, and by the recruitment of MSCs by stimulat-
ing their migration in skeletal development and repair.

LECs stimulate lymphatic vessel formation, and the promotion of LEC mobilization
by lymphangiogenic factors facilitates tumor development and angiogenesis [45]. Here,
we observed that CM from highly migratory JJ012(S10) cells easily facilitated LEC tube
formation compared to parental JJ012 cells. WISP-3 shRNA reduced VEGF-C production,
LEC tube formation, and the expression of LEC markers in vivo. Thus, inhibiting WISP-3
inhibits LECs lymphangiogenesis in vitro and in vivo. Various lymphangiogenic factors,
including VEGF-A, VEGF-C, and VEGF-D, are involved in the lymphangiogenic processes
of several different diseases, including cancer [9,10,46]. We have previously reported that
WISP-3 promotes VEGF-A expression in chondrosarcoma cells and induces endothelial
progenitor cell angiogenesis [18]. In addition, an in vivo tumor xenograft study reveals
that inhibiting WISP-3 expression reduces the expression of the vessel markers CD31 and
VEGF-A, indicating that WISP-3 enhances angiogenesis in vivo [18]. Here, we report that
incubation of chondrosarcoma cell lines with WISP-3 concentration-dependently promotes
mRNA and VEGF-C synthesis, resulting in LEC lymphangiogenesis. The VEGF-C anti-
body abolished LEC tube formation in CM from WISP-3-treated chondrosarcoma cells.
Moreover, we also used a mouse tumor xenograft model to simulate the environment
of initial lymphangiogenesis. Our results revealed that knockdown of WISP-3 inhibited
chondrosarcoma-promoted expression of the LEC markers VEGF-C and LYVE-1, indi-
cating that VEGF-C is a critical factor in WISP-3-induced lymphangiogenesis in human
chondrosarcoma. Whether other lymphangiogenic factors also regulate WISP-3-enhanced
promotion of lymphangiogenesis in chondrosarcoma needs further investigation.

Activation of the MAPK pathway is important in the adjustment of different cellular
effects [47,48]. This signaling pathway regulates the expression of VEGF-C-associated
cellular functions [49,50]. Our results show that WISP-3 increases the phosphorylation
of ERK, JNK, and p38, while their respective pharmacological inhibitors suppress WISP-
3-induced promotion of VEGF-C expression. This phenomenon is confirmed by similar
effects observed with genetic siRNAs of ERK, JNK, and p38. This evidence reveals that
activation of ERK, JNK, and p38 signaling controls WISP-3-enhanced promotion of VEGF-C
synthesis and lymphangiogenesis of chondrosarcoma cells.

MiRNAs post-transcriptionally regulate gene expression [51]. In tumors, aberrant
miRNA expression regulates the expression of lymphangiogenic pathways [12]. Numerous
miRNAs also control lymphangiogenesis during tumor progression [29]. In this study,
stimulation of chondrosarcoma cells with WISP-3 inhibited miR-196a-5p expression, and
transfecting them with miR-196a-5p mimic antagonized WISP-3-promoted upregulation
of VEGF-C expression and LEC lymphangiogenesis. Treating the chondrosarcoma cells
with MAPK inhibitors or siRNAs reversed WISP-3-promoted inhibition of miR-196a-
5p expression, suggesting that WISP-3 may assist with VEGF-C production and LEC
lymphangiogenesis by inhibiting miR-196a-5p synthesis via the MAPK signaling cascades.
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5. Conclusions

In conclusion, our study has identified that WISP-3 facilitates VEGF-C-dependent lym-
phangiogenesis of chondrosarcoma cells by inhibiting miR-196a-5p synthesis in the ERK,
JNK, and p38 pathways (Figure 7). We believe that targeting WISP-3-dependent VEGF-C
expression in metastatic chondrosarcoma offers a new way to address this aggressive
malignancy.
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