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Abstract: MicroRNAs (miRNAs) are involved in the regulation of immune response and hold
an important role in tumor immune escape. We investigated the differential expression of the
immunomodulatory miR-10b, miR-19a, miR-20a, miR-126, and miR-155 in the plasma of healthy
women and patients with early stage breast cancer and interrogated their role in the prediction of
patients’ relapse. Blood samples were obtained from healthy women (n = 20) and patients with early
stage breast cancer (n = 140) before adjuvant chemotherapy. Plasma miRNA expression levels were
assessed by RT-qPCR. Relapse predicting models were developed using binary logistic regression and
receiver operating curves (ROC) were constructed to determine miRNA sensitivity and specificity.
Only miR-155 expression was lower in patients compared with healthy women (p = 0.023), whereas
miR-155 and miR-10b were lower in patients who relapsed compared with healthy women (p = 0.039
and p = 0.002, respectively). MiR-155 expression combined with axillary lymph node infiltration and
tumor grade demonstrated increased capability in distinguishing relapsed from non-relapsed patients
[(area under the curve, (AUC = 0.861; p < 0.001)]. Combined miR-19a and miR-20a expression had the
highest performance in discriminating patients with early relapse (AUC = 0.816; p < 0.001). Finally,
miR-10b in combination with lymph node status and grade had the highest accuracy to discriminate
patients with late relapse (AUC = 0.971; p < 0.001). The robustness of the relapse predicting models
was further confirmed in a 10-fold cross validation. Deregulation of circulating miRNAs involved
in tumor-immune interactions may predict relapse in early stage breast cancer. Their successful
clinical integration could potentially address the significance challenge of treatment escalation or
de-escalation according to the risk of recurrence.

Keywords: circulating miRNAs; early breast cancer; relapse; immune surveillance; immune escape;
antitumor immune response

1. Introduction

Breast cancer is the leading cause of cancer-related morbidity and death among
women [1]. Despite significant improvements in surgical techniques and the postsurgical
treatment approaches and surveillance, almost 20% of patients with early disease will
develop metastases [1].
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The metastatic process is initiated when tumor cells enter the circulation and spread
to other sites where they remain in the inactive state of tumor dormancy [2]. The immu-
noediting concept, which describes the dynamic relation between cancer and the immune
system, is based on three stages: elimination, equilibrium, and escape [3]. The elimination
phase refers to the attack of innate and adaptive immune cell types to eradicate cancer cells;
cancer cells that survived immune destruction may then enter the equilibrium phase where
immunoediting occurs. The escape phase represents the final phase of the process, where
immunologically shaped tumors may grow aggressively, become clinically apparent, and
establish an immunosuppressive tumor microenvironment ultimately leading to tumor
progression. In all three stages, various immune cell subsets, cytokines, micro-RNAs
(miRs), exosomes, and cancer cells have been shown to participate in the process [4].

MicroRNAs (miRNAs), a class of small non-coding RNA of approximately 20–22 nu-
cleotides in length, play a significant role in the regulation of gene transcription, by binding
to the 3′ untranslated region of the target mRNA [5]. They may act either as oncogenes or
tumor suppressor genes, thus regulating carcinogenesis, tumor progression, and metas-
tasis [6]. In recent years, research has focused on identifying circulating miRNAs in the
plasma or serum and other biological fluids that could potentially serve as liquid biomark-
ers for the diagnosis and prediction of outcome in patients with breast cancer [7].

MiRNAs have been reported to regulate the development and maintenance of immune
progenitors, by regulating the differentiation of immune cells as well as the maintenance
and functionality of mature immune cells [8]. Furthermore, apart from acting as oncomirs
or tumor suppressors, immune modulatory miRNAs exert a pivotal role in the regulation of
anti-tumor immune response by modulating the expression of a broad range of immunity-
associated genes in both cancer cells and tumor infiltrating lymphocytes [7,9]. Thus,
microRNAs (miRNAs) have been demonstrated to reshape the tumor microenvironment
(TME) towards an immunosuppressive state by decreasing the immunogenicity of cancer
cells and disabling immune effectors, ultimately promoting immune escape and consequent
metastatic progression [10]. Furthermore, circulating miRNAs selectively packaged in
exosomes have been shown to participate in tumor escape from immunosurveillance in
melanoma by regulating immune response against the tumor [11].

Based on the above evidence, we hypothesized that circulating miRNAs may reflect
the crosstalk between tumor and immune cells in cancer and hold significant implications
regarding tumor progression [9]. Therefore, in the current study, we investigated the
differential expression of plasma miR-10b, miR-126, miR-19a, miR-20a, and miR-155 among
healthy women and patients with early stage breast cancer and evaluated their prognostic
role in patients with early disease. The aforementioned miRNAs were selected on the
basis of their expression in breast cancer and their demonstrated involvement in immune
response and modulation of antitumor immunity.

Specifically, miR-10b and miR-20a have been found to downregulate MHC Class I
chain-related A and B (MICA and MICB, respectively) ligands of the natural killer (NK)
activating receptor, NKG2D, thus resulting in the suppression of innate immunity and
subsequent tumor growth [12]. Mir-19a is found to participate in the polarisation of
tumor-associated macrophages (TAMs) from the immune-suppressive M2-like to pro-
immune M1-like phenotype [13]. MiR-126 was demonstrated to control the proliferation
and function of plasmatocytoid dendritic cells (pDCs), as well as the expression of Toll-like
receptor (TLR) genes, which recognise pathogens including cancer cells [14]. Additionally,
miR-155 has been shown to be up-regulated in macrophages and DCs following exposure to
CpG and other TLR ligands [15]. Mir-155 is a critical player in adaptive immune responses
as well [8]. Finally, miR-155 enhances the cytotoxicity of CD4+ T-lymphocytes and NK cells
and inhibits CD8+ T cell exhaustion [16–18].
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2. Materials and Methods
2.1. Patients’ Characteristics and Sample Collection

Two-hundred-and-fifteen patients with early stage breast cancer received adjuvant
chemotherapy at the Department of Medical Oncology, University Hospital of Heraklion
(Crete, Greece) between 2004 and 2011, and available plasma were identified from patient
records (Figure S1). Blood was collected after surgery and before the administration of
adjuvant therapy. None of the patients had received neoadjuvant chemotherapy. Blood
was also collected from 20 healthy women to serve as controls during the procedure of
volunteer blood donation performed in the Blood Bank Department of the University
General Hospital of Heraklion; the median age of healthy volunteers was 53 years (range
35–60). All patients and healthy donors had signed an informed consent to participate in
the study, which was approved by the Ethics and Scientific Committee of the University
Hospital of Heraklion (ID 2029; Crete, Greece). Clinical characteristics and follow-up
information for each patient were prospectively collected. Peripheral blood from patients
and healthy donors was drawn early in the morning and was collected in ethylenediamine
tetraacetic acid (EDTA) tubes. In patients, blood samples were obtained before starting
adjuvant therapy. Plasma was isolated within 2 h from collection by centrifugation in
2500 rpm for 15 min at 4 ◦C, followed by a second centrifugation in 2000× g for 15 min at
4 ◦C to remove cellular debris. Samples were kept in aliquots at −80 ◦C until further use.
Plasma samples presenting a change of colour to pink (n = 28), suggesting the presence of
hemolysis, or samples obtained from patients lost to follow up (n = 25) were not processed
for further analysis (Supplementary Figure S1).

2.2. RNA Isolation

Total RNA from 400 µL plasma was extracted by Trizol LS (Ambion, Life Technologies,
Waltham, MA, USA) as described previously [19]. Briefly, following denaturation by
Trizol LS, 25 fmoles of the synthetic C. elegans miRNA, cel-miR-39 (Qiagen GmbH, Hilden,
Germany), was added to each sample to serve as an exogenous control. After the addition
of chloroform followed by centrifugation, an equal volume of 700 µL of aqueous phase
from each sample was transferred to a clean eppendorf tube, and was precipitated by
adding 0.7 volumes of isopropanol and 1 µL of glycogen (Qiagen, Hilden, Germany). RNA
pellet was resuspended in 50 µL RNAse-free water. RNA from all samples was kept at
−80 ◦C until further use in the subsequent cDNA synthesis step.

2.3. Quantitative Real-Time PCR Analysis of miRNA Expression

The synthesis of cDNA and RT-qPCR was performed using TaqMan technology ac-
cording to manufacturer’s instructions and as previously described [19]. Stem-loop specific
primers for each miRNA were used for reverse transcription (assays’ ID for each miRNA
are provided in Supplementary Table S1; Applied Biosystems, Foster City, CA, USA) in
a 5 µL reaction and then diluted at 30 µL by the addition of 0.1% diethylpyrocarbonate
(DEPC) H2O. Each miRNA was assessed by RT-qPCR in a ViiA 7 real-time PCR system (Ap-
plied Biosystems, Foster City, CA, USA). All experiments for each assay were carried out
in triplicate wells. Appropriate negative controls were used in both reverse transcription
and RT-qPCR reactions, where RNA input was replaced by H2O and no template control
was used, respectively.

The fold change (log10) in each miRNA expression relative to the reference gene
U6 snRNA was calculated using the 2−∆Ct method. The expression levels of each target
miRNA relative to miRNA expressed in healthy controls were calculated using the 2−∆∆Ct

method [20]. The suitability of U6 snRNA as a reference gene was supported by the fact that
(i) it was stably and reproducibly expressed among patients and healthy donors (Figure S2;
Mann–Whitney test, p = 0.427) and (ii) ∆Ct between target miRNAs and U6 snRNA was
low, demonstrating a similar range of expression.

Samples with mean Ct >35 or not amplified for target miRNAs (n = 5) and samples
with mean Ct >22 or Ct < 20 of cel-miR-39 (n = 3), suggesting inefficient RNA extraction,
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were excluded from the statistical analysis (Supplementary Figure S1). Finally, samples
with mean Ct >33 or Ct < 30 of U6 snRNA (n = 14) were also excluded (Figure S1).

2.4. Statistical Analysis

Statistical analysis was performed by the statistical package of the social sciences
(SPSS) software, version 22.0 (SPSS Inc., Chicago, IL, USA, accessed on 10 January 2021).
Patients were divided into high and low expression groups according to the median values
(above or equal and below to the median values, respectively). Differential expression was
evaluated by Kruskal Wallis and Mann–Whitney test.

Receiver operating curves (ROC) were constructed and area under the curve (AUC)
was calculated. The performance of each miRNA was evaluated at a specific cut-off value
detected using the highest Youden’s index (sensitivity + specificity − 1) by calculating
sensitivity, specificity, and positive and negative predictive value. Binary logistic regression
analysis was performed to identify the best discriminating combinations among miRNAs
and among miRNAs with clinicopathological parameters. A 10-fold cross-validation
analysis with a 70–30 split (70% training, 30% testing data) was implemented in R using
a generalized linear model for logistic regression, with recurrence/non-relapse as binary
target variables (http://www.r-project.org/, accessed on 10 February 2021). Statistical
significance was set at p < 0.05 (two-sided test).

3. Results
3.1. Patients’ Characteristics and Study Design

We evaluated 140 patients with early stage breast cancer (Figure S1) and 20 healthy
volunteers. Patients’ characteristics are presented in Table 1. After a median follow-
up period of 102.02 months (range, 5.57–182.26), 94 patients remained disease-free and
46 experienced relapse (Table 1). The percentage of patients with tumor size more than
5 cm, four or more infiltrated lymph nodes, and histological grade III was higher in
relapsed compared with non-relapsed patients (chi-square test: 75% and 25%, p = 0.031;
61.3% and 38.7%, p < 0.001; 64.3% and 44.3%, p = 0.034, respectively; Table 1). The other
clinicopathological features were similar between relapsed and non-relapsed patients.

Table 1. Characteristics of early stage breast cancer patients.

All Patients Non Relapse Relapse

Characteristic n (%) n (%) n (%) p-Value
Number of patients 140 94 (67.2) 46 (32.8)
Age, median (range) 55 (27–82) 54 (35–79) 56 (27–82) ns *
Menopausal status ns *

Premenopausal 53 (37.9) 38 (40.4) 15 (32.6)
Postmenopausal 87 (62.1) 56 (59.6) 31 (67.4)
Tumor size (cm) 0.031 *

T1 62 (44.3) 44 (46.8) 18 (39.1)
T2 70 (50.0) 48 (51.1) 22 (47.9)
T3 8 (5.7) 2 (2.1) 6 (13.0)

Grade 0.034 *
I 5 (3.6) 5 (5.3)
II 56 (40.0) 42 (44.7) 14 (30.4)
III 67 (47.9) 39 (41.5) 28 (60.9)

Lobular 8 (5.7) 4 (4.3) 4 (8.7)
Unknown 4 (2.9) 4 (4.3)

Infiltrated lymph nodes < 0.001 *
0 60 (42.9) 49 (52.1) 11 (23.9)

1–3 50 (35.7) 34(36.2) 16 (34.8)
≥4 30 (21.4) 11 (11.7) 19 (41.3)

ER status ns *
Positive 88 (62.9) 58 (61.7) 30 (65.2)

Negative 52 (37.1) 36(38.3) 16 (34.8)

http://www.r-project.org/


Biomedicines 2021, 9, 421 5 of 16

Table 1. Cont.

All Patients Non Relapse Relapse

PR status ns *
Positive 88 (62.9) 60(63.8) 28 (60.9)

Negative 52 (37.1) 34 (36.2) 18 (39.1)
Her2 status ns *

Positive 19 (13.6) 11(11.7) 8 (17.4)
Negative 121 (86.4) 83(88.3) 38 (82.6)

Adjuvant chemotherapy
Anthracyclines-based 10 (7.1) 7 (7.4) 3 (6.5)

Taxanes + Antracyclines 95 (67.9) 59 (62.9) 36 (78.3)
Taxanes-based 26 (18.6) 20(21.3) 6 (13)

Other 3 (2.1) 3 (3.3)
None 6 (4.3) 5 (5.2) 1 (2.2)

ER, estrogen receptor; PR, progesterone receptor; HER2, human epidermal growth factor receptor 2; * Pearsons’
chi-square for relapsed and non-relapsed patients; ns, not significant.

For the purpose of the analysis, we divided patients with early stage breast cancer
into three groups, according to the timing of recurrence: (i) patients who remained disease
free during the whole follow-up period (n = 94); (ii) patients with early relapse, defined
as relapse within two years post-treatment (≤2 years; n = 16); and (iii) patients with late
relapse, defined as relapse at 5 years or more post-treatment (≥5 years; n = 17). A higher
percentage of patients with estrogen receptor (ER) and/or progesterone receptor (PR)
positive status was encountered among patients with late compared with early relapse
(69.6 vs. 30.4; p = 0.002 and 68.25 vs. 31.8%; p = 0.009, respectively). The remaining
clinicopathological characteristics were similar among the two groups (Table 2).

Table 2. Characteristics of patients with early and late relapse.

Early Relapse Late Relapse p-Value

Characteristic n (%) n
Number of patients 16 (11.4) 17
Age, median (range) 56 (27–82) 55 (41–74) ns *
Menopausal status ns *

Premenopausal 7 (43.8) 5 (29.4)
Postmenopausal 9 (56.2) 12 (70.2)
Tumor size (cm) ns *

T1 5 (31.3) 8 (47.1)
T2 9 (56.3) 7 (41.2)
T3 2 (12.5) 2 (11.8)

Grade ns *
I
II 6 (37.5) 3 (17.6)
III 10 (62.5) 14 (82.4)

Infiltrated lymph nodes ns *
0 6 (37.5) 1 (5.9)

1–3 6 (37.5) 7 (41.2)
≥4 4 (25) 9 (52.9)

ER status 0.002 *
Positive 7 (43.8) 16 (94.1)

Negative 9 (56.2) 1 (5.9)
PR status 0.009 *
Positive 7 (43.8) 15 (88.2)

Negative 9 (56.3) 2 (11.8)
Her2 status ns *

Positive 3 (18.8) 4 (23.5)
Negative 13 (81.2) 13 (76.5)

Adjuvant chemotherapy ns *
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Table 2. Cont.

Early Relapse Late Relapse p-Value

Anthracyclines-based 1 (6.3) 1 (5.9)
Taxanes+Antracyclines 11 (68.7) 15 (88.2)

Taxanes-based 3 (18.7) 1 (5.9)
Others 1 (6.3)

Early relapse, ≤2 years post-treatment; late relapse, ≥5 years post-treatment; ER, estrogen receptor; PR, pro-
gesterone receptor; HER2, human epidermal growth factor receptor 2; * Pearsons’ chi-square for early and
late relapse.

3.2. Differential Expression of miRNAs among Healthy Women and Breast Cancer Patients

We first compared the fold change of expression of the five miRNAs relative to U6
snRNA in the plasma of healthy donors and early stage breast cancer patients. Among
the examined miRNAs, only miR-155 was differentially expressed in early stage breast
cancer compared with healthy donors (Figure 1A). In particular, lower expression levels of
miR-155 were observed in patients compared with healthy donors (Mann Whitney test,
p = 0.023; Figure 1A). However, the diagnostic accuracy of miR-155 was low (Figure S3).
When we compared the fold change of expression among healthy donors and patients
according to relapse status, no differences were revealed in miRNAs’ expression between
healthy donors and non-relapsed patients. In contrast, the expression levels of miR-10b
and miR-155 were lower in patients who subsequently relapsed compared with healthy
women (Mann Whitney test, p = 0.039 and p = 0.002, respectively) (Figure 1B).

3.3. Differential Expression of miRNAs among Relapsed and Non-Relapsed Patients

The expression levels of the five miRNAs were compared between (i) patients who
relapsed (n = 46) and those who did not relapse during the follow-up period (n = 94),
(ii) patients with early relapse (≤2 years; n = 16) and those who either relapsed later than
2 years (n = 30) or remained disease free during follow-up (n = 94), and finally (iii) those
who experienced late relapse (≥5 years; n = 17) and those without relapse (n = 94) during
the whole follow-up period. The expression levels of miR-10b and miR-155 were lower in
relapsed compared with non-relapsed patients (Mann Whitney test, p = 0.0017 and p = 0.005,
respectively) (Figure 1B); no significant differences were revealed in the median expression
levels of the other investigated miRNAs (p > 0.05; Figure 1B).Regarding miRNA expression
according to the timing of relapse, the expression levels of all investigated miRNAs were
lower in patients experiencing early relapse compared with those who either relapsed later
than 2 years or remained disease free during follow-up (Figure 2). In contrast, no significant
differences were found in the expression of the investigated miRNAs between patients
who experienced late relapse compared with those without relapse (Mann Whitney test,
p > 0.05).
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Figure 1. Differential expression of miRNAs in the plasma of healthy women and early stage breast cancer patients. (A) 
Fold change of miRNA expression in the plasma of healthy and whole group of early stage breast cancer patients and (B) 
of healthy, non-relapsed, and relapsed patients. (a) MiR-10b, (b) miR-19a, (c) miR-20a, (d) miR-126, and (e) miR-155 ex-
pression levels relative to U6 snRNA were assessed by the 2-ΔCt method. Mann Whitney test was used to determine sta-
tistical significant differences in the expression among healthy and early stage breast cancer patients. Kruskal Wallis fol-
lowed by Mann Whitney test was used to determine statistical significant differences in the expression among healthy, 
non-relapsed, and relapsed patients. Horizontal line on box plot depicts median and the length of the boxes is the inter-
quartile range, representing values between the 75th and 25th percentiles of individual fold change expression values. 
eBC, early stage breast cancer. Statistical significance was set at p < 0.05. 
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Figure 1. Differential expression of miRNAs in the plasma of healthy women and early stage breast cancer patients. (A) Fold
change of miRNA expression in the plasma of healthy and whole group of early stage breast cancer patients and (B) of
healthy, non-relapsed, and relapsed patients. (a) MiR-10b, (b) miR-19a, (c) miR-20a, (d) miR-126, and (e) miR-155 expression
levels relative to U6 snRNA were assessed by the 2−∆Ct method. Mann Whitney test was used to determine statistical
significant differences in the expression among healthy and early stage breast cancer patients. Kruskal Wallis followed by
Mann Whitney test was used to determine statistical significant differences in the expression among healthy, non-relapsed,
and relapsed patients. Horizontal line on box plot depicts median and the length of the boxes is the interquartile range,
representing values between the 75th and 25th percentiles of individual fold change expression values. eBC, early stage
breast cancer. Statistical significance was set at p < 0.05.
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confidence interval (CI): 0.517–0.721; p = 0.022) (sensitivity: 69.65% and specificity: 
56.4%)) and 0.647 ((95% CI: 0.550–0.745; p = 0.005) (sensitivity: 56.5% and specificity: 
69.1%)) for the prediction of relapse, respectively (Table 3 and Figure 3A). The positive 
(PPV) and negative predictive value (NPV) were 43.8% and 79.1% for miR-10b and 46.3% 
and 75.6% for miR-155, respectively. Binary logistic regression analysis revealed that the 
combination of miR-155 expression along with axillary lymph node infiltration and tu-
mor grade had superior discriminatory capability for the prediction of relapse versus 
non-relapse; AUC was 0.861 with sensitivity and specificity of 85.4% and 80.0%, respec-
tively (95% CI: 0.788–0.935; p < 0.001) (Table 3, Figure 3A). The predictive values for the 
combined model of relapse were improved, with PPV and NPV being 80.6% and 82.2%, 
respectively. 

Figure 2. Fold change of miRNA expression in relapsed at ≤2 years compared with non-relapsed or relapsed at >2 years.
The expression levels in plasma of (a) miR-10b, (b) miR-19a, (c) miR-20a, (d) miR-126, and (e) miR-155 were evaluated by
RT-qPCR and assessed by the 2−∆∆Ct method. Statistically significant differences were determined using the Mann–Whitney
test and are represented by box plots. Horizontal line depicts the median expression value and the length of the boxes is the
interquartile range that includes values between the 75th and 25th percentiles of individual fold change in the expression
values. Statistical significance was set at p < 0.05.

3.4. Performance of miRNAs in Predictive Models

We further used miRNAs’ expression profiles to evaluate their integrative performance
within relapse prediction models. To this end, we employed binary logistic regression by
assessing combinations of the expression levels of miRNAs and of common clinicopatho-
logical parameters to construct the corresponding ROC curves.

ROC curve analysis for miR-10b and miR-155 alone had an AUC of 0.619 ((95%
confidence interval (CI): 0.517–0.721; p = 0.022) (sensitivity: 69.65% and specificity: 56.4%))
and 0.647 ((95% CI: 0.550–0.745; p = 0.005) (sensitivity: 56.5% and specificity: 69.1%)) for the
prediction of relapse, respectively (Table 3 and Figure 3A). The positive (PPV) and negative
predictive value (NPV) were 43.8% and 79.1% for miR-10b and 46.3% and 75.6% for miR-155,
respectively. Binary logistic regression analysis revealed that the combination of miR-155
expression along with axillary lymph node infiltration and tumor grade had superior
discriminatory capability for the prediction of relapse versus non-relapse; AUC was 0.861
with sensitivity and specificity of 85.4% and 80.0%, respectively (95% CI: 0.788–0.935;
p < 0.001) (Table 3, Figure 3A). The predictive values for the combined model of relapse
were improved, with PPV and NPV being 80.6% and 82.2%, respectively.
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Table 3. Performance of miRNAs and their combinations for the prediction of relapse in early stage breast cancer.

Potential Predictors Cutoff Sensitivity (%) Specificity (%) AUC (95% CI) p-Value PPV (%) NPV (%)
Mean AUC Mean p-Value

(10-Fold Cross
Validation)

(10-Fold Cross
Validation)

Relapse

miR-10b 0.920 69.6 56.4 0.619 (0.517–0.721) 0.022 43.84 79.1 0.605 0.01891
miR-155 0.405 56.5 69.1 0.647 (0.550–0.745) 0.005 46.3 75.6 0.684 0.00643

LN and grade 0.416 85.4 50.0 0.726 (0.631–0.821) < 0.001 72.7 70.0 0.699 0.00121
miR-155 and LN and grade 0.292 85.4 80.0 0.861 (0.788–0.935) < 0.001 80.6 82.2 0.767 0.00329

Early relapse (≤2 years)

miR-10b 0.855 81.3 54.8 0.688 (0.556–0.819) 0.015 18.8 95.8 0.704 0.01813
miR-19a 1.560 93.8 53.2 0.729 (0.608–0.850) 0.003 19.4 97.1 0.725 0.00410
miR-20a 1.940 93.8 49.2 0.694 (0.564–0.823) 0.012 19.2 98.4 0.689 0.01011
miR-126 0.530 81.0 65.3 0.745 (0.620–0.829) 0.001 22.4 96.3 0.739 0.00082
miR-155 0.445 93.8 64.5 0.855 (0.722–0.939) < 0.001 27.3 98.8 0.860 0.00078

miR-19a, miR-20a 0.265 93.8 64.5 0.816 (0.732–0.900) < 0.001 50.0 89.1 0.834 0.00071

Late relapse (≥5 years)

miR-10b 1.205 88.2 51.1 0.642 (0.516–0.768) 0.063 22.6 93.9 0.628 0.07835
LN and grade 0.115 82.4 88.8 0.898 (0.806–0.990) < 0.001 69.2 90.5 0.865 0.00089

miR-10b and LN and grade 0.467 88.2 98.8 0.971(0.923–1.000) < 0.001 93.7 97.5 0.931 0.00066

AUC, area under the curve; CI, confidence intervals; LN, lymph nodes; PPV, positive predictive value; NPV, negative predictive value. Statistical significance was set at p < 0.05.
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(panel C) late relapse (≥5 years) in early breast cancer. In panel (A), ROC curve analysis for (a) miR-10b, (b) miR-155,
and (c) clinicopathological parameters alone, or (d) in combination of miR-155 with clinicopathological parameters and
their ability to predict relapsed from non-relapsed patients. In panel (B), ROC curve analysis of (a) miR-10b, (b) miR-19a,
(c) miR-20a, (d) miR-126, and (e) miR-155 alone or (f) in a combined 2-miRNA panel and their ability to predict patients with
early relapse (defined at ≤2 years). In panel (C), combined ROC curve analysis for (a) clinicopathological parameters alone
or (b) miR-10b in combination with clinicopathological parameters and their ability to predict patients with late relapse
(defined at ≥5 years). AUC, area under the curve.
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MiR-155 and miR-19a alone had the highest performance among the investigated
miRNAs in discriminating patients with early relapse with an AUC of 0.855 ((95% CI:
0.722–0.939; p < 0.001) (sensitivity: 93.8% and specificity: 64.5%)) and an AUC of 0.729
((95% CI: 0.608–0.850; p = 0.003) (sensitivity: 93.8% and specificity: 53.2%)), respectively
(Table 3, Figure 3B). The PPV and NPV were 19.4% and 97.1% for miR-19a and 27.3% and
98.8% for miR-155, respectively. However, when we assessed the combinations of miRNAs,
it was shown that the combined expression of both mir-19a and miR-20a increased the
accuracy in the prediction of early relapse (AUC = 0.816, 95% CI: 0.732–0.900; p < 0.001,
sensitivity 93.8% and specificity 64.5%) (Table 3 and Figure 3B). Furthermore, the combi-
nation of miR-19a and miR-20a resulted in improved predictive values—50.0% and 89.1%
for PPV and NPV, respectively. None of the clinicopathological parameters added further
value in the prediction of early relapse.

Although the expression of each single miRNA was not predictive of late relapse,
binary logistic regression showed that miR-10b in combination with the clinical parame-
ters, axillary lymph node status and grade, further increased the accuracy of predicting
late relapse compared with that provided by clinical parameters alone. Specifically, axil-
lary lymph node status and grade demonstrated an AUC of 0.898 (95% CI: 0.806–0.990;
p < 0.001) and sensitivity of 82.4%, specificity of 88.8%, PPV of 69.2%, and NPV of 90.5% in
the prediction of late relapse (Table 3 and Figure 3C). Importantly, the combination of miR-
10b with the respective clinicopathological characteristics demonstrated an AUC of 0.971
(0.923–1.000; p < 0.001), sensitivity of 88.2%, and specificity of 98.8%, respectively, in the pre-
diction of late relapse (Table 3 and Figure 3C). Furthermore, the combined model resulted
in improved PPV and NPV of 93.7% and 97.5%, respectively (Table 3 and Figure 3C).

To further validate the accuracy of the above relapse predictive models, a 10-fold cross
validation was implemented in R by applying 13 different feature combinations of miRNAs
and clinicopathological parameters. Mean AUC values were calculated for each 10-fold
cross-validation and compared to the AUC calculated from our initial regression analysis
(Table 3). No significant differences in the values of AUC in any feature combinations were
observed, indicating that the performance of these models is robust and can be generalized
to independent datasets (Table 3).

4. Discussion

We herein investigated the differential expression of miRNAs involved in the modula-
tion of immune response in the plasma of healthy women and patients with early stage
breast cancer and explored their value in the prediction of relapse. We found that miR-155
expression levels were significantly lower in patients compared with healthy blood donors,
whereas miR-155 and miR-10b expressions were lower in patients who subsequently re-
lapsed compared with healthy individuals. Plasma miR-155 along with axillary lymph
node status and tumor grade demonstrated the highest accuracy in distinguishing patients
who relapsed from those who did not relapse during the whole follow-up period. Re-
garding the timing of relapse, a 2-miRNA panel consisting of miR-19a and miR-20a had
the highest performance in distinguishing those with early relapse, whereas miR-10b in
combination with axillary lymph node status and grade demonstrated significant accu-
racy and specificity in predicting late relapse. Finally, the predictive performance of the
aforementioned miRNAs was confirmed via cross validation.

Circulating miRNAs are considered to be actively secreted by the tumor and delivered
to recipient cells to mediate intercellular communication [11,21]. However, the source of
plasma miRNAs represents a matter of debate, with several studies suggesting that they
only represent tumor byproducts resulting from tumor cell death and lysis [22]. On the
other hand, other reports support that a significant proportion of circulating miRNAs
may originate from immune cells in the blood and/or from those residing in the TME
and potentially reflect the host’s response to the presence of the tumor [23,24]. Although
the biological role of circulating miRNAs has not been clarified as yet, they have been
suggested to reflect the complex interactions between tumor and immune cells throughout
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tumor immune escape and metastasis [25]. Body fluids typically contain free circulating
miRNAs, miRNAs complexed with proteins, as well as miRNAs packed into extracellular
vesicles (EVs) and, in this work, we investigated the prognostic significance of miRNAs
related to immune cell function when assessed in the plasma of patients with early stage
breast cancer.

Mir-155 was one of the first miRNAs identified for its regulatory role in the homeosta-
sis and function of different immune cell subsets [25,26]. Importantly, miR-155 is considered
as a critical molecule causing macrophage M1 polarization and its over-expression was
shown to re-program the anti-inflammatory, pro-tumoral M2 to the anti-tumor M1 pheno-
type of TAMs [27]. As such, miR-155 has also been shown to modulate anti-tumor immune
effector responses regulating genes in different immune cell subsets according to the cellu-
lar context [28]. Thus, overexpression of miR-155 in TAMs significantly decreased tumor
growth and promoted apoptosis of tumor cells [27]. In addition, knock down of miR-155 in
the myeloid cell compartment shifted TAMs from M1- to M2-phenotype associated with
increased production of pro-tumor cytokines and accelerated tumor growth in a mouse
model of spontaneous breast carcinogenesis that closely mimics tumor–host interactions
seen in humans [29]. MiR-155 has been also shown to regulate adaptive immunity by pro-
moting IFNγ anti-tumor responses by CD4+ and CD8+ T-cells [30]. Furthermore, miR-155
is required for effector CD8+ T cells’ accumulation and efficient control of tumor growth in
mice models [31]. In contrast, in another report, miR-155 regulated the accumulation of
MDSCs in the TME and was required by MDSCs to facilitate tumor growth [32].

MiR-155 is considered as an oncomir, with deregulated levels demonstrated in several
types of cancer, including breast cancer [8,33,34], albeit its role in carcinogenesis and tumor
growth remains controversial [35]. In a mouse mammary model, stable expression of
miR-155 in 4T1 breast cancer cells inhibited tumor dissemination from mammary fat pads
to the lung by preventing epithelial mesenchymal transition (EMT) [36]. However, the
prognostic significance of miR-155 expression in the tumor tissue or the circulation has
not been clarified as yet in breast cancer. Specifically, high expression of serum miR-155
has been correlated with unfavorable clinical characteristics and shorter overall survival in
early stage breast cancer patients [37]. Moreover, in another cohort of early stage breast
cancer patients, high serum miR-155 expression was correlated with worse disease-free
survival [38]. In addition, miR-155 was increased in the serum of relapsed as compared
with non-relapsed breast cancer patients [39]. In contrast, we herein show that plasma
miR-155 expression levels were lower in patients compared with healthy women and that
low mir-155 expression was predictive of relapse in patients with early disease. Our obser-
vations support the association of increasing plasma miR-155 expression levels with better
prognosis in early stage breast cancer. Taking into account the immune regulatory role of
miR-155, they further suggest that higher plasma miR-155 levels could potentially indicate
the presence of an efficient antitumor immune response. Nevertheless, the prognostic
significance of miR-155 merits further evaluation in breast cancer.

Mir-19a was first identified as the key oncogenic component of the miR-17-92 cluster,
which is frequently amplified or over-expressed in human cancers [40] and exerts oncogenic
activity by suppressing Phosphatase and tensin homolog (PTEN) [41] or by modulating
the oncogenic properties of c-Myc [42]. In contrast, a favourable role has been ascribed for
miR-19a in antitumor immune response. In a mouse breast cancer model, miR-19a induced
the switch from the immunosuppressive M2 to the pro-inflammatory M1 TAM phenotype
by targeting Fos-related antigen-1 (Fra-1) and the Fra-1/STAT3 signaling pathway and
controlled tumor growth and invasion [13].

In the clinical setting, the up-regulation of miR-19a in triple negative breast cancer
tissues [40] has been associated with chemotherapy resistance in the luminal A breast
cancer subtype [43]. In addition, it was shown that miR-19a was up-regulated in the whole
blood of early breast cancer patients as compared with healthy donors [44] as well as in the
serum of patients with increased risk of progression [45]. In contrast, in our patient cohort,
plasma miR-19a expression was lower in patients who relapsed within 2 years. Importantly,
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miR-19a combined with miR-20a expression yielded an AUC of 0.861 with sensitivity of
93.8% and specificity of 64.5% in the prediction of early relapse. These findings suggest
that higher plasma miR-19a expression levels could also reflect favourable tumor-immune
interactions associated with improved patient outcomes; however, miR-19a significance
needs to be further investigated in early stage breast cancer.

Late relapse is of considerable concern among disease-free patients with breast cancer,
and in the clinic, there are no accurate tools to identify patients at risk. Of note, in our
study, miR-10b expression combined with the clinical information on axillary lymph node
status and tumor grade yielded an AUC of 0.971 with sensitivity of 88.2% and specificity
of 98.8% for the prediction of late relapse (p < 0.001). MiR-10b directly targets MICB,
the stress-induced ligand of NKG2D receptor, expressed by tumor cells, thus impairing
NK-mediated recognition and elimination of tumor cells [46]. Moreover, miR-10b has been
shown to trigger tumor invasion and metastasis in xenograft models [47].

Contradictory results exist regarding the role of deregulated miR-10b expression
in breast cancer. MiR-10b was found to be down-regulated in primary breast tumors
compared with normal tissues [33] and, in another study, miR-10b expression was lower in
early breast cancer patients who experienced relapse [48,49]. In accordance, we observed
that circulating miR-10b was significantly lower in patients who relapsed compared with
healthy donors as well as in patients with early relapse as compared with the remaining
patients. To date, only limited information exists regarding the role of circulating miR-10b
in breast cancer. In such a study, mir-10b along with miR-155 was increased in the plasma
of breast cancer patients compared with healthy controls [50]; however, we did not observe
any differences in plasma miR-10b expression between patients and healthy donors.

We further showed that plasma miR-20a and miR-126 expression levels were signif-
icantly decreased in patients who experienced relapse within 2 years from surgery. In
accordance with our results, miR-20a expression was significantly decreased in the plasma
of breast cancer patients compared with healthy controls and low expression was associ-
ated with unfavourable clinical characteristics [51]. Moreover, mir-126 is downregulated
in breast cancer tumors and serum compared with normal tissue [52], and its expression
is significantly lower in relapsed compared with non-relapsed patients [53]. The above
evidence suggests that plasma miR-20a and miR-126 expression levels are associated with
tumor progression and metastatic dissemination in breast cancer.

Controversial results exist regarding the role of miR-20a in anti-tumor immune re-
sponse. In Zhang et al., miR-20a along with miR-17 alleviated the suppressive potential
of myeloid derived suppressor cells (MDSCs) by modulating STAT3 expression [54]. On
the other hand, increased levels of miR-20a in tumor cells suppress NK cells’ cytotoxicity
by targeting the expression of the NKG2D ligands, MICA/B [55]. Besides its role as an
important regulator of the innate immune response to pathogens [14], miR-126 has also
been shown to modulate the TME and to suppress tumor invasion and lung metastasis
of breast cancer cells [56]. Specifically, miR-126 independently suppressed the sequential
recruitment of mesenchymal stem cells and inflammatory monocytes, the precursors of
tumor associated macrophages, into the tumor stroma by targeting stroma cell-derived
factor-1 alpha (SDF1a) or the chemokine (C-C motif) ligand 2 (CCL2) in cancer cells [56]. In
the same line, Tavazoie et al. showed that miR-126 along with miR-335 suppressed lung
and bone metastasis in human breast cancer xenograft models [53].

The investigated miRNAs have been reported to be involved in the regulation of
innate immune responses [57] and our results show that their expression is associated with
disease relapse. Cells of the innate immune system are involved in pro- or anti-tumor
interactions with cancer cells and our results indicate that circulating miRNAs may hold a
critical role in this decision-making process by targeting key molecules of innate immune
pathways during tumor-immune interactions [25]. However, it should be noted that we
cannot conclude herein neither on the function of these miRNAs nor on their association
with the abundance and polarity of immune cells in the TME.
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5. Conclusions

In summary, our results indicate that miRNAs selected according to their suggested
involvement in immune cell function assessed in the plasma predict disease relapse in
early stage breast cancer patients years before its clinical detection. A recent statistical
framework analysis using clinical parameters and molecular data in a large cohort of
breast cancer patients resulted in the modelling of the risks for loco-regional and distant
relapse [58]. Our results show that circulating miRNAs may provide additive value in these
prediction models. We consider that the successful integration of circulating miRNAs into
clinical practice could improve patient prognostication in an effort to address the significant
challenge of treatment escalation or de-escalation according to the risk of recurrence in early
stage breast cancer patients. However, further comparative studies of plasma miRNAs,
miRNAs derived from circulating leukocytes, or from EVs could potentially be more
informative towards the identification of blood fractions with optimal diagnostic power as
compared with the interrogation of plasma only miRNAs.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/biomedicines9040421/s1, Figure S1: Flow chart of the study. Ct, cycle threshold. Figure S2:
U6 snRNA expression levels between healthy donors and early stage breast cancer patients. Mann
Whitney test was used to determine statistically significant differences and the results were displayed
on box plots. The p-value is shown. Figure S3: Capability of miR-155 to distinguish healthy women
from early breast cancer patients. AUC, area under curve; CI, confidence intervals. Table S1: Assay
ID for each miRNA used in the study.
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