# Developmental Dyscalculia in Relation to Individual Differences in Mathematical Abilities

## Abstract

**:**

## 1. Introduction

#### 1.1. Dyscalculia: Separate Condition or Lower End of the Continuum of Mathematical Attainment?

#### 1.2. Do Individuals with Dyscalculia Show Atypical Brain Structure or Function?

#### 1.3. Can Acquired Dyscalculia Tell Us Anything about Developmental Dyscalculia?

#### 1.4. How Does Dyscalculia Relate to the Componential Nature of Arithmetical Cognition?

#### 1.5. How Heterogeneous Are Deficits in Dyscalculia? The Importance of Studying Individual Profiles

#### 1.6. Domain-Specific Factors in Typical Arithmetical Development and in Dyscalculia

#### 1.7. Domain-General Factors in Typical and Atypical Arithmetical Development

## 2. Discussion

## 3. Conclusions

## 4. Further Directions

## Funding

## Conflicts of Interest

## References

- Dowker, A. Individual Differences in Arithmetic. Implications for Psychology, Neuroscience and Education; Psychology Press: Hove, UK, 2005. [Google Scholar]
- Dowker, A.; De Smedt, B.; Desoete, A. Editorial: Individual differences in arithmetical development. Front. Psychol.
**2019**, 10, 2672. [Google Scholar] [CrossRef] [PubMed] - Kaufmann, L.; Nuerk, H.-C. Numerical development: Current issues and future perspectives. Psychol. Sci.
**2005**, 47, 142–170. [Google Scholar] - Barbaresi, W.J.; Katusic, S.K.; Colligan, R.C.; Weaver, A.L.; Jacobsen, S.J. Math learning disorder: Incidence in a population-based birth cohort 1976–1982. Rochester Minn. Ambul. Pediatr.
**2005**, 5, 281–289. [Google Scholar] [CrossRef] - Geary, D.C.; Hoard, M.K.; Nugent, L.; Bailey, D.H. Mathematical cognition deficits in children with learning disabilities and persistent low achievement: A five-year prospective study. J. Educ. Psychol.
**2012**, 104, 206–223. [Google Scholar] [CrossRef] [PubMed] - Gross-Tsur, V.; Manor, O.; Shalev, R.S. Developmental dyscalculia: Prevalence and demographic features. Dev. Med. Child Neurol.
**1996**, 38, 25–33. [Google Scholar] [CrossRef] [PubMed] - Hein, J.; Bzufka, M.W.; Neumärker, K.J. He specific disorder of arithmetic skills. Prevalence studies in a rural and an urban population sample and their clinico-neuropsychological validation. Eur. Child Adolesc. Psychiatry
**2000**, 9, 87–101. [Google Scholar] [CrossRef] [PubMed] - Lewis, C.; Hitch, G.J.; Walker, P. The prevalence of specific arithmetic difficulties and specific reading difficulties in 9- to 10-year old boys and girls. J. Child Psychol. Psychiatry
**1994**, 35, 283–292. [Google Scholar] [CrossRef] - Luoni, C.; Scorza, M.; Stefanelli, S.; Fagiolini, B.; Termine, C. A neuropsychological profile of developmental dyscalculia: The role of comorbidity. J. Learn. Disabil.
**2022**, 56, 310–323. [Google Scholar] [CrossRef] [PubMed] - Ramaa, S.; Gowramma, I.P. A systematic procedure for identifying and classifying children with dyscalculia among primary school children in India. Dyslexia
**2002**, 8, 67–85. [Google Scholar] [CrossRef] - Santos, F.H. Discalculia do Desenvolvimento; Pearson Clinical Brasil: São Paulo, Brazil, 2017. [Google Scholar]
- Desoete, A.; Roeyers, H.; De Clercq, A. Children with mathematics learning disabilities in Belgium. J. Learn. Disabil.
**2004**, 37, 50–61. [Google Scholar] [CrossRef] - Kaufmann, L.; Mazzocco, M.M.; Dowker, A.; Von Aster, M.; Göbel, S.M.; Grabner, R.H.; Henik, A.; Jordan, N.C.; Karmiloff-Smith, A.D.; Kucian, K.; et al. Dyscalculia from a developmental and differential perspective. Front. Psychol.
**2013**, 4, 516. [Google Scholar] [CrossRef] [PubMed] - Mazzocco, M.; Myers, G.F. Complexities in identifying and defining mathematics learning disability in the primary school years. Ann. Dyslexia
**2003**, 53, 218–253. [Google Scholar] [CrossRef] - Mullis, I.V.S.; Martin, M.O.; Loveless, T. 20 Years of TIMSS: International Trends in Mathematics and Science Achievement, Curriculum, and Instruction; International TIMSS and PIRLS Study Centre: Boston, MA, USA, 2016. [Google Scholar]
- Department for Business Innovations and Skills. Skills for Life Survey: Headline Findings; BIS Research Paper 57; Department for Business Innovations and Skills: London, UK, 2011. [Google Scholar]
- Bynner, J.; Parsons, S. It Doesn’t Get Any Better; Basic Skills Agency: London, UK, 1997. [Google Scholar]
- Parsons, S.; Bynner, J. Does Numeracy Matter More? NRDC: London, UK, 2005. [Google Scholar]
- Santos, F.H.; Ribeiro, F.S.; Dias-Piovezana, A.L.; Primi, C.; Dowker, A.; von Aster, M. Discerning developmental dyscalculia and neurodevelopmental models of numerical cognition in a disadvantaged educational context. Brain Sci.
**2022**, 12, 653. [Google Scholar] [CrossRef] - Dirks, E.; Spyer, G.; van Lieshout, E.C.; de Sonneville, L. Prevalence of combined reading and arithmetic disabilities. J. Learn. Disabil.
**2008**, 41, 460–473. [Google Scholar] [CrossRef] [PubMed] - Kucian, K.; Grond, U.; Rotzer, S.; Henzi, B.; Schönmann, C.; Plangger, F.; Gälli, M.; Martin, E.; von Aster, M. Mental number line training in children with developmental dyscalculia. Neuroimage
**2011**, 57, 782–795. [Google Scholar] [CrossRef] [PubMed] - Kucian, K.; Ashkenazi, S.S.; Hänggi, J.; Rotzer, S.; Jäncke, L.; Martin, E.; Von Aster, M. Developmental dyscalculia: A disconnection syndrome? Brain Struct. Funct.
**2014**, 219, 1721–1733. [Google Scholar] [CrossRef] - Rosenberg-Lee, M.; Ashkenazi, S.; Chen, T.; Young, C.B.; Geary, D.C.; Menon, V. Brain hyper-connectivity and operation-specific deficits during arithmetic problem solving in children with developmental dyscalculia. Dev. Sci.
**2015**, 18, 351–372. [Google Scholar] [CrossRef] - Bulthé, J.; Prinsen, J.; Vanderauwera, J.; Duyck, S.; Daniels, N.; Gillebert, C.R.; Mantini, D.; Op de Beeck, H.P.; De Smedt, B. Multi-method brain imaging reveals impaired representations of number as well as altered connectivity in adults with dyscalculia. NeuroImage
**2019**, 190, 289–302. [Google Scholar] [CrossRef] - Karmiloff-Smith, A. Development itself is the key to understanding developmental disorders. Trends Cogn. Sci.
**1998**, 2, 389–398. [Google Scholar] [CrossRef] - Dehaene, S. The Number Sense; Macmillan: London, UK, 1997. [Google Scholar]
- Dehaene, S.; Cohen, L. Towards an anatomical and functional model of number processing. Math. Cogn.
**1995**, 1, 83–120. [Google Scholar] [CrossRef] - Van Harskamp, N.J.; Cipolotti, L. Selective impairments in addition, subtraction and multiplication: Implications for the organization of arithmetical facts. Cortex
**2001**, 37, 363–388. [Google Scholar] [CrossRef] [PubMed] - Venneri, A.; Semenza, C. On the dependency of division on multiplication: Selective loss for conceptual knowledge of multiplication. Neuropsychologia
**2011**, 49, 3629–3635. [Google Scholar] [CrossRef] - Carota, A.; Marangolo, P.; Markowitsch, H.; Calabrese, P. When solving 22-7 is much more difficult than 99-12. Neurocase
**2013**, 19, 54–66. [Google Scholar] [CrossRef] [PubMed] - Dehaene, S.; Cohen, L. Cerebral pathways for calculation: Double dissociation between rote verbal and quantitative knowledge of arithmetic. Cortex
**1997**, 33, 219–250. [Google Scholar] [CrossRef] [PubMed] - Warrington, E.K. The fractionation of arithmetical skills: A single case study. Q. J. Exp. Psychol.
**1982**, 34, 31–51. [Google Scholar] [CrossRef] [PubMed] - Delazer, M. Neuropsychological findings on conceptual knowledge of arithmetic. In The Development of Arithmetic Concepts and Skills: Constructing Adaptive Expertise; Baroody, A.J., Dowker, A., Eds.; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 2003; pp. 385–407. [Google Scholar]
- Delazer, M.; Benke, T. Arithmetic facts without meaning. Cortex
**1997**, 33, 697–710. [Google Scholar] [CrossRef] - Julien, C.L.; Neary, D.; Snowden, J.S. Personal experience and arithmetic meaning in semantic dementia. Neuropsychologia
**2010**, 48, 278–287. [Google Scholar] [CrossRef] - Demeyere, N.; Lestou, V.; Humphreys, G.W. Neuropsychological evidence for a dissociation in counting and subitizing. Neurocase
**2010**, 16, 219–237. [Google Scholar] [CrossRef] - Demeyere, N.; Rotshtein, P.; Humphreys, G.W. The neuroanatomy of visual enumeration: Differentiating necessary neural correlates for subitizing versus counting in a neuropsychological voxel-based morphometry study. J. Cogn. Neurosci.
**2012**, 24, 948–964. [Google Scholar] [CrossRef] - Gosling, E.; Demeyere, N.; Dowker, A. Numerical cognition after brain injury: Is there a relationship between subitizing and arithmetical abilities? Brain Sci.
**2023**, 13, 381. [Google Scholar] [CrossRef] - Cappelletti, M.; Butterworth, B.; Kopelman, M. Numeracy skills in patients with degenerative disorders and focal brain lesions: A neuropsychological investigation. Neuropsychology
**2012**, 26, 1–19. [Google Scholar] [CrossRef] [PubMed] - Dowker, A. The componential nature of arithmetical cognition: Some important questions. Front. Psychol.
**2023**, 14, 1188271. [Google Scholar] [CrossRef] - Dowker, A. Individual differences in arithmetical abilities: The componential nature of arithmetic. In Oxford Handbook of Mathematical Cognition; Kadosh, R.C., Dowker, A., Eds.; Oxford University Press: Oxford, UK, 2015; pp. 878–894. [Google Scholar] [CrossRef]
- Cowan, R.; Donlan, C.; Shepherd, D.-L.; Cole-Fletcher, R.; Saxton, M.; Hurry, J. Basic calculation proficiency and mathematics achievement in elementary school children. J. Educ. Psychol.
**2011**, 103, 786–803. [Google Scholar] [CrossRef] - Dowker, A. Individual differences in arithmetical development. In The Development of Mathematical Skills; Donlan, C., Ed.; Psychology Press: London, UK, 1998; pp. 275–302. [Google Scholar]
- Gifford, S.; Rockliffe, F. Mathematics difficulties: Does one approach fit all? Res. Math. Educ.
**2012**, 14, 1–15. [Google Scholar] [CrossRef] - Purpura, D.J.; Lonigan, C.J. Informal numeracy skills: The structure and relations among numbering, relations, and arithmetic operations in preschool. Am. Educ. Res. J.
**2013**, 50, 178–209. [Google Scholar] [CrossRef] - Dowker, A. Individual differences in numerical abilities in preschoolers. Dev. Sci.
**2008**, 11, 650–654. [Google Scholar] [CrossRef] [PubMed] - Wynn, K. Children’s acquisition of the number words and the counting system. Cogn. Psychol.
**1992**, 24, 220–251. [Google Scholar] [CrossRef] - Dowker, A. Young children’s use of derived fact strategies for addition and subtraction. Front. Hum. Neurosci.
**2014**, 7, 924. [Google Scholar] [CrossRef] [PubMed] - Dowker, A. Young children’s addition estimates. Math. Cogn.
**1997**, 3, 140–153. [Google Scholar] [CrossRef] - Dowker, A. Derived fact strategies in children with and without mathematical difficulties. Cogn. Dev.
**2009**, 24, 401–410. [Google Scholar] [CrossRef] - Murphy, M.M.; Mazzocco, M.M.M.; Hanich, L.B.; Early, M.C. Cognitive characteristics of children with mathematics learning disability (MLD) vary as a function of the cutoff criterion used to define MLD. J. Learn. Disabil.
**2007**, 40, 458–478. [Google Scholar] [CrossRef] [PubMed] - Bartelet, D.; Ansari, D.; Vaessen, A.; Blomert, L. Cognitive subtypes of mathematics learning difficulties in primary education. Res. Dev. Disabil.
**2014**, 35, 657–670. [Google Scholar] [CrossRef] - Salvador, L.; Moura, R.; Wood, G.; Haasede, V.G. Cognitive heterogeneity of math difficulties: A bottom-up classification approach. J. Numer. Cogn.
**2019**, 5, 55–85. [Google Scholar] [CrossRef] - Pieters, S.; Roeyers, H.; Rosseel, Y.; Van Waelvelde, H.; Desoete, A. Identifying subtypes among children with developmental coordination disorder and mathematical learning disabilities, using model-based clustering. J. Learn. Disabil.
**2015**, 48, 83–95. [Google Scholar] [CrossRef] [PubMed] - Skagerlund, K.; Träff, U. Number processing and heterogeneity of developmental dyscalculia: Subtypes with different cognitive profiles and deficits. J. Learn. Disabil.
**2016**, 49, 36–50. [Google Scholar] [CrossRef] [PubMed] - Karagiannakis, G.; Baccaglini-Frank, A.; Papadatos, Y. Mathematical learning difficulties subtypes classification. Front. Hum. Neurosci.
**2014**, 8, 57. [Google Scholar] [CrossRef] [PubMed] - Andersson, U. Skill development in different components of arithmetic and basic cognitive functions: Findings from a 3-year longitudinal study of children with different types of learning difficulties. J. Educ. Psychol.
**2010**, 102, 115–134. [Google Scholar] [CrossRef] - Muñez, D.; Bull, R.; Lee, K.; Ruiz, C. Heterogeneity in children at risk of math learning difficulties. Child Dev.
**2023**, 94, 1033–1048. [Google Scholar] [CrossRef] [PubMed] - Jordan, N.C.; Hanich, L.B.; Kaplan, D. A longitudinal study of mathematical competencies in children with specific mathematics difficulties versus children with comorbid mathematics and reading difficulties. Child Dev.
**2003**, 74, 834–850. [Google Scholar] [CrossRef] - Träff, U.; Olsson, L.; Skagerlund, K.; Östergren, R. Kindergarten domain-specific and domain-general cognitive precursors of hierarchical mathematical development: A longitudinal study. J. Educ. Psychol.
**2020**, 112, 93–109. [Google Scholar] [CrossRef] - Huijsmans, M.D.E.; Kleemans, T.; van der Ven, S.H.G.; Kroesbergen, E.H. The relevance of subtyping children with mathematical learning disabilities. Res. Dev. Disabil.
**2020**, 104, 103704. [Google Scholar] [CrossRef] - Haberstroh, S.; Schulte-Körne, G. The cognitive profile of math difficulties: A meta-analysis based on clinical criteria. Front. Psychol.
**2022**, 13, 842391. [Google Scholar] [CrossRef] [PubMed] - Fias, W.; Menon, V.; Szucs, D. Multiple components of developmental dyscalculia. Trends Neurosci. Educ.
**2013**, 2, 43–47. [Google Scholar] [CrossRef] - Butterworth, B. The Mathematical Brain; Macmillan: London, UK, 2000. [Google Scholar]
- Butterworth, B.; Varma, S.; Laurillard, D. Dyscalculia: From brain to education. Science
**2011**, 332, 1049–1053. [Google Scholar] [CrossRef] [PubMed] - Desoete, A.; Ceulemans, A.; De Weerdt, F.; Pieters, S. Can we predict mathematical learning disabilities from symbolic and non-symbolic comparison tasks in kindergarten? Findings from a longitudinal study. Br. J. Educ. Psychol.
**2012**, 82, 64–81. [Google Scholar] [CrossRef] [PubMed] - Koontz, K.L.; Berch, D.B. Identifying simple numerical stimuli: Processing inefficiencies exhibited by arithmetic learning disabled children. Math. Cogn.
**1996**, 2, 135467996387525. [Google Scholar] [CrossRef] - Landerl, K.; Bevan, A.; Butterworth, B. Developmental dyscalculia and basic numerical capacities: A study of 8–9-year-old students. Cognition
**2004**, 93, 99–125. [Google Scholar] [CrossRef] [PubMed] - Moeller, K.; Neuburger, S.; Kaufmann, L.; Landerl, K.; Nuerk, H.C. Basic number processing deficits in developmental dyscalculia: Evidence from eye tracking. Cogn. Dev.
**2009**, 24, 371–386. [Google Scholar] [CrossRef] - Schleifer, P.; Landerl, K. Subitizing and counting in typical and atypical development. Dev. Sci.
**2011**, 14, 280–291. [Google Scholar] [CrossRef] - Reigosa-Crespo, V.; Valdes-Sosa, M.; Butterworth, B.; Estevez, N.; Rodriguez, M.; Santos, E.; Torres, P.; Suarez, R.; Lage, A. Basic numerical abilities and prevalence of developmental dyscalculia: The Havana survey. Dev. Psychol.
**2012**, 48, 123–135. [Google Scholar] [CrossRef] - Estevez-Perez, N.; Castro-Canizares, D.; Martinez-Montes, E.; Reigosa-Crespo, V. Numerical processing profiles in children with varying degrees of arithmetical achievement. Acta. Psychol.
**2019**, 198, 102849. [Google Scholar] [CrossRef] [PubMed] - Bonny, J.W.; Lourenco, S.F. The approximate number system and its relation to early math achievement: Evidence from the preschool years. J. Exp. Child Psychol.
**2013**, 114, 375–388. [Google Scholar] [CrossRef] [PubMed] - Decarli, G.; Paris, E.; Tencati, C.; Nardelli, C.; Vescovi, M.; Surian, L.; Piazza, M.; Prado, J. Impaired large numerosity estimation and intact subitizing in developmental dyscalculia. PLoS ONE
**2020**, 15, e0244578. [Google Scholar] [CrossRef] [PubMed] - Mussolin, C.; Mejias, S.; Noël, M.P. Symbolic and nonsymbolic number comparison in children with and without dyscalculia. Cognition
**2010**, 115, 10–25. [Google Scholar] [CrossRef] [PubMed] - Piazza, M.; Facoetti, A.; Trussardi, A.N.; Berteletti, I.; Conte, S.; Lucangeli, D.; Dehaene, S.; Zorzi, M. Developmental trajectory of number acuity reveals a severe impairment in developmental dyscalculia. Cognition
**2010**, 116, 33–41. [Google Scholar] [CrossRef] [PubMed] - Price, G.R.; Holloway, I.; Rasanen, P.; Vesterinen, M.; Ansari, D. Impaired parietal magnitude processing in developmental dyscalculia. Curr. Biol.
**2007**, 17, R1042–R1043. [Google Scholar] [CrossRef] - Anobile, G.; Arrighi, R.; Burr, D.C. Simultaneous and sequential subitizing are separate systems, and neither predicts math abilities. J. Exp. Child Psychol.
**2019**, 178, 86–103. [Google Scholar] [CrossRef] [PubMed] - Burr, D.C.; Turi, M.; Anobile, G. Subitizing but not estimation of numerosity requires attentional resources. J. Vis.
**2010**, 10, 20. [Google Scholar] [CrossRef] [PubMed] - Anobile, G.; Stievano, P.; Burr, D.C. Visual sustained attention and numerosity sensitivity correlate with math achievement in children. J. Exp. Child Psychol.
**2013**, 116, 380–391. [Google Scholar] [CrossRef] - Anobile, G.; Tomaiuolo, F.; Campana, S.; Cicchini, G.M. Three-systems for visual numerosity: A single case study. Neuropsychologia
**2019**, 136, 107259. [Google Scholar] [CrossRef] - De Smedt, B.; Gilmore, C.K. Defective number module or impaired access? Numerical magnitude processing in first graders with mathematical difficulties. J. Exp. Child Psychol.
**2011**, 108, 278–292. [Google Scholar] [CrossRef] [PubMed] - Meijas, S.; Gregoire, J.; Noel, M.-P. Numerical estimation in adults with and without developmental dyscalculia. Learn. Individ. Differ.
**2012**, 22, 164–170. [Google Scholar] [CrossRef] - Olsson, L.; Östergren, R.; Traff, U. Developmental dyscalculia: A deficit in the approximate number system or an access deficit? Cogn. Dev.
**2016**, 39, 154–167. [Google Scholar] [CrossRef] - Chu, F.W.; van Marle, K.; Geary, D.C. Early numerical foundations of young children’s mathematical development. J. Exp. Child Psychol.
**2015**, 132, 205–212. [Google Scholar] [CrossRef] [PubMed] - Fazio, L.K.; Bailey, D.H.; Thompson, C.A.; Siegler, R.S. Relations of different types of numerical magnitude representations to each other and to mathematics achievement. J. Exp. Child Psychol.
**2014**, 123, 53–72. [Google Scholar] [CrossRef] [PubMed] - Inglis, M.; Attridge, N.; Batchelor, S.; Gilmore, C. Non-verbal number acuity correlates with symbolic mathematics achievement: But only in children. Psychon. Bull. Rev.
**2011**, 18, 1222–1229. [Google Scholar] [CrossRef] [PubMed] - Lyons, I.M.; Ansari, D.; Beilock, S.L. Symbolic estrangement: Evidence against a strong association between numerical symbols and the quantities they represent. J. Exp. Psychol. Gen.
**2012**, 141, 635–641. [Google Scholar] [CrossRef] [PubMed] - Guez, A.; Piazza, M.; Pinheiro-Chagas, P.; Peyre, H.; Heude, B.; Ramus, F. Preschool language and visuospatial skills respectively predict multiplication and addition/subtraction skills in middle school children. Dev. Sci.
**2023**, 26, e13316. [Google Scholar] [CrossRef] [PubMed] - Jordan, J.A.; Wylie, J.; Mulhern, G. Phonological awareness and mathematical difficulty: A longitudinal perspective. Br. J. Dev. Psychol.
**2010**, 28, 89–107. [Google Scholar] [CrossRef] - Vanbinst, K.; van Bergen, E.; Ghesquière, P.; De Smedt, B. Cross-domain associations of key cognitive correlates of early reading and early arithmetic in 5-year-olds. Early Child. Res. Q.
**2020**, 51, 144–152. [Google Scholar] [CrossRef] - Bjork, I.M.; Bowyer-Crane, C. Cognitive skills used to solve mathematical word problems and numerical operations: A study of 6- to 7-year-old children. Eur. J. Psychol. Educ.
**2013**, 28, 1345–1360. [Google Scholar] [CrossRef] - Pimperton, H.; Nation, K. Understanding words, understanding numbers: An exploration of the mathematical profiles of poor comprehenders. Br. J. Educ. Psychol.
**2010**, 80, 255–268. [Google Scholar] [CrossRef] [PubMed] - Singer, V.; Strasser, K.; Cuadro, A. Direct and indirect paths from linguistic skills to arithmetic school performance. J. Educ. Psychol.
**2019**, 111, 434–445. [Google Scholar] [CrossRef] - Moll, K.; Landerl, K.C.; Snowling, M.J.; Schulte-Körne, G. Understanding comorbidity of learning disorders: Task-dependent estimates of prevalence. J. Child Psychol. Psychiatry
**2019**, 60, 286–294. [Google Scholar] [CrossRef] [PubMed] - De Smedt, B.; Boets, B. Phonological processing and arithmetic fact retrieval: Evidence from developmental dyslexia. Neuropsychologia
**2010**, 48, 3973–3981. [Google Scholar] [CrossRef] [PubMed] - Miles, T.R. Dyslexia: The Pattern of Difficulties, 2nd ed.; Whurr: London, UK, 1993. [Google Scholar]
- Arvedson, P.J. Young children with specific language impairment and their numerical cognition. J. Speech Lang. Hear. Res.
**2010**, 45, 970–982. [Google Scholar] [CrossRef] - Fazio, B.B. Mathematical abilities of children with specific language impairment: A 2-year follow-up. J. Speech Lang. Hear. Res.
**1996**, 39, 839–849. [Google Scholar] [CrossRef] [PubMed] - Fazio, B.B. Arithmetic calculation, short-term memory, and language performance in children with specific language impairment: A 5-year follow-up. J. Speech Lang. Hear. Res.
**1996**, 42, 420–431. [Google Scholar] [CrossRef] [PubMed] - Cowan, R.; Donlan, C.; Newton, E.J.; Lloyd, B. Number skills and knowledge in children with specific language impairment. J. Educ. Psychol.
**2005**, 97, 732–744. [Google Scholar] [CrossRef] - Donlan, C.; Gourlay, S. The importance of non-verbal skills in the acquisition of place-value knowledge: Evidence from normally-developing and language-impaired children. Br. J. Dev. Psychol.
**1999**, 17, 1–19. [Google Scholar] [CrossRef] - Puvanendran, K.; Dowker, A.; Demeyere, N. Compensating arithmetic ability with derived fact strategies in Broca’s aphasia: A case report. Neurocase
**2015**, 22, 205–214. [Google Scholar] [CrossRef] [PubMed] - Cornu, V.; Schilz, C.; Martin, R.; Hornung, C. Visuo-spatial abilities are key for young children’s verbal number skills. J. Exp. Psychol.
**2018**, 166, 604–620. [Google Scholar] [CrossRef] [PubMed] - Gilligan, K.A.; Hodgkiss, A.; Thomas, M.S.; Farran, E.K. The developmental relations between spatial cognition and mathematics in primary school children. Dev. Sci.
**2018**, 22, e12786. [Google Scholar] [CrossRef] [PubMed] - Bower, C.V.; Zimmermann, L.; Verdine, B.; Toub, T.S.; Islam, S.; Foster, L.; Golinkoff, R.M. Piecing together the role of a spatial assembly intervention in preschoolers’ spatial and mathematics learning: Influences of gesture, spatial language, and socioeconomic status. Dev. Psychol.
**2020**, 56, 686. [Google Scholar] [CrossRef] [PubMed] - Lowrie, T.; Logan, T.; Ramful, A. Visuospatial training improves elementary students’ mathematics performance. Br. J. Educ. Psychol.
**2017**, 87, 170–186. [Google Scholar] [CrossRef] [PubMed] - Mix, K.S.; Levine, S.C.; Cheng, Y.; Stockton, J.D.; Bower, C. Effects of spatial training on mathematics in first and sixth grade children. J. Educ. Psychol.
**2021**, 113, 304–314. [Google Scholar] [CrossRef] - Di Lonardo Burr, S.M.; Xu, C.; Douglas, H.; LeFevre, J.A.; Susperreguy, M.I. Walking another pathway: The inclusion of patterning in the pathways to mathematics model. J. Exp. Child Psychol.
**2022**, 222, 105478. [Google Scholar] [CrossRef] [PubMed] - Rittle-Johnson, B.; Zippert, E.L.; Boice, K.L. The roles of patterning and spatial skills in early mathematics development. Early Child. Res. Q.
**2019**, 46, 166–178. [Google Scholar] [CrossRef] - Wijns, N.; Purpura, D.; Torbeyns, J. Stimulating preschoolers’ repeating patterning ability by means of dialogic picture book reading. J. Educ. Psychol.
**2023**, 115, 732–746. [Google Scholar] [CrossRef] - Wijns, N.; Verschaffel, L.; De Smedt, B.; De Keyser, L.; Torbeyns, J. Stimulating preschoolers’ focus on structure in repeating and growing patterns. Learn. Instr.
**2021**, 74, 101444. [Google Scholar] [CrossRef] - LeFevre, J.A.; Berrigan, L.; Vendetti, C.; Kamawar, D.; Bisanz, J.; Skwarchuk, S.L.; Smith-Chant, B.L. The role of executive attention in the acquisition of mathematical skills for children in grades 2 through 4. J. Exp. Child Psychol.
**2013**, 114, 243–261. [Google Scholar] [CrossRef] [PubMed] - Hassinger-Das, B.; Jordan, N.C.; Glutting, J.; Irwin, C.; Dyson, N. Domain-general mediators of the relation between kindergarten number sense and first-grade mathematics achievement. J. Exp. Child Psychol.
**2014**, 118, 78–92. [Google Scholar] [CrossRef] [PubMed] - Raghubar, K.P.; Barnes, M.A.; Hecht, S.A. Working memory and mathematics: A review of developmental, individual difference, and cognitive approaches. Learn. Individ. Differ.
**2010**, 20, 110–122. [Google Scholar] [CrossRef] - Wilson, K.M.; Swanson, H.L. Are mathematics disabilities due to a domain-general or a domain-specific working memory deficit? J. Learn. Disabil.
**2001**, 34, 237–248. [Google Scholar] [CrossRef] [PubMed] - McKenzie, B.; Bull, R.; Gray, C. The effects of phonological and visual-spatial interference on children’s arithmetical performance. Educ. Child Psychol.
**2003**, 20, 93–108. [Google Scholar] [CrossRef] - Henry, L.A.; MacLean, M. Working memory performance in children with and without intellectual disabilities. Amerucan J. Ment. Retard.
**2002**, 107, 421–432. [Google Scholar] [CrossRef] - Zhang, Y.; Tolmie, A.; Gordon, R. The relationship between working memory and arithmetic in primary school children: A meta-analysis. Brain Sci.
**2023**, 13, 22. [Google Scholar] [CrossRef] - Simmons, F.R.; Willis, C.; Adams, A. Different components of working memory have different relationships with different mathematical skills. J. Exp. Child Psychol.
**2012**, 111, 139–155. [Google Scholar] [CrossRef] [PubMed] - Allen, L.; Dowker, A. Spatial working memory counts: Evidence for a specific association between visuo-spatial working memory and arithmetic in children. Int. Electron. J. Elem. Educ.
**2022**, 14, 199–211. [Google Scholar] [CrossRef] - Best, J.R.; Miller, P.H.; Naglieri, J.A. Relations between executive function and academic achievement from age 5 to 17 in a large, representative national sample. Learn. Individ. Differ.
**2011**, 21, 327–336. [Google Scholar] [CrossRef] - Bull, R.; Lee, K. Executive functioning and mathematics achievement. Child Dev. Perspect.
**2014**, 8, 36–41. [Google Scholar] [CrossRef] - Clark, C.A.C.; Sheffield, T.D.; Wiebe, S.A.; Espy, K.A. Longitudinal associations between executive control and developing mathematical competence in preschool boys and girls. Child Dev.
**2013**, 84, 662–677. [Google Scholar] [CrossRef] [PubMed] - Mazzocco, M.M.M.; Kover, S.T. A longitudinal assessment of executive function skills and their association with math performance. Child Neuropsychol.
**2007**, 13, 18–45. [Google Scholar] [CrossRef] [PubMed] - Passolunghi, M.C.; Vercelloni, B.; Schadee, H. The precursors of mathematics learning: Working memory, phonological ability, and numerical competence. Cogn. Dev.
**2007**, 22, 165–184. [Google Scholar] [CrossRef] - McDonald, P.; Berg, D.H. Identifying the nature of impairments in executive functioning and working memory of children with severe difficulties in arithmetic. Child Neuropsychol.
**2018**, 24, 1047–1062. [Google Scholar] [CrossRef] - Bull, R.; Scerif, G. Executive functioning as a predictor of children’s mathematics ability: Inhibition, switching, and working memory. Dev. Neuropsychol.
**2001**, 19, 273–293. [Google Scholar] [CrossRef] [PubMed] - Merkley, R.; Thompson, J.; Scerif, G. Of huge mice and tiny elephants: Exploring the relationship between inhibitory processes and preschool math skills. Front. Psychol.
**2016**, 6, 1903. [Google Scholar] [CrossRef] - Fuhs, M.W.; Hornburg, C.B.; McNeil, N.M. Specific early number skills mediate the association between executive functioning skills and mathematics achievement. Dev. Psychol.
**2016**, 52, 1217–1235. [Google Scholar] [CrossRef] [PubMed] - Clayton, S.; Gilmore, C. Inhibition in dot comparison tasks. ZDM
**2015**, 47, 759–770. [Google Scholar] [CrossRef] - Capano, L.; Minden, D.; Chen, S.X.; Schachar, R.J.; Ickowicz, A. Mathematical learning disorder in school-age Children with attention-deficit hyperactivity disorder. Can. J. Psychiatry
**2008**, 53, 392–399. [Google Scholar] [CrossRef] - Oner, O.; Vatanartiran, S.; Karadeniz, S. Relationships between teacher-reported ADHD symptom profiles and academic achievement domains in a nonreferred convenience sample of first- to fourth-grade students. Psychiatry Clin. Psychopharmacol.
**2019**, 29, 502–508. [Google Scholar] [CrossRef] - Salla, J.; Michel, G.; Pingault, J.B.; Lacourse, E.; Paquin, S.; Galera, C.; Falissard, B.; Boivin, M.; Tremblay, R.; Cote, S. Childhood trajectories of inattention, hyperactivity and academic achievement at 12 years. Eur. Child Adolesc. Psychiatry
**2016**, 25, 1195–1206. [Google Scholar] [CrossRef] [PubMed] - Tymms, P.; Merrell, C. ADHD and academic attainment: Is there an advantage in impulsivity? Learn. Individ. Differ.
**2011**, 21, 753–758. [Google Scholar] [CrossRef] - Simms, V.; Gilmore, C.; Cragg, L.; Clayton, S.; Marlow, N.; Johnson, S. Nature and origins of mathematics difficulties in very preterm children: A different etiology than developmental dyscalculia. Pediatr. Res.
**2015**, 77, 389–395. [Google Scholar] [CrossRef] - Ganor-Stern, D.; Steinhorn, O. ADHD and math—The differential effect on calculation and estimation. Acta Psychol.
**2018**, 188, 55–64. [Google Scholar] [CrossRef] [PubMed] - Friedman, L.M.; Rapport, M.D.; Orban, S.A.; Eckrich, S.J.; Calub, C.A. Applied problem solving in children with ADHD: The mediating roles of working memory and mathematical calculation. J. Abnorm. Child Psychol.
**2018**, 46, 491–504. [Google Scholar] [CrossRef] [PubMed] - Iuculano, T.; Tang, J.; Hall, C.W.B.; Butterworth, B. Core information processing deficits in developmental dyscalculia and low numeracy. Dev. Sci.
**2008**, 11, 669–680. [Google Scholar] [CrossRef] [PubMed] - Peng, P.; Fuchs, D. A meta-analysis of working memory deficits in children with learning difficulties: Is there a difference between verbal domain and numerical domain? J. Learn. Disabil.
**2016**, 49, 3–20. [Google Scholar] [CrossRef] - Bugden, S.; Ansari, D. Probing the nature of deficits in the “approximate number system” in children with persistent developmental dyscalculia. Dev. Sci.
**2016**, 19, 817–833. [Google Scholar] [CrossRef] - Szucs, D.; Devine, A.; Soltesz, F.; Nobes, A.; Gabriel, F. Developmental dyscalculia is related to visuo-spatial memory and inhibition impairment. Cortex
**2013**, 49, 2674–2688. [Google Scholar] [CrossRef] - Wilson, A.J.; Andrewes, S.G.; Struthers, H.; Rowe, V.M.; Bogdanovic, R.; Waldie, K.E. Dyscalculia and dyslexia in adults: Cognitive bases of comorbidity. Learn. Individ. Differ.
**2015**, 37, 118–132. [Google Scholar] [CrossRef] - Chu, F.W.; vanMarle, K.; Geary, D.C. Predicting children’s reading and mathematics achievement from early quantitative knowledge and domain-general cognitive abilities. Front. Psychol.
**2016**, 7, 775. [Google Scholar] [CrossRef] [PubMed] - Fuchs, L.S.; Geary, D.C.; Compton, D.L.; Fuchs, D.; Hamlett, C.L.; Seethaler, P.M.; Bryant, J.D.; Schatschneider, C. Do different types of school mathematics development depend on different constellations of numerical versus general cognitive abilities? Dev. Psychol.
**2010**, 46, 1731–1746. [Google Scholar] [CrossRef] - Cipora, K.; Santos, F.H.; Kucian, K.; Dowker, A. Mathematics anxiety-where are we and where shall we go? Ann. N. Y. Acad. Sci.
**2022**, 1513, 10–20. [Google Scholar] [CrossRef] [PubMed] - Foley, A.E.; Herts, J.B.; Borgonovi, F.; Guerriero, S.; Levine, S.C.; Beilock, S.L. The math anxiety-performance link. Curr. Dir. Psychol. Sci.
**2017**, 26, 52–58. [Google Scholar] [CrossRef] - Devine, A.; Hill, F.; Carey, E.; Szűcs, D. Cognitive and emotional math problems largely dissociate: Prevalence of developmental dyscalculia and mathematics anxiety. J. Educ. Psychol.
**2017**, 110, 431–444. [Google Scholar] [CrossRef] - Chodura, S.; Kuhn, J.T.; Holling, H. Interventions for children with mathematical difficulties. Z. Psychol.
**2015**, 223, 129–144. [Google Scholar] [CrossRef] - Dowker, A. Interventions for primary school children with difficulties in mathematics. In Advances in Child Development and Behavior; Sarama, J., Clements, D.H., Germeroth, C., Day-Hess, C., Eds.; Elsevier: London, UK, 2017; Volume 53, pp. 255–287. [Google Scholar] [CrossRef]
- Rojo, M.; Gersib, J.; Powell, S.R.; Shen, Z.A.; King, S.G.; Akther, S.S.; Arsenault, T.L.; Bos, S.E.; Lariviere, D.O.; Lin, X. A meta-analysis of mathematics interventions: Examining the impacts of intervention characteristics. Educ. Psychol. Rev.
**2024**, 36, 52–58. [Google Scholar] [CrossRef] - Svane, R.P.; Willemsen, M.M.; Bleses, D.; Krøjgaard, P.; Verner, M.; Nielsen, H.S. A systematic literature review of math interventions across educational settings from early childhood education to high school. Front. Educ.
**2023**, 8, 1229849. [Google Scholar] [CrossRef] - Butterworth, B. Dyscalculia Screener; Nelson Publishing Company Limited: London, UK, 2003. [Google Scholar]
- Von Aster, M. Die Neuropsychologische Testbatterie für Zahlenverarbeitung und Rechnen bei Kindern (ZAREKI); The Neuropsychological Test Battery for Number Processing and Calculation in Children (NUCALC); Swets & Zeitl: Frankfurt, Germany, 2001. [Google Scholar]
- Esmail, K.K. Dynamo Maths Developmental Dyscalculia Assessment: Standardisation and Validation; JellyJames Publishing Ltd.: Stanmore, UK, 2020. [Google Scholar]
- Beacham, N.; Trott, C. Screening for dyscalculia within HE. MSOR Connect.
**2005**, 5, 1–4. [Google Scholar] [CrossRef] - Zygouris, N.C.; Vlachos, F.; Dadaliaris, A.N.; Oikonomou, P.; Stamoulis, G.I.; Vavougios, D.; Nerantzaki, E.; Striftou, A. A neuropsychological approach of developmental dyscalculia and a screening test via a web application. Int. J. Eng. Pedagog.
**2017**, 7, 51–65. [Google Scholar] [CrossRef] - Eteng-Uket, S. The development, validation, and standardization of a new tool: The Dyscalculia Test. Numeracy
**2023**, 16, 1. [Google Scholar] [CrossRef] - Drigas, A.; Pappas, M.A. ICT based screening tools and etiology of dyscalculia. Int. J. Eng. Pedagog.
**2015**, 5, 61. [Google Scholar] [CrossRef] - Giri, N.; Saini, T.; Bhole, K.; Bhosale, A.; Shetty, T.; Subramanyam, A.; Shelke, S. Detection of dyscalculia using machine learning. In Proceedings of the 2020 5th International Conference on Communication and Electronics Systems (ICCES), Coimbatore, India, 10–12 June 2020; pp. 1–6. [Google Scholar] [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Dowker, A.
Developmental Dyscalculia in Relation to Individual Differences in Mathematical Abilities. *Children* **2024**, *11*, 623.
https://0-doi-org.brum.beds.ac.uk/10.3390/children11060623

**AMA Style**

Dowker A.
Developmental Dyscalculia in Relation to Individual Differences in Mathematical Abilities. *Children*. 2024; 11(6):623.
https://0-doi-org.brum.beds.ac.uk/10.3390/children11060623

**Chicago/Turabian Style**

Dowker, Ann.
2024. "Developmental Dyscalculia in Relation to Individual Differences in Mathematical Abilities" *Children* 11, no. 6: 623.
https://0-doi-org.brum.beds.ac.uk/10.3390/children11060623