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Abstract: Nonalcoholic fatty liver disease (NAFLD) is the leading contributor to the global burden
of chronic liver diseases. The phenotypic umbrella of NAFLD spans from simple and reversible
steatosis to nonalcoholic steatohepatitis (NASH), which may worsen into cirrhosis and hepatocellular
carcinoma (HCC). Notwithstanding, HCC may develop also in the absence of advanced fibrosis,
causing a delayed time in diagnosis as a consequence of the lack of HCC screening in these patients.
The precise event cascade that may precipitate NASH into HCC is intricate and it entails diverse
triggers, encompassing exaggerated immune response, endoplasmic reticulum (ER) and oxidative
stress, organelle derangement and DNA aberrancies. All these events may be accelerated by both
genetic and environmental factors. On one side, common and rare inherited variations that affect
hepatic lipid remodeling, immune microenvironment and cell survival may boost the switching
from steatohepatitis to liver cancer, on the other, diet-induced dysbiosis as well as nutritional and
behavioral habits may furtherly precipitate tumor onset. Therefore, dietary and lifestyle interventions
aimed to restore patients’ health contribute to counteract NASH progression towards HCC. Even
more, the combination of therapeutic strategies with dietary advice may maximize benefits, with the
pursuit to improve liver function and prolong survival.

Keywords: NAFLD; NASH; heritability; HCC; nutrition

1. Introduction

Nonalcoholic fatty liver disease (NAFLD) is the leading contributor to the global
burden of chronic liver diseases [1]. Its prevalence is approximately 25% ranging from
13% in Africa and 42% in southeast Asia and the hallmark of the disease is excessive fat
deposition in hepatocytes [2]. NAFLD comprises a spectrum of histological conditions
ranging from simple steatosis which is considered a benign as well as a reversible condition
to nonalcoholic steatohepatitis (NASH) in which triglyceride accumulation in the hepatic
parenchyma is associated with inflammation and ballooning [3]. NASH may progress
to fibrosis, cirrhosis and hepatocellular carcinoma (HCC) and it represents the second
most common indication for liver transplantation in the United States [4]. Indeed, recent
advances in viral hepatitis therapies have been paralleled by the epidemic of obesity and
type 2 diabetes (T2D), which to date mainly boost NASH progression up to HCC. Therefore,
the growing burden of NAFLD is allied with the increasing incidence of HCC which
represents the 75–85% of liver cancer and the sixth- most common tumor worldwide [4].

The annual incidence of NAFLD-related HCC in USA and Europe ranges from
0.7% to 2.6% in patients with NASH-related cirrhosis whereas it is lower (0.1 to 1.3 per
1000 patient-years) in non-cirrhotic NAFLD and the proportion of HCC attributable to
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NAFLD is higher in Germany, UK, India and Middle East [2]. NASH-HCC usually occurs
in older patients, it is diagnosed at later stages and is associated with poorer survival
compared to viral hepatitis-related HCC [2]. Moreover, it may develop also in the absence
of cirrhosis although most commonly in patients with advanced fibrosis and the lack of
HCC screening in these patients partly explains the late diagnosis [5,6].

The mechanisms underlying the development of HCC in the context of NAFLD,
especially in the absence of cirrhosis are not completely clarified and the identification of
druggable biomarkers is crucial to improve its surveillance, diagnosis, and prognosis, as
well as prevention. The present review aims to discuss the metabolic, genetic, dietary, and
immunity-related factors which predispose to liver cancer in NAFLD patients, emphasizing
the potential effect of nutritional therapy in HCC.

2. Common Genetic Variations Promote the Switch from NASH to HCC

Familial, twin, and epidemiological studies indicated that NAFLD has a strong heri-
table component. Both common and rare mutations contribute to NAFLD pathogenesis
and to the transition from NASH to HCC [7,8]. The rs738409 C > G single nucleotide
polymorphism (SNP) in the Patatin-like phospholipase domain containing 3 gene (PNPLA3
or adiponutrin) is strongly associated with the entire spectrum of NAFLD, encompassing
NASH, severe fibrosis and HCC [9,10]. PNPLA3 gene codifies for a 481-aminoacid mem-
brane lipase, located in the endoplasmic reticulum (ER) and on lipid droplets (LDs) surface
in hepatocytes, adipocytes and hepatic stellate cells (HSCs) and the rs738409 variation
codifies for an aminoacidic substitution from isoleucine to methionine at position 148 [11].
Patients who carry the at risk G allele lost PNPLA3 enzymatic activity, paralleled by re-
duced TG hydrolysis and dismissal thus leading to their accumulation in hepatocytes [12].

Although PNPLA3 is mainly involved in triacylglycerol remodeling, it may directly
precipitate fibrogenesis and carcinogenesis, irrespective of steatosis by impairing retinol
release from HSCs [13–16]. Indeed, the histological pattern of NAFLD patients carrying
the PNPLA3 I148M variation was featured by macro and microvesicular steatosis, portal
inflammation, high proliferation of hepatic progenitor cells (HPCs), ductular reaction,
myofibroblast and HSCs activation, thus sustaining portal fibers deposition and systemic
oxidative stress [17]. Furthermore, in NASH patients the expression of PNPLA3 signifi-
cantly correlated with fibrosis stage and alpha-smooth muscle actin (α-SMA) levels thus
suggesting that its metabolic regulation differs among hepatocytes and HSCs [18].

Finally, PNPLA3 exerts several effects on human liver metabolome influencing mito-
chondrial functions, glucose reprogramming and tumorigenesis [19]. Huh-7 hepatoma cells
overexpressing the PNPLA3 I148M variant showed high levels of lactate and -glutamyl-
amino acids, thus mirroring the metabolic switching towards aerobic glycolysis and mito-
chondrial failure, respectively [19]. In addition, hepatic overexpression of the I148M protein
in mice promoted steatosis and NASH, by priming the metabolic reprogramming and the
activation of inflammatory pathways driven by either increased triglyceride and ceramide
species [20]. Intriguingly, Bruschi et al. demonstrated that HSCs overexpressing the I148M
variation and exposed to transforming growth factor beta (TGF-β) strengthened aerobic
glycolysis, as supported by high lactate release. Moreover, these cells showed activated
Hedgehog and Yap pathways, mainly involved in the control of energy expenditure and
maintenance of myofibroblastic traits [21]. Finally, it has recently demonstrated that HSCs
from carriers of the homozygous PNPLA3 I148M variant were characterized by signatures
of defective DNA repair, reduced TP53 signaling and oxidative stress, contributing to the
development of hepatic carcinogenesis [22].

Later than PNPLA3, an exome-wide association study identified the rs58542926 C > T
missense variant in the Transmembrane 6 superfamily member 2 (TM6SF2) gene as a deter-
minant of hepatic triglyceride content, higher serum aminotransferases and lower levels of
low-density lipoprotein (LDL)-cholesterol [23]. TM6SF2 localizes in the ER and ER-Golgi
compartments, and it participates to hepatic very low-density lipoprotein (VLDL) lipida-
tion and assembly in the ER cisternae. The rs58542926 variation, encoding a p.Glu 167Lys
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(E167K) aminoacidic substitution leads to a misfolded protein which is rapidly degraded
in hepatocytes thus resulting in an impaired VLDL secretion and fat accumulation [23,24].

The TM6SF2 minor T allele was also associated with lower serum cholesterol and
triglyceride levels in several cohorts of NAFLD patients and in large population studies
including the Dallas Heart Study, the Dallas Biobank and the Copenhagen Study [23,25].
In a large cross-sectional cohort of 1201 individuals with biopsy-proven NAFLD, we previ-
ously demonstrated that the E167K variation was associated with steatosis, inflammation,
ballooning and fibrosis but it conferred protection against cardiovascular events [26].

In a multiethnic pediatric cohort including 957 individuals, the TM6SF2 E167K vari-
ation has been related to high hepatic fat content, high alanine aminotransferase levels,
severe fibrosis and a more favorable lipid profile thus confirming its association with liver
damage and protection against cardiovascular events in NAFLD patients [27].

Most of the data pointed at the role of TM6SF2 E167K variation in predisposing to
all the NAFLD spectrum [26,28,29], although its impact on clinically relevant fibrosis and
HCC is still controversial [29–31]. Liu et al. reported that the rs58542926 was associated
with advanced hepatic fibrosis/cirrhosis in two histologically characterized cohorts en-
compassing steatosis, steatohepatitis, fibrosis and cirrhosis (combined n = 1074) regardless
of other confounders as gender, sex, body mass index (BMI), T2D and PNPLA3 rs738409
genotype [32]. The association between the rs58542926 variation, advanced fibrosis and
HCC was furtherly described in a cross-sectional and in small cohort studies including 502
and 129 NAFLD patients, respectively although it had only a minor influence on hepatic
fibrosis in viral hepatitis [29,33]. In a meta-analysis including a large pooled population
made up of 24,147 individuals with heterogeneous chronic liver disorders, the E167K
polymorphism was associated with NAFLD, higher risk of cirrhosis and HCC but not with
viral hepatitis [34,35].

Finally, Longo et al. have recently demonstrated that TM6SF2 silencing in HepG2
(TM6SF2−/−) hepatoma cells by clustered regularly interspaced short palindromic
repeats/CRISPR-associated protein 9 (CRISPR/Cas9), resulted in an increased number of
mitochondria with small and globular shape, loss of cistern architecture and ultrastructural
electron density which may indicate mitochondrial failure and degeneration. Notably, the
knock-out (KO) model when combined with membrane bound o-acyltransferase domain-
containing 7 (MBOAT7) silencing runs into metabolic reprogramming towards anaerobic
glycolysis, suggesting that the co-absence of TM6SF2 and MBOAT7 genes may synergically
induce mitochondrial dysfunctions in hepatocytes thus contributing to the switch towards
NASH up to HCC [36–38].

Following the time sequence, in 2015 a genome-wide association study (GWAS)
which evaluated the genetic predictors of cirrhosis in alcoholics, identified the common
rs641738 C > T variant in the TMC4/MBOAT7 locus, as a novel inherited mediator of
hepatic diseases [39,40]. MBOAT7, also known as lyso-phosphatidylinositol (Lyso-PI) acyl-
transferase1 (LPIAT1, is a protein involved in the acyl chain remodeling of phospholipids
via the Lands’ cycle. MBOAT7 is associated to the membranes bridging ER and mitochon-
dria in which LDs and fat biosynthesis occurs and it is mainly expressed in hepatocytes,
sinusoidal endothelial cells, immune cells and HSCs [41–43].

Mancina and Dongiovanni, demonstrated that the rs641738 variant predisposes to
the NAFLD spectrum and the mechanism underlying this association relies on MBOAT7
reduced expression which leads to alteration in phosphatidylinositol (PI) species compo-
sition [43–45]. According to the impaired hepatic MBOAT7 function, patients carrying
the T allele showed changes in plasma and hepatic PI species, decreasing specifically
those enriched in omega-3 Polyunsaturated Fatty Acids (PUFAs) and increasing saturated
ones [44,45]. This concept was recently reinforced by Meroni and colleagues who elegantly
demonstrated that hepatic MBOAT7 down-regulation is a maladaptive response to hyper-
insulinemia and that the impaired enzymatic activity forces hepatic fat storage in patients,
in in vivo models, representative of NAFLD and in MBOAT7 silenced HepG2 cells [43].
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The rs641738 MBOAT7 variation has also been related to progressive NAFLD and
a possible mechanism which supports this association was proposed by Tanaka who
demonstrated that MBOAT7 depletion in 3D-spheroids composed by hepatocytes and
HSCs, stimulated the release of cytokines, fibrogenic markers and collagen deposition due
to the accumulation of the MBOAT7 substrate Lyso-PI lipids [44,46,47]. Indeed, saturated
Lyso-PI were higher in sera of patients affected by severe fibrosis compared to healthy
subjects. Finally, we firstly demonstrated that the rs641738 T minor allele was associated
with HCC in 765 Italian NAFLD patients, and more so in those without advanced fibrosis.
These results were confirmed when we combined data from an independent UK NAFLD
cohort (n = 913) and in a pooled population of non-cirrhotic patients with chronic hepatitis
C or alcoholic liver disease (n = 1121) [41].

To sum up, the genetic variants which strongly predispose to HCC are those in
PNPLA3, TM6SF2 and MBOAT7 genes which have been extensively described to promote
hepatic fat accumulation and their effect is not necessarily mediated by the development of
hepatic fibrosis [41,48]. Although the efficacy of these SNPs in predicting NAFLD-HCC is
limited, it may be amplified by pulling them in polygenic risk scores (PRS) [49].

3. Genetic Variants in Immunoregulatory Genes Modulate the Risk of HCC in
NAFLD Patients

In the last years, it is emerged that the immune response to fatty depots may in-
fluence NAFLD progression and the onset of HCC. Innate and adaptive immune cell
activation together with oxidative stress, mitochondrial and ER dysfunctions lead to necro-
inflammation and hepatocellular regeneration thus promoting HCC development [50]. It
has been described that fatty liver modulates the immune microenvironment which is char-
acterized by a lower number of anti-tumors CD4+ T cells and an increase of CD8+ T, natural
killer and Th17 cells [51]. The remodeling of the immune cell population may impact on
immunotherapy which has recently become a new therapeutic option for the management
of HCC in terms of immune checkpoint blockers. Nivolumab and pembrolizumab, both
monoclonal antibodies against programmed cell death protein 1 (PD-1) have been ap-
proved for treatment of HCC [52,53], although phase III trials failed to reach their primary
endpoints to increase overall survival (OS) in patients with non-viral HCC [54].

The PDCD-1 gene encodes an inhibitory cell surface receptor involved in the regulation
of T cell functions during immune responses/tolerance. It binds to ligands PD-L1 and
PD-L2 thus suppressing their activity and limiting potential damage to the host [55]. A
sustained PD-1 expression, its decreased degradation, or expression of PD-L1 may also be
observed in individuals susceptible to HCC development [55,56].

Pfister et al. reported that in preclinical models of NASH-induced HCC, immunother-
apy against PD-1 increased the number of CD8+PD-1+ T cells within tumors but it did
not lead to tumor regression thus suggesting that immune surveillance was impaired [50].
These authors conducted a meta-analysis of three large randomized controlled phase III
trials of immunotherapy in patients with HCC from different etiologies and they found that
OS was higher in subjects with viral-related HCC. Although these results did not differen-
tiate between alcoholic liver disease and NAFLD/NASH, they were furtherly confirmed
in a cohort of 130 patients with HCC in which NAFLD was associated with shortened
survival after PD-1 therapy [50]. The poor response to immunotherapy in patients with
non-viral HCC compared to viral ones may be due to different hepatic microenvironment
or immune milieu, and these findings might also have implications for patients with obesity
and NAFLD/NASH [50].

Polymorphisms in the PDCD-1 gene have been associated with an increased risk of
various types of cancers and some of them alter protein expression and function [55]. The
PDCD-1 rs10204525 C > T is located in the 3′ UTR, it increases PD-1 expression and has been
associated with persistence in HBV infection [57]. The rs7421861 A > G in PDCD-1 gene
is localized in the intron 1, where there are several alternative splicing sites [24]. Both the
rs10204525 and the rs7421861 increased the risk of esophageal cancer in Asian individuals
and were associated with increased PD-1 expression. Furthermore, Kaplan-Meier survival
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curves showed higher PDCD-1 gene expression contributed to worse survival of esophageal
cancer patients [58].

In a cohort of 594 patients with NAFLD and 391 with NAFLD-HCC from three
European centers, the PDCD-1 rs7421861 was independently associated with NAFLD-
HCC whereas the rs10204525 polymorphism reached significance after adjustment for
confounding factors and more so in the smaller numbers of women with NAFLD-HCC.
These associations were obtained in the UK cohort whereas the results were not confirmed
in the Berna and Milan cohorts thus suggesting that genetic variants in genes which modify
the HCC microenvironment may differ according to ethnicity although pathways may be
shared [59].

4. The Pathogenic Role of Rare Genetic Variants in NAFLD-HCC Development

Rare genetic variants which strongly impair protein function thus exerting a pathogenic
effect may contribute to fill the missing hereditability involved in NAFLD-HCC suscepti-
bility. De Filippo et al. demonstrated that hepatomegaly, abnormal liver enzymes, steatosis,
NASH and related complications were observed in patients with abetalipoproteinemia
(ABL) and hypobetalipoproteinemia (Ho-FHBL) [60]. ABL is a rare autosomic recessive
disease mainly caused by mutations in microsomal triglyceride transfer protein large sub-
unit gene (MTTP), encoding for the Apolipoprotein B (ApoB) chaperon protein (MTP) thus
leading to defects in chylomicrons and VLDL secretion. Ho-FHBL is a rare autosomal co-
dominant disorder caused by mutation in ApoB100 and results in defects of b-lipoprotein
secretion. Intra hepatic triglyceride content and higher incidence of NASH were found in
patients under treatment with ApoB synthesis and MTP inhibitors [61].

Moreover, Ho-FHBL patients who had fibrosis were characterized by the co-presence
of obesity and insulin resistance (IR), two conditions commonly related to NAFLD. It
could be speculated that the higher predisposition to advanced liver damage in these
patients may be due to the contribution of other mutations predisposing to severe fibrosis
as PNPLA3 [60]. Indeed, in a Caucasian father-son pair with NAFLD, obesity and low LDL
cholesterol, both had a heterozygous mutation in APOB gene (c.1830-1G > A) which is
a pathogenic splicing variant which causes truncated ApoB thus resulting in FHBL and
they were heterozygous also for the PNPLA3 rs738409 [62]. This father–son case series
shows that clinically significant NAFLD phenotype may be the result of interacting effects
of metabolic and disease-modifying genetic variants [62].

It has been recently demonstrated that patients with HCC related to NAFLD have
an enrichment in rare pathogenic variants, in particular in APOB gene. Therefore, these
mutations were collectively observed in a high proportion of Italian patients (15%), and
pathogenic and truncating mutations in this gene were highly enriched in the overall cohort
of NAFLD-HCC patients [63]. Notably, in line with a causal role of hepatocellular lipid
retention due to a defect in VLDL lipidation in promoting NAFLD-HCC, somatic mutations
in APOB gene also frequently occur during hepatic carcinogenesis [64].

In the attempt to decipher HCC molecular signature and to optimize personalized
treatments, Kim et al. performed an exome sequencing analysis of NAFLD-HCC tumor
samples and revealed that Telomerase reverse transcriptase (TERT) promoter mutations
occurred in 82% of cases, followed by Catenin beta 1 (CTNNB1) (45%) and TP53 (36%)
mutations [65]. An Italian group evaluated the germline TERT mutations associated
with NAFLD-HCC in 40 patients with NAFLD-HCC, 45 patients with NAFLD-cirrhosis,
64 healthy controls and examined telomere length. They detected an enrichment of TERT
mutations in NAFLD-HCC and those with predicted functional impact co-segregated with
liver disease in two families. Conversely, no mutations were found in cirrhosis and controls
and telomere length was reduced in individuals with NAFLD-HCC versus those with
cirrhosis and healthy controls [66].

The susceptibility to advanced fibrosis and carcinogenesis is also influenced by cel-
lular senescence and cell cycle arrest. Therefore, the rs762623 in cyclin dependent kinase
inhibitor 1A (CDKI1A) which encodes the cellular senescence marker p21, was signifi-
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cantly associated with the development of progressive liver disease in two cohorts of
biopsy-proven NAFLD from UK (n = 323) and Finland (n = 123) [67].

We recently evaluated the impact of the rs599839 A > G variant, in the CELSR2-PSRC1-
SORT1 gene cluster, on liver disease severity in 1426 NAFLD patients of whom 131 had
HCC. The frequency of the minor G allele was higher in NAFLD-HCC patients compared
to those without cancer and it was associated with higher risk of HCC, independently of
fibrosis severity, poor prognosis, and advanced tumor stage. Furthermore, hepatic PSRC1
expression was increased in NAFLD patients carrying the rs599839 variant and it was
positively related to that of genes implicated in cell proliferation [68].

Furthermore, it has been demonstrated that the rs1800832 A > G variant in the 5′ UTR
of the Neurotensin (NTS) gene associates with fibrosis, cirrhosis and HCC in 1166 NAFLD
patients, likely by affecting NTS protein activity [69]. This variant synergizes with the
rs6090453 polymorphism in the Neurotensin receptor 1 (NTSR1), further promoting severe
liver damage in subjects carrying both the NTS and NTSR1 at-risk alleles [69].

The mutational profiling of NASH-HCC tumors has been recently assessed by
Pinyol et al. who collected 80 NASH-HCC and 125 NASH samples and performed
expression array and whole exome sequencing. NASH-HCC tumors revealed TERT pro-
moter (56%), CTNNB1 (28%), TP53 (18%) and Activin A Receptor Type 2A (ACVR2A)
(10%) as the most frequently mutated genes. Moreover, the percentage of mutations in
ACVR2A gene was higher in NAFLD-HCC compared to HCC from other etiologies and
its in vitro silencing resulted in higher cellular proliferation rate. ACVR2A gene encodes
for a cytokine receptor involved in cell differentiation and proliferation whose downreg-
ulation has been associated with poorer outcome in colorectal cancers thus suggesting it
may act as tumor suppressor also in HCC [70]. Finally, the authors found that the tumor
mutational burden was higher in non-cirrhotic NASH-HCC than in cirrhotic ones [22].
Intriguingly, NASH-HCC showed a unique tumor signature characterized by bile and
fatty acid signaling, oxidative stress, inflammation, and mitochondrial dysfunction and in
patients who carried the PNPLA3 I148M variant it was enriched in defective pathways of
DNA repair and reduced TP53 signaling, thus reinforcing the role of this polymorphism in
HCC development.

5. Epigenetic Variations Driving NAFLD-HCC

The current knowledge supports the hypothesis that only less than 10% of NAFLD her-
itability may be justified by the above-mentioned genetic polymorphisms and the suscepti-
bility to progress towards severe hepatic injuries might be explained by gene-environment
interactions. The latter defines ‘epigenetics’, the reversible inherited phenomenon that may
powerfully modify the expression of genes in response to environmental cues, without
altering their DNA sequences [71]. Epigenetic remodeling includes DNA methylation,
histone modifications and microRNA (miRNA)-targeting mRNA and the discovery of
possible epigenetic modifiers constitutes a great opportunity to better outline reliable
molecular indicators for the determination of early risk and of patients’ prognosis [71,72].

During the development of NAFLD, both nuclear DNA and mitochondrial DNA
(mtDNA) are progressively affected by aberrancies in the process of DNA methylation,
differentially describing disease stages [73]. In details, these aberrancies are mainly due to
the activation of DNA methyltransferases (DNMTs), which are enzymes involved in the
transfer of a methyl group from S-adenyl methionine (SAM) to the fifth carbon of a cytosine
(5 mC) preceding a guanine nucleotide or CpG clusters. In particular, NASH patients are
characterized by severely enhanced hepatic DNMT levels [74], whereby inducing a higher
methylation pattern of specific genes, including the mitochondrially encoded NADH de-
hydrogenase 6 (MT-ND6) compared to those with simple steatosis [74]. Thus, it has been
hypothesized that this epigenetic change in mtDNA may participate to the switching from
simple steatosis to progressive NASH. These observations have been further corroborated
by Kuramoto et al. who determined that NASH-related tissues had a specific DNA methy-
lation motif, that possibly intervene in the process of hepatocarcinogenesis by favoring
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the silencing of genes implicated in the repair of damaged DNA and in apoptosis [75].
In keeping with this notion, dietary deficiency of methyl group donors, such as choline,
betaine, vitamin B12 and folate boosts epigenetic anomalies favoring in turn, advanced
liver damage and neoplastic transformation. Indeed, in rodents a methyl-deficient diet
provides stable alterations in DNA methylation promoting carcinogenesis [76].

Alongside, variations in DNA packaging due to post-translational histone modifica-
tions may be dependent of environmental stimuli. For instance, the histone deacetylase
8 (HDAC8) has been defined as a modifier of chromatin organization in NASH-related
HCC in rodents and in humans, given its oncogenic properties. In dietary models of
NASH and HCC, the expression of HDAC8 is regulated by Sterol Regulatory Element
Binding Transcription Factor 1 (SREBP1) and exerts its function physically interacting
with polycomb protein enhancer of zeste homolog 2 (EZH2) to force aberrant cell pro-
liferation. Indeed, both in rodents and in patients with NAFLD-HCC, the activation of
HDAC8/EZH2 complex inhibits p53/p21-mediated apoptosis, cell-cycle arrest, and stimu-
lates β-catenin-dependent cell proliferation, whereby controlling histone H4 deacetylation
and H3 lysine 27 trimethylation. Thus, it works as epigenetic silencing machinery on
inhibitors of Wingless-related integration site (Wnt)/β-catenin signaling and favors HCC
development [77]. In addition, a global perturbation of histone H4K16 acetylation, favor-
ing in turn its deacetylation, has been observed in Stelic Animal Model mice, a rodent
model of human NASH-related HCC [78]. The persistent deacetylation of genes impli-
cated in cell death pathways facilitated their silencing contributing to the NASH-derived
HCC onset [78].

Finally, ever-increasing evidence supports the role of miRNAs in the epigenetic dereg-
ulation of metabolic processes in NAFLD, NASH and HCC [79]. We have previously exten-
sively discussed the hepatic and circulating miRNA signature related to all hallmarks of
NAFLD, up to NASH and HCC [11,71,80]. For example, the reduction of miR-122 has been
pointed out as a direct inducer of NASH-associated HCC [81]. Moreover, miR-15/16 cluster
exerts a tumor suppressor role, inhibiting various oncogenes and cell proliferation [82,83].
Hence, its expression is restrained in highly invasive HCC cell lines, in aggressive HCCs
with lymph nodes metastasis and elevated TNM classification [82,84]. Consistently, it
has been shown that the expression of miR-34a is shortened in hepatoma cells as well as
in tumor samples, since it exerts its anti-malignancy activities via p53/miR-34a/SIRT1
positive feedback loop [85,86]. An opposite effect on tumorigenesis is mediated by miR-
221. Indeed, its over-expression favors cell growth and invasion in cultured cells, and it
correlates with poor prognosis and with sorafenib resistance in HCC patients [87–89]. Sev-
eral studies reported deregulated miRNAs in cancerous tissues compared to non-tumoral
ones albeit these findings are conflicting, possibly due to different technical approaches,
disease etiology, genetic background, and many other biases.

6. Inflammation

Hepatic IR and obesity are both well-established conditions that induce systemic
changes, including alteration of immune functions and favor a chronic low-grade inflam-
mation [90]. These events may prompt a pro-inflammatory microenvironment, deter-
mining a higher risk to develop NASH and creating a clinical condition more prone to
HCC onset [91,92].

Indeed, during NASH a sterile inflammation occurs, since damage-associated molecu-
lar patterns (DAMPs) released from damaged cells may trigger inflammasome response,
leading to the maturation and secretion of both interleukin (IL)-1 and IL-8 sustaining
inflammation [93]. DAMPs receptors belonging to the Toll-like receptors family (TLRs) are
localized on the surface of Kupffer cells, HSCs, cholangiocytes and on endothelial cells
(LSECs), emphasizing the immune response, the hepatic damage, and the extracellular
matrix deposition.

Noteworthy, excessive reactive oxygen species (ROS) production due to the enhanced
fatty acids beta-oxidation disrupts the respiratory chain, leading to mitochondrial de-
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fects and cytochrome-c discharge [94]. In addition, it has been demonstrated that ROS
species promote inflammatory cytokines production such as tumor necrosis factor-alpha
(TNF-α), IL-6 and leptin thus perpetuating the inflammatory cascade and recruiting cir-
culating monocytes and lymphocytes [95]. TNF-α and IL-6 in turn may also activate
the pro-oncogenic c-Jun N-terminal kinase (c-Jun) and Signal Transducer and Activator
of Transcription 3 (STAT3), respectively whereas leptin exerts a profibrotic and carcino-
genic role by upregulating TERT expression [96]. Moreover, IR and radicals of oxygen
may activate per se nuclear factor kappa-light-chain-enhancer of activated B-cells (NF-κB)
signaling pathway, thus amplifying inflammation mainly through IL-6, and promoting
STAT3-mediated cell survival [97].

The unfolded protein response (UPR) and calcium extrusion from ER stores, have
been frequently observed in NASH patients. Excessive calcium amount forces mitochon-
drial permeabilization, further enhancing ROS production and caspases activation [98].
When reactive oxygen products exceed the capacity of the protective enzymes, glutathione
peroxidase and catalase, the exaggerated oxidative stress causes lipid peroxidation, ge-
nomic instability, apoptotic death, and pro-inflammatory mediator secretion from injured
hepatocytes, creating a context which strongly promotes HCC development.

7. Gut Microbiota

As a consequence of the tight anatomo-functional crosstalk between gut and liver, the
gut-liver axis may exert several implications in the development of progressive NAFLD
towards HCC [99]. The liver is constantly exposed to a flow of potentially dangerous mi-
crobial by-products and nutrients, derived from the gut through the venous system of the
portal circulation. In turn, the liver may modulate the microbiota composition by the bile
acids secreted into the duodenum lumen [99]. Gut microbiome facilitates the host defense
against harmful pathogens, influencing at local and systemic level both the innate and
adaptive immune response. Notwithstanding, mucus erosion, reduction of antimicrobial
peptides (i.e., defensins, lysozyme, and c-lectin Reg3b/g) and Immunoglobulin A (IgA),
have been associated with enhanced gut permeability, translocation of pathogenic microor-
ganisms and gut-derived toxins (endotoxemia) whereby establishing a chronic low-grade
inflammatory state as reported in preclinical and human studies [100–103]. Alterations in
the barrier integrity (leaky gut) together with the disproportion in gut microbiota compo-
sition frequently occur in patients affected by severe NAFLD [104,105]. Specifically, the
definition ‘dysbiosis’ points out to all quantitative and qualitative variations that may
imbalance the taxonomic composition of beneficial and pathogen bacteria [106]. This vari-
ability may be dependent on age, lifestyle, medications and diets [107–110]. For instance,
the consumption of a Western diet may favor intestinal bacterial overgrowth, endotox-
ins translocation, mucosal inflammation, and immune system activation. Therefore, the
phenomenon of dysbiosis along with disturbances in the gut-liver axis may define the
transition of steatosis up to NASH and HCC [111–115].

In this context, dysbiotic flora favoring Escherichia coli expansion results into the in-
crease of endogenous molecules such as ethanol, ammonia and acetaldehyde, activating in
turn hepatic Kupffer cells to produce pro-inflammatory cytokines [99,116]. In addition, sev-
eral pathogen-associated molecular patterns (PAMPs) among which lipopolysaccharides
(LPS) and peptidoglycans prime the activation of Toll-like receptors (TLRs) on hepatocytes,
Kupffer cells and HSCs, precipitating systemic inflammation and fibrosis [117,118]. Like-
wise, DAMPs may perpetuate the inflammation via intracellular nucleotide-binding and
oligomerization domain (NOD)-like receptors (NLRs) activated by TLRs (e.g., TLR2, TLR5)
and inflammasome, which enhances interleukins production in hepatocytes, Kupffer cells
and HSCs [119].

Imbalances in gut microflora communities contribute to severe hepatic inflammation.
Specifically, an enrichment in Cytophaga–Flavobacter–Bacteroides phyla favors IL7 secretion
from T-helper cells (Th17) [120] and an elevated abundance of Bacteroides and Ruminococcus
have been independently associated with NASH and fibrosis [121]. These abnormalities
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have been further corroborated by exploring the fecal bacterial ratio between Bacterioidetes
and Firmicutes in pediatric NAFLD patients, in which the abundance of Bacterioidetes is
enhanced, while the levels of Firmicutes are shortened [116].

Notably, intestinal flora anomalies may be causally implicated in the transition to
HCC [122]. A peculiar cancerous fecal microbiota enriched in the phylum Actinobacteria
and in 13 genera, including Gemmiger and Parabacteroides distinguishes HCC from cirrhotic
patients [123]. Specifically, endotoxin-producing genera were increased early in fecal sam-
ples from HCC patients, whereas the beneficial butyrate-producing ones decreased [123].
Notwithstanding, Yu and colleagues reported that host microflora sterilization represses
tumor onset, strikingly dampening the number and dimension of nodules in diethyl ni-
trosamine (DEN)-induced HCC rodent models [124]. According to these observations, the
administration of LPS to mice grown in germ-free conditions reverted this situation [125].
Furthermore, LPS/TLR4 signaling pathway may promote hepatocarcinogenesis by fa-
voring the senescence-associated secretory phenotype (SASP) in activated HSCs and the
secretion of chemoattractant cytokines and of tumor-promoting factors, as well as damaged
DNA [126,127]. These findings support the notion that gut microflora and TLR4-mediated
inflammation are required for tumorigenesis [124,125].

8. Nutrition and HCC

A broad number of metabolic and environmental modifiers, such as lifestyle and food
choices may contribute to the development of NASH-related HCC [51]. Dietary habits
and diet composition, in terms of macro and micronutrients, have been found to be modu-
lators of chronic diseases prognosis. Indeed, the pathogenesis and the aggressiveness of
NASH-driven HCC are convoluted, and they entail intricate routes, encompassing immune
response, oxidative stress, autophagy, organelle derangement and DNA damage [51]. All
these events may be partially influenced by alimentary and behavioral attitude. Therefore,
nutritional interventions aimed to ameliorate the metabolic status of patients may be help-
ful to counteract to NASH progression to cirrhosis and HCC, and to maximize benefits by
combining drug-diet approaches.

Several clinical trials are focused on nutritional interventions in patients with chronic
liver injuries, with the purpose to reduce HCC incidence and improve the quality of life
of patients. However, the precise effect of each eating pattern on hepatocarcinogenesis
is still under definition. A case-control study conducted in 641 cases and 1002 controls,
demonstrated that a vegetable-based dietary pattern protects against HCC risk, whereas
Western diet (WD) correlates with enhanced liver carcinogenesis [128]. These observations
have been supported by a meta-analysis across 19 studies involving 1,290,045 participants
and 3912 cases of HCC, that demonstrated that a diet enriched in vegetables, but not
in fruits, reduces the HCC risk [129]. According to these findings, a close adherence
to Mediterranean diet associates with lower risk of HCC, with an odd ratio (OR) 0.51
(95% CI, 0.34–0.75) [130]. Likewise, in the European Prospective Investigation into Can-
cer and Nutrition (EPIC) cohort, it has been investigated the correlation between lipid
consumption, lipid assumed subtypes and fat sources with HCC incidence, showing an
inverse association between total fat intake and HCC risk, which was primarily due to mo-
nounsaturated lipids ingestion rather than polyunsaturated ones [131]. In the same cohort,
it has been reported that total fish assumption defended against liver carcinoma [132]. As
well as dietary fibers down-modulate the susceptibility to develop HCC [133]. Conversely,
the impact of meat consumption in HCC onset is still debate [134]. Hence, the assessment
of nutritional status in patients with NASH, characterized by an increased predisposition
to HCC may assume a relevant prognostic purpose and international recommendations
may be necessary to support current therapies, with the pursuit to improve liver function
and prolong survival.
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8.1. Alcohol Drinking Accelerates NASH-HCC Onset

Alcohol intake has been widely reported to be associated with an increased risk of
HCC [135]. Indeed, around 10–20% of alcohol abusers develop hepatic cirrhosis, and
1.9–2.6% of them HCC [136]. This proportion seems to be directly dependent not only
on the amount of alcohol consumed, but also on concomitant metabolic and genetic
risk factors [137]. For instance, diabetes and obesity have a synergistic interaction with
alcohol consumption, further enhancing the susceptibility to HCC [138,139]. Similarly,
in patients who already suffer from NASH, ethanol consumption hesitates in a 3.6-fold
higher risk of HCC compared to those patients without lifetime alcohol consumption [140].
Thus, ethanol intake may constitute a modifiable risk factor for HCC even in quantities
generally considered safe. Notably, even in children affected by NASH, dysbiosis enhances
blood ethanol levels, because of the intensification of carbohydrate catabolism by alcohol-
producing bacteria, such as Escherichia coli [116,119].

The mechanisms whereby alcohol misuse induces HCC onset seems to be related to
alcohol-mediated inflammation, oxidative stress, genotoxicity, DNA methylation alterations
and DNA instability predisposing to strand breaks and chromosomal loss [141]. However,
the precise events that precipitate liver damage up to HCC are not completely understood.

Firstly, ethanol is metabolized to acetaldehyde by the Alcohol Dehydrogenase (ADH).
Acetaldehyde is a highly reactive and toxic compound, that can create adducts with macro-
molecules (i.e., proteins, DNA, or lipids) thus impairing their function. Then acetaldehyde
is oxidized to acetate by Aldehyde Dehydrogenase (ALDH) in mitochondria. These two
reactions reduce NAD+/NADH ratio, favoring NADH re-oxidation to NAD+ in the mi-
tochondria, fat accumulation and generating ROS [142]. Likewise, even the Cytochrome
P450 2E1 (CYP2E1), induced by alcohol consumption triggers the activation of de novo
lipogenesis, oxidative stress, lipid peroxidation and inflammation [143]. As a consequence,
the activation of inflammatory cells in the context of steatohepatitis, may prompt the
release of inflammatory cytokines and chemokines, favoring the transition of HSCs to
myofibroblasts [143]. Therefore, steatohepatitis is a rate limiting step for the development
of advanced liver injuries, among which cirrhosis and HCC. Acetaldehyde per se exerts
a direct pro-carcinogenic effect, while CYP2E1 metabolizes pro-carcinogenic compounds
which are present in alcoholic drinks. Finally, higher levels of LPS in alcohol consumers
promote cancer stem cells proliferation [99,144].

8.2. The Role of Aflatoxin B1 in Hepatocarcinogenesis

Aflatoxin B1 (AF-B1), a secondary fungal by-product derived from Aspergillus, is a fre-
quent contaminant of grain, milk, rice, cereals and maize, vegetables, and nuts [145]. AF-B1
has potent genotoxic and carcinogenic effects, likely by inducing point mutations in the
TP53 gene and its chronic exposure fosters the suppression of acute inflammatory response,
favoring in turn HCC spreading [146]. Thus, it represents the most important dietary-
derived compound that increases the susceptibility to develop HCC. Its carcinogenic
potency is exacerbated by the co-presence of hepatitis B infection (HBV), synergistically en-
hancing the risk of HCC [147]. However, limitations of the consumption of these potentially
harmful products are suggested even independently of HBV. To date, no specific dietary
recommendation is available for patients affected by NASH and NASH-related cirrhosis,
who have per se a 7-fold higher risk to develop HCC compared to matched controls [148].
As well as, in the case of alcohol over-consumption, LPS-triggered inflammation may
further increase the AF-B1 hepatotoxicity in rodents [149,150]. In addition, AF-B1 may
derange intestinal barrier function [151]. The presence of urinary aflatoxin-N7-guanine
and aflatoxin-serum albumin adducts have been studied as biomarkers and their modu-
lation by various agents has been proposed in clinical trials as surrogate outcomes of the
chemo-preventive efficacy [152]. For instance, broccoli sprout extracts decrease urinary
excretion of sulforaphane metabolism and aflatoxin-DNA adducts [153]. Moreover, Cur-
cumin and Resveratrol by exerting anti-inflammatory and anti-apoptotic effects, improve
the aflatoxin-induced hepatocarcinogenesis [154,155].
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8.3. Iron Overload Increases the Risk of HCC

Later manifestations of iron overload include cirrhosis and cirrhosis-related HCC in
patients with hereditary hemochromatosis or chronic hepatic inflammation [156]. Phle-
botomy and chelating agents may dampen the risk of HCC in patients with siderosis.
Indeed, iron-depots are frequent even in patients with NASH and more so in those with
NASH-driven HCC [157]. Iron deposits induce the formation of highly reactive hydroxyl
radicals, which may mediate mitochondrial damage and precipitate NASH into cirrhosis
and HCC [158]. Dietary iron restriction in mice models of NASH hampers oxidative stress,
inflammation and fibrosis, due to a reduction of hepatic iron levels [159]. These findings
suggest that a low-iron diet may provide beneficial effects not only in patients affected
by severe hemochromatosis but also in those with NASH with the aim to prevent its
progression towards more severe damage.

A similar mechanism has been observed for diets enriched in glucose, that may
promote neoplastic transformation, by inducing the advanced glycosylation end product-
specific receptor (AGER), that stabilize the oncoprotein c-Jun via O-GlcNAcylation thus
supporting cell proliferation [160].

8.4. Dietary Cholesterol: The Main Lipid Driver of the Switching from Simple Steatosis
to NASH-HCC

A growing body of evidence indicates that dietary cholesterol may represent an in-
dependent risk factor for HCC. Indeed, clinical and preclinical studies highlighted an
association between cholesterol intake and the raising of NASH-related HCC, even in the
absence of cirrhosis [161–163]. In obese and diabetic mice, cholesterol overload leads to
lipotoxic accumulation of free cholesterol into the hepatocytes, attributable to the induc-
tion of genes related to cholesterol synthesis as SREBP2, to the suppression of cholesterol
conversion into bile acids and their secretion [161]. Cholesterol accumulation in ER lumen
prompts ER membranes disruption, causes the inhibition of sarco/ER calcium ATPase
(SERCA) activity, exasperates oxidative stress, mitochondrial dysfunction, ATP depletion,
lipotoxicity and hepatocyte degeneration, priming the activation of inflammatory cells and
prompting the transition from simple steatosis towards NASH and fibrosis [161,164,165].
Furthermore, by adding to cholesterol a high fat challenge, the development of IR ac-
celerates NASH and oxidative stress, aggravating liver inflammation [163]. Cholesterol
overload seems to be able to foster Kupffer cells and HSCs activation [166]. In the for-
mer the internalization of cholesterol is mediated by the scavenger receptor (SR-A) or by
CD36, leading to pro-inflammatory cytokine release, whereas in HSCs cholesterol uptake
is performed by lectin-like oxidized LDL receptor-1 (LOX-1). The persistence of all these
triggers promote the release of oxidized mtDNA, tumor growth and tumor reprogram-
ming [164,165]. However, the precise event cascade through which cholesterol induces
NASH-related HCC is still unclear.

In keeping with its pro-carcinogenic role, free cholesterol is severely accumulated in
NASH patients, as a consequence of the imbalance between its biosynthesis, conversion
and excretion and the formation of its depots correlates with hepatocyte degeneration
and fibrosis [167,168]. Consistently, cholesterol consumption has been associated with a
higher incidence of HCC in a population-based study among 14,407 participants [162].
In addition, serum cholesterol levels are positively correlated with growth, invasion and
aggressiveness of carcinoma in patients with HCC [169]. Collectively, these observations
point out free cholesterol accumulation as a common risk factor that drives both NASH
and HCC development.

Liang and colleagues established that mice fed high fat high cholesterol (HFHC)
diet treated with DEN displayed NASH development accompanied by more numerous
and large liver tumors compared to animals treated with DEN and fed HFD alone. In
addition, tumor specimens isolated from these mice are characterized by a specific aberrant
gene expression pattern of cancer-related and metabolism-related genes, and by a more
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pronounced amount of non-synonymous somatic mutations due to the oxidative DNA
damage and inflammation [170].

Notably, cholesterol-induced NAFLD–HCC generation is associated with gut micro-
biota dysbiosis and microbiota transplantation from HFHC mice to germ-free mice induces
hepatic steatosis, inflammation, and cell proliferation. Conversely, atorvastatin administra-
tion, a drug used in the treatment of hypercholesterolemia, restores intestinal dysbiosis
preventing HCC [171]. Hence, statins, widely used as lowering plasma cholesterol agents,
seem to have a protective effect on HCC risk (hazard ratio HR, 0.48; 95% CI, 0.24–0.94)
although further studies are required to confirm this association [172].

Finally, in absence of elevated dietary cholesterol levels, cancerous cells may upregu-
late endogenous cholesterol biosynthesis and cholesterol utilization with the purpose to
maintain high cell proliferation, cell membranes neo-synthesis and to compensate metabolic
demands [173]. Furthermore, cholesterol metabolites, such as 27-hydroxycholesterol and
6-oxocholestan-3beta,5alpha-diol, display tumor-promoter properties and accelerate hepa-
tocarcinogenesis [174].

8.5. Protective Compounds against Hepatic Damage

Coffee consumption was often associated with benefits for a variety of diseases in-
cluding metabolic syndrome, cardiovascular disease and chronic liver diseases [175]. In
particular, a very recent study performed in 494,585 subjects from the UK Biobank cohort
clearly indicated that all types of coffee are protective against hepatic steatosis (HR, 0.80,
95% CI 0.75–0.86) and HCC (HR 0.80, 95% CI 0.54–1.19) [176]. This beneficial effect of
coffee is dose dependent, declining the risk of HCC of about 43% in individuals who
usually consumed coffee [177]. Indeed, caffeine ameliorates cell proliferation, exerting
antioxidant and anti-neoplastic properties through its compounds such as diterpenes,
cafestol and kahweol, which modulate phase 2 hepatic enzymes involved in carcinogen
detoxification and excretion [178]. Likewise, regular use of tea is enabled to produce
similar hepatoprotective benefits, improving oxidative DNA damage [179]. Similarly, other
dietary antioxidant agents such as coenzyme Q (12), vitamin C and E, selenium, phyto-
chemicals (e.g., ellagic acid, curcumin, lycopene, epigallocatechin gallate, and resveratrol)
enriched in fruit, vegetables, herbs and medicinal plants may have a protective role against
hepatocarcinogenesis [180,181].

Superimposable results have been obtained by investigating the relationship between
circulating Vitamin D and the risk of HCC. Vitamin D is a lipophilic hormone that is
involved in calcium homeostasis, by promoting bone mineralization and remodeling, since
it stimulates calcium and phosphorus absorption in the gastrointestinal trait [182]. In
addition, it may play a key role in inflammation and cell differentiation [183]. A meta-
analysis across 11 studies indicated that Vitamin D deficiency almost doubled the risk to
develop HCC. In details, the reduction of Vitamin D significantly amplifies the HCC risk
compared to healthy individuals (relative risk (RR) 2.16, 95% CI 1.20–3.88), irrespectively
of the ethnicity of patients enrolled [184].

8.6. Dietary Fibers

Individuals consuming a high-fibers diet (enriched in cereals, legumes, fruits, and
vegetables) severely differ in gut microflora taxonomic composition compared to those
who prefer WD, favoring the predominance of species which metabolize dietary plant
polysaccharides [185,186]. The fermentation of soluble fibers mainly by intestinal bacteria
belonging to the phyla Firmicutes, generates short-chain fatty acids (SCFAs), i.e., acetate,
butyrate and propionate [187]. This process provides energy supply to mucosal cells of
the host, benefits for health and favors the intestinal barrier integrity preservation and
immune tolerance guaranteeing the eubiosis. Furthermore, a plant-based diet reduces
fecal pH, due to the products of gut fermentative metabolism and to the hampered growth
of pathogens along with Escherichia Coli and Enterobacteriaceae [188,189]. A reduction in
butyric acid-producing bacteria weakens the connections between intestinal epithelial



Biomedicines 2021, 9, 1524 13 of 27

cells, by decreasing the expression of the tight junction proteins and mucins. In turn, the
restoration of physiological abundance of microorganisms-producing butyrate, ameliorate
the gut high permeability and systemic inflammation [190].

Alongside, mounting evidence indicates that SCFAs, mainly butyrate, play relevant
immunomodulatory functions [191], regulating T-cell immunity [192–194]. For instance,
SCFAs may mediate immune response and anti-inflammatory cytokine secretion (i.e., IL-10
and IL-12) [193], modulate size and function of the colonic CD4+CD25+ regulatory T cells
(Treg) pool [192], promoting their activation at the expense of T helper (Th) 17 cells [194]
and suppressing inflammation and protecting against cancer [195]. However, conflicting
results have been recently obtained, showing in contrast that the exaggerate elevation of
SCFAs in a context of dysbiosis may create a tumor-promoting microenvironment [196].
Hence, it has been assumed that the impact of SCFAs is strikingly dependent on the context,
in terms of cell type, concentrations and time of exposure.

Even more, the composition of gut microbiota and its by-products among which
the SCFAs may be responsible of epigenetic changes, affecting global histone acetyla-
tion and methylation in host tissues in a diet-dependent manner. In particular, mice fed
a diet containing low levels of fermentable complex polysaccharides, displayed loss of
cecal SCFA production, hesitating into a profound post-translational modification of hep-
atic histones, such as lower methylation of H3 histones in specific aminoacidic position
(H3K27me1 and H3K36me2) [197,198]. Conversely, SCFAs may reduce the risk of car-
cinogenesis whereby inhibiting cell proliferation and invasion, suppressing HDACs, and
inducing apoptosis [199,200].

8.7. Branched-Chain Amino Acids

Leucine, isoleucine and valine, also known as branched-chain amino acids (BCAA),
are three essential amino acids, that are involved in various biological processes [201]. In pa-
tients with advanced liver damages and cirrhosis, plasma concentration of BCAA declines,
due to nutritional disturbances. In rodents, BCAA administration is enabled to suppress
DEN-induced liver tumorigenesis [202]. Similarly, BCAA supplementation in mice fed an
atherogenic and high-fat (Ath+HF) diet, that induces NASH, refines the entire histological
spectrum of liver damage and tumor incidence [203]. In particular, BCAA-enriched diets
may alleviate steatosis and oxidative stress, upregulating the expression of the master
regulator of mitochondrial biogenesis, the peroxisome proliferator-activated receptor γ
coactivator-1α (PGC-1α) [204]. Similarly, BCAA consumption in patients alleviates the
risk of liver-related complications along with encephalopathies, ameliorates the prognosis
and improves serum albumin concentrations, restoring the nutritional status. Besides,
prospective clinical trials demonstrated that they may reduce the occurrence of HCC in
patients with cirrhosis [205,206].

8.8. Omega-3 Polyunsaturated Fatty Acids

Fish is the main source of Omega-3 PUFAs. It has been reported that its consumption
reduced the risk of HCC by 35%, in a dose-dependent manner as a consequence of the
enhanced dietary intake of Omega-3 PUFAs [207]. Indeed, PUFAs inhibit HCC growth
through simultaneously inhibition of COX-2 and β-catenin [208]. In addition, diets enriched
in PUFAs ameliorate mitochondrial fat oxidation, reduce abdominal circumference, plasma
cholesterol and hepatic lipid synthesis [209,210]. The mechanism through which PUFAs
may reduce the susceptibility to develop liver cancer, may be related to their ability
to hamper NF-kB activation, cytokine secretion and oxidative stress by activating the
peroxisome proliferator activating receptors (PPARs) [211].

Risk factors that may intervene in the switching from NASH to HCC and possible
combination between current therapeutic approaches and diet are summarized in Figure 1.
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Common and rare genetic variations that influence hepatic lipid handling, immune response and cell proliferation are
strongly entangled in the transition towards liver cancer. Likewise, epigenetic phenomena including DNA methylation and
histone modifications as well as miRNA perturbations may participate to these deleterious processes. Together with genetics
even environmental risk factors such as unhealthy dietary habits, sedentary lifestyle, intestinal high permeability may
further exacerbate liver inflammation, ER and oxidative stress, triggering the evolution to HCC. In this regard, nutritional
and lifestyle interventions aimed to restore healthy behavior of patients may be helpful to counteract to NASH progression
to cirrhosis and HCC. Notably, the combination of current therapeutic strategies (tumor ablation, pan-tyrosine kinase
inhibitors, checkpoint blockade and immunotherapy) with dietary advice may maximize benefits, with the pursuit to
improve liver function and prolong survival.

9. Preclinical Models to Induce NASH-HCC: From Dietary Supplementation
to Genetics

As mentioned before, dietary composition may strongly impact on the development
of NASH-derived HCC. However, few preclinical models that may recapitulate the entire
spectrum of NAFLD until HCC are available to date. Mice fed high fat (HFD) or western
(WD) diets slowly progress to HCC or do not develop HCC at all. An escape to this trouble
has been proposed by Dowman et al. who showed that the American Lifestyle-Induced
Obesity Syndrome (ALIOS) model, consisting in an administration of corn syrup enriched
in trans-fats and fructose coupled with a sedentary lifestyle, may promote NASH and
HCC onset after 12 months in only 60% of animals [212]. Conversely, in C3H/He mice, an
ALIOS diet challenge induces macroscopic tumors, carrying a transcriptional landscape
similar to human HCC, in 96% of animals at 48 weeks of age [90].

Similarly, a long-term feeding of a choline-deficient high-fat diet (CD-HFD) induced
the activation of inflammatory pathways comparable to NASH patients. In this context, the
inflammatory microenvironment encompassing the activation of CD8(+) and NKT cells,
prompted NASH-to-HCC transition in about 25% of mice after 12 months [213]. Hence, due
to the long-term exposure needed to develop advanced hepatic injuries, it is often preferred
to combine a nutritional strategy with toxic compounds to boost hepatocellular neoplasms
in mice. The most exploited chemical carcinogen to promote liver nodules formation is
DEN, which may be associated with HFD or CD-HFD [95,214]. In these models, tumors
onset seems to be dependent of the secretion of tumor-promoting inflammatory cytokines,
among which IL-6 and TNFα, which activate in turn the oncogenic transcription factor



Biomedicines 2021, 9, 1524 15 of 27

STAT3 [95]. Similarly, even intraperitoneal carbon tetrachloride (CCl4) injections accelerate
extensive fibrosis and HCC in mice fed a WD, resulting in histological, immunological
and transcriptomic features close to human NASH-HCC in 24 weeks [215]. Likewise, the
administration of low doses of streptozotocin (STZ), a DNA-damaging alkylating agent,
immediately after birth, followed by HFD (STAM model) may be exploited to induce
adenomas and HCC, at 12 and 16 weeks respectively [216].

Other examples of murine models that offer the possibility to reproduce NASH and
HCC are the genetic ones. Among them, a diet-induced animal model of non-alcoholic fatty
liver disease (DIAMOND) obtained by a cross of two common mouse strains, 129S1/SvImJ
and C57BL/6J, fed for at most 52 weeks a high fat diet accompanied by high fructose and
glucose subsequentially promotes all features of NAFLD up to HCC [217]. Alongside,
MUP-uPA mice, transgenic rodents who overexpress urokinase plasminogen activator
(uPA), are more prone to liver carcinoma onset upon a HFD, as a result of immune infil-
tration and of hepatocyte ER stress, which enhances lipogenesis [218]. Other genetically
induced mice models of NASH-driven HCC may constitute an attractive opportunity
to deeply understand the molecular mechanisms underlying tumorigenesis, i.e., hepatic
specific phosphatase and tensin homolog (PTEN) KO mice (AlbCrePtenflox/flox) [219] or liver
specific STAT5/glucocorticoid receptor (GR) null mice [220] or mice lacking the methionine
adenosyltransferase (MAT) gene (MATO mice) hesitating in a chronic reduction in hepatic
S-adenosylmethionine levels [221] or melanocortin 4 receptor-deficient mice (MC4R-KO)
fed HFD [222].

Ultimately, it has been recently demonstrated that mice carrying a loss-of-function mu-
tation in the Alms1 gene, also known as Foz/Foz mice, display hyperphagia and multiple
aspects of metabolic syndrome, among which obesity, IR, dyslipidemia and hyperten-
sion [223,224]. In addition, when Foz/Foz mice are fed with a WD rapidly develop NASH
in 4 weeks and advanced fibrosis in 12 weeks of diet, mimicking human pathobiology. After
24 weeks of WD, the 75% of Foz/Foz mice show the signs of cirrhosis and of hepatocellular
malignancy [224]. Thus, this model may more faithfully resemble human disease etiology
of NASH-HCC in a short time frame [223].

10. Concluding Remarks

The proportion of HCC attributed to NASH has been rapidly increasing in Western
countries, and in 20–30% of cases hepatic tumor development may occur even in the absence
of cirrhosis [225]. Thus, there is an urgent need to implement surveillance programs,
focusing not only on patients with advanced fibrosis.

The pathogenesis of NASH-related HCC is complex and encompasses genetic and
environmental risk factors, immune response, oxidative stress, organelle derangement and
DNA damage. All these events may be partially influenced by alimentary and behavioral
attitude. In this context, nutritional interventions and the combination of genetic variants
in PRS may be helpful to predict and counteract NASH progression to cirrhosis and HCC
thus maximizing the benefits of current therapies.

A novel frontier in the management of NASH-HCC is represented by the manipulation
of the immune system through chimeric antigen receptor (CAR) T cells, vaccination using
peptides or DNA, cytokine/chemokine antibody blockade, adoptive immune cell transfer
and monoclonal antibody against PD-1 although large clinical trials are required to confirm
their efficacy.
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HPCs hepatic progenitor cells
HR hazard ratio
HSCs hepatic stellate cells
HSD17B13 hydroxysteroid 17-β dehydrogenase 13
ILs interleukins
IgA Immunoglobulin A
IR insulin resistance
KO knock-out
LD lipid droplet
LDL low-density lipoprotein
Lyso-PI lyso-phosphatidylinositol
LOX-1 lectin-like oxidized LDL receptor-1
LPIAT1 lyso-phosphatidylinositol (Lyso-PI) acyl-transferase1
LPS lipopolysaccharides
MAT methionine adenosyltransferase
MBOAT7 membrane bound o-acyltransferase domain-containing 7
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MC4R melanocortin 4 receptor-deficient mice
miRNA microRNA
mtDNA mitochondrial DNA
MT-ND6 mitochondrially encoded NADH dehydrogenase 6
MTTP microsomal triglyceride transfer protein large subunit gene
NAFLD nonalcoholic fatty liver disease
NASH nonalcoholic steatohepatitis
NF-κB nuclear factor kappa-light-chain-enhancer of activated B-cells
NLRs intracellular nucleotide-binding and oligomerization domain (NOD)-like receptors
OR odd ratio
OS overall survival
PAMPs pathogen-associated molecular patterns
PD-1 death protein 1
PGC-1α peroxisome proliferator-activated receptor γ coactivator-1α
PI phosphatidylinositol
PNPLA3 patatin-like phospholipase domain-containing 3
PPARs peroxisome proliferator activating receptors
PRSs polygenic risk scores
PTEN phosphatase and tensin homolog
PUFAs polyunsaturated fatty acids
ROC receiver operating characteristics
ROS reactive oxygen species
RR relative risk
SAM S-adenyl methionine
SASP senescence-associated secretory phenotype
SERCA sarco/ER calcium ATPase
SIRTs sirtuins
SNP single nucleotide polymorphism
SR-A scavenger receptor
SREBP1 Sterol Regulatory Element Binding Transcription Factor 1
STZ streptozotocin
STAT3 Signal Transducer and Activator of Transcription 3
T2D type 2 diabetes
TERT telomerase reverse transcriptase
TG triglyceride
TGF-β transforming growth factor β
TLRs toll like receptors
TM6SF2 transmembrane 6 superfamily member 2
TMC4 transmembrane channel like 4
TNF-α tumor necrosis factor α
uPA urokinase plasminogen activator
UPR unfolded protein response
VLDL very-low density lipoproteins
WD Western diet
WNT wingless
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