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Abstract: Background: The pharyngeal airway is a crucial part of the respiratory system’s function.
Assessing the pharyngeal airway dimensions in different skeletal types is important in the orthodontic
treatment of growing patients. The aim of this study was to compare the upper pharyngeal airway
dimensions of 7–14-year-old children with different skeletal types. Methods: Three-hundred-sixty-
one lateral cephalometric radiographs were grouped based on their skeletal patterns determined by
the ANB angle as skeletal type I (n = 123), type II (n = 121), and type III (n = 117). The radiographs
were divided into 4 groups: 7/8 YO (7–8 years old), 9/10 YO, 11/12 YO, and 13/14 YO. The
cephalometric measurements comprised SNA, SNB, ANB, Ad1-PNS, Ad2-PNS, McUP, and McLP.
An ANOVA was used to compare the group results. Results: Significant differences in Ad1-PNS,
Ad2-PNS, McUP, and McLP in skeletal types II and III were found between age groups. Most upper
pharyngeal airway dimensions in skeletal types II and III children were significantly wider in the
13/14 YO group than in the other age groups. Conclusion: The upper pharyngeal airway dimensions
increased age-dependently in 7–14-year-old children, especially in skeletal types II and III. The upper
pharyngeal airway dimensions could serve as a guide in differentiating the different skeletal classes
in clinical settings.

Keywords: pharyngeal airway; cephalometry; child development; skeletal pattern

1. Introduction

Presently, there is evidence that reduced upper airway dimensions are associated with
sleep breathing disorders [1]. This posterior airway space reduction is associated with
the recurrence of obstructive sleep apnea (OSA) in adolescents [2]. The dental-related
aspects of the posterior airway space should receive more consideration in pediatric OSA
in growing individuals. Deformities of the craniofacial structures or soft tissues can be
factors that reduce the pharyngeal space. Children with OSA syndrome are frequently
found to have craniofacial anomalies. Children with simple snoring [3], adenotonsillar
hypertrophy [4], obesity [5], and major craniofacial deformities (Pierre–Robin sequence or
Down’s syndrome) [6] must be carefully evaluated for airway obstructions.

Previous studies have determined the dimensions of the upper pharyngeal airway
in children [7,8]. However, these studies did not divide the children into age categories.
Furthermore, few studies have examined the relationship between the upper airway di-
mensions and craniofacial structures using cephalometric assessments in growing indi-
viduals [9,10]. A previous study found a narrower nasopharyngeal airway in class II
malocclusion subjects [11]. In preadolescents, volumetric measurements of the airway
volume were correlated with the anterior facial height and ANB angle [12]. In contrast,
Frietas et al. [13] found no association between the upper airway space and dental maloc-
clusion types. The authors concluded that the malocclusion type did not affect the upper
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pharyngeal airway width. However, the pharyngeal airway volume was significantly
correlated with the ANB angle and anterior facial height [12].

Previous studies have reported a relationship between the growth and development of
the craniofacial features and pharyngeal airway [7,14]. It was also reported that the upper
airway width increased with age; however, there were no significant differences between
sexes in each age group [7]. In contrast, ethnic differences in upper pharyngeal airway
dimensions have been reported [8,15–17]. Defining the normal values for the sagittal upper
pharyngeal airway dimensions in children and adolescents is crucial for distinguishing
deviations from the normative values that can allow for the early diagnosis of upper airway
constriction [18,19].

Lateral cephalometric radiographs can be used in orthodontics to determine the cran-
iofacial morphology and potential airway obstructions. It was reported that lateral cephalo-
grams provide reliable nasopharyngeal dimension measurements [20]. Furthermore, there
were no significant differences between using upright lateral cephalometric radiographs
and supine position cone-beam computed tomography (CBCT) scans as screening tech-
niques for detecting a constricted upper airway [21]. Various cephalometric variables
are associated with the presence of OSA and its severity. The anatomic landmarks of the
craniofacial structures and upper pharyngeal airway have been investigated for years [22].
Numerous cephalometric variables are associated with the presence of sleep disorder
syndrome and its relative severity [23–25]. The results demonstrated that the anatomi-
cal landmarks of Ad1 (the intersection of the line from the posterior nasal spine and the
adenoid outline) and Ad2 (the intersection of the line from the posterior nasal spine and
the line from the midpoint of the line from the sella to basion points) were significantly
correlated with the measured airway obstruction [24].

The upper pharyngeal airways in children with different skeletal types have been
reported in many previous studies. Children with skeletal type II had significantly reduced
dimensions of the inferior part of the upper pharyngeal airway [26]. In a study by Kim
et al. [12], children with skeletal type II and retrusion of the mandible had narrower upper
pharyngeal airway dimensions than skeletal type I individuals. In contrast, Gu et al. [8] re-
ported a weak association between the upper pharyngeal airway and craniofacial structures
in 12-year-old children. The growth and development of the upper pharyngeal airways in
different skeletal types were investigated in several studies. The upper pharyngeal airway
dimensions did not demonstrate age-related changes and were remarkably stable [14]. In
contrast, Hsu et al. [27] reported that the pharyngeal airway dimensions were significantly
correlated with age in 7–12-year-old children. However, a comparison of the development
of the upper airway dimensions among these 3 skeletal types from children to adolescence
has never been reported.

The previous studies led us to hypothesize that growth based on skeletal type differ-
ences might be a factor in increasing the dimensions of the pharyngeal airway. Therefore,
the aim of this study was to evaluate the changes in the pharyngeal airway dimensions
in 7–14-year-old children with skeletal types I, II, and III using a cephalometric analysis.
In this study, we tested the null hypothesis that there were no differences in the upper
pharyngeal airway dimensions among 7–14-year-old children with different skeletal types.

2. Materials and Methods
2.1. Ethics Approval

This retrospective study was approved by the Ethics Committee at Walailak University,
Nakonsrithammarat, Thailand (WUEC 20-181-01). The samples were selected from the
lateral cephalograms of children who presented for orthodontic consultation at a private
dental clinic in Bangkok during 2014–2019.

2.2. Sample Size Calculation and Selection

The G*Power 3.1 package program analysis (G*Power, Heinrich-Heine-Universität
Düsseldorf, Düsseldorf, Germany) was used to determine the required sample size [28].
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When calculating the sample size, a type 1 error (α) = 0.05, effect size = 0.25, and test
power (1-β) = 0.80 were used. The calculation indicated that a minimum of 60 patients per
group (total sample size of 180 patients) would be necessary. Thus, 392 lateral cephalo-
metric records were screened and 361 children (164 males, 197 females; mean age 10.87,
S.D. = 2.23 years old) were selected for assessment based on the following inclusion criteria:
healthy 7–14-year-old pediatric patients with no history of orthodontic treatment, no cran-
iofacial abnormalities or genetic syndrome, no recent acute infection of the upper airway,
no recent acute otitis media, no previous treatment for adenoidectomy or tonsillectomy, no
temporomandibular joint disorders, and no serious systemic disease. The exclusion criteria
were lateral cephalometric radiographs with mouth opening, swallowing, or tongue not in
the rest position and poor clarity in the upper pharyngeal airway region. As categorized by
ANB angle, the subjects consisted of 123 children with skeletal type I (34.1%), 121 children
with skeletal type II (33.5%), and 117 children with skeletal type III (32.4%). The chronologi-
cal age of the patient was used as a predictor of their growth. The age sub-classification was
based on the lateral cephalometric radiographs taken 6 months before or after the subject’s
birthday. Here, 87 children (23.4%) were in the 7/8 YO (7–8 years old) group, 92 children
(25.5%) were in the 8/9 YO (8–9 years old) group, 95 children (24.3%) were in the 11/12 YO
(11–12 years old) group, and 87 children (24.1%) were in the 13/14 YO (13–14 years old)
group. The overall selection process is presented in Figure 1.
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Figure 1. Flowchart of the record selection processes.

2.3. Lateral Cephalometric Radiograph Acquisition

The lateral cephalometric radiographs were taken using the manufacturers’ parame-
ters. The Orthophos XG5DS (Sirona Dental Systems, Bensheim, Germany) cephalometric
unit was used at settings of 63–69 kv and 8–12 mA. The cephalostat confirmed the natural
head positioning, and the central beam was targeted at the left side of the face. The same
1.1 magnification factor was applied for all cephalometric radiographs. The radiographs
were acquired with the subjects standing, with the head fixed to the cephalostat with ear
rods and a support on the forehead. The teeth were in the maximum intercuspation, the
lips were in a relaxed position, and the head was in a natural head position. The patients
were instructed to bite in centric occlusion and to not swallow. The lateral cephalometric
images’ contrast and brightness were manually adjusted, exported, and printed on paper
using a 1:1 ratio in millimeters.
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2.4. Anatomical Tracing and Measurement Variables

The images of the lateral cephalometric radiographs were hand-traced using a 0.3 mm
lead pencil on 0.10 mm matte acetate tracing paper (G&H orthodontics, Franklin, IN, USA).
One investigator traced and landmarked the craniofacial and upper pharyngeal airway
structures by hand, as illustrated in Figure 2 [29,30]. The angle measurement was per-
formed using a cephalometric protractor (Ormco, Glendora, CA, USA) with a 1:1 ratio in
millimeters. The linear measurements were recorded using a Mitutoyo Digimatic caliper
(Mituitoyo Corporation, Kawasaki-shi, Kanagawa, Japan). The intraexaminer reliability
was determined by the intraclass correlation coefficient using an absolute agreement def-
inition for each variable. The measurements were repeated in 20% of the radiographs
2 months later to calculate the intraexaminer reliability. The cephalometric analysis com-
prised common orthodontic angular (SNA, SNB, and ANB) and linear measurements
and specific variables used for upper pharyngeal airway evaluation (Ad1-PNS, Ad2-PNS,
McUP, and McLP) based on McNamara [29], Linder-Aronson [31], and Kirjavainen and
Kirjavainen [30]. The ANB angle was used to determine the skeletal type for skeletal type
I (2◦ ≤ ANB ≤ 5◦), skeletal type II (ANB > 5◦), and skeletal type III (ANB < 2◦). The
cephalometric variables used in previous pediatric obstructive apnea studies were chosen
for this study [7,8,20,32,33].
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Figure 2. Reference points and lines on the cephalometric radiograph. Ba: basion; N: nasion; PNS:
posterior nasal spine; S: sella; B: supramentale; A: subspinale. Craniofacial measurements: SNA: the
angle between the sella (S), nasion (N), and A; SNB: the angle between the sella (S), nasion (N), and
B; ANB: the angle between A, N, and B; Ad1-PNS (1): the distance of the intersection point of the
posterior pharyngeal wall and the line from PNS to Ba; Ad2-PNS (2): the distance of the intersection
point of the posterior pharyngeal wall and the line from the midpoint of the line from S to Ba; McUP
(3): the shortest distance between the soft palate and the posterior pharyngeal wall; McLP (4): the
shortest distance between the base of the tongue and the posterior pharyngeal wall.
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2.5. Statistical Analysis

The data were analyzed using SPSS version 25 software (IBM SPSS, Armonk, NY, USA).
The intraexaminer reliability was assessed using the intraclass correlation coefficient (ICC) for
absolute agreement. Descriptive statistics including the means and standard deviations (SD)
were calculated for all variables according to each skeletal type. The Kolmogorov–Smirnov
and Shapiro–Wilk tests were performed to confirm the normal distribution of the data. The
homogeneity of variance was assessed using Levene’s test. A one-way analysis of variance
(ANOVA) followed by Dunnett’s test and a two-way ANOVA with Tukey’s test were used
to test for the differences between groups where appropriate. Differences were considered
significant when p ≤ 0.05.

3. Results

Because normal distribution and homogeneity of variance assumptions were met for
our data, the means, SD, standard error of the mean (SEM), and parametric tests were used
in this study. The ICC revealed high reliability for all lateral cephalometric measurements.
The mean value for all measurements was 0.998 (minimum 0.995, maximum 0.999) for the
intraobserver reliability. These ICC values indicated the consistent reproducibility of the
measurements. The craniofacial morphologies as assessed by skeletal type and age group
distribution are presented in Table 1. The demographic results showed that the age groups
had a similar number of subjects, ranging from 87 to 95 subjects per group. Similarly, each
skeletal type group comprised ~33% of the total subjects (n ranging from 117 to 123).

Table 1. Distribution of ANB (◦) values based on the subjects’ age and skeletal type.

Skeletal Type I (n = 123)
(M/F, 63:60)

7/8 YO (n = 31)
(M/F, 15:16)

9/10 YO (n = 33)
(M/F, 13:20)

11/12 YO (n = 29)
(M/F, 16:13)

13/14 YO (n = 30)
(M/F, 19:11)

Mean SD Mean SD Mean SD Mean SD
Age (years) 7.77 0.43 9.63 0.33 11.78 0.44 13.59 0.50

ANB (◦) 3.49 0.81 3.27 0.61 3.57 0.87 3.61 0.70

Skeletal Type II (n = 121)
(M/F, 41:80)

7/8 YO (n = 30)
(M/F, 8:22)

9/10 YO (n = 29)
(M/F, 13:16)

11/12 YO (n = 37)
(M/F, 9:28)

13/14 YO (n = 25)
(M/F, 11:14)

Mean SD Mean SD Mean SD Mean SD
Age (years) 7.80 0.41 9.76 0.45 11.68 0.33 13.52 0.51

ANB (◦) 6.42 1.39 6.28 1.24 6.19 0.91 6.08 0.87

Skeletal Type III (n = 117)
(M/F, 60:57)

7/8 YO (n = 26)
(M/F, 17:9)

9/10 YO (n = 30)
(M/F, 11:19)

11/12 YO (n = 29)
(M/F, 15:14)

13/14 YO (n = 32)
(M/F, 17:15)

Mean SD Mean SD Mean SD Mean SD
Age (years) 7.58 0.50 9.59 0.58 11.49 0.32 13.69 0.47

ANB (◦) 0.53 1.49 0.30 1.50 0.70 1.59 0.28 1.32

F, female; M, male.

Changes in the upper pharyngeal airway dimensions from the 7–14-year-old children
are presented in Table 2.
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Table 2. Comparison of the cephalometric variables and upper pharyngeal airway measurements
among 7–14-year-old children in the three skeletal types.

7/8 YO 9/10 YO 11/12 YO 13/14 YO

Mean SEM Mean SEM Mean SEM Mean SEM

SNA (◦) Skeletal
type I

81.21 A,B a

(n = 31)
0.75 80.74 A a

(n = 33)
0.70 81.02 A a

(n = 29)
0.53 83.01 A a

(n = 30)
0.71

Skeletal
type II

82.31 B a

(n = 30)
0.61 82.13 A a

(n = 29)
0.66 82.46 A a

(n = 37)
0.49 83.90 A a

(n = 25)
0.31

Skeletal
type III

79.96 A a

(n = 26)
0.76 81.16 A a

(n = 30)
0.48 80.39 A a

(n = 29)
0.66 82.18 A a

(n = 32)
0.61

SNB (◦) Skeletal
type I

77.74 A a

(n = 31)
0.73 77.49 A a

(n = 33)
0.66 77.44 A a

(n = 29)
0.49 79.40 A a

(n = 30)
0.68

Skeletal
type II

75.82 B a

(n = 30)
0.64 75.86 A a

(n = 29)
0.61 76.26 A a

(n = 37)
0.51 77.57 A a

(n = 25)
0.43

Skeletal
type III

79.47 B a

(n = 26)
0.75 80.86 B a

(n = 30)
0.53 79.66 B a

(n = 29)
0.77 81.83 B b

(n = 32)
0.64

ANB (◦) Skeletal
type I

3.49 A a

(n = 31)
0.15 3.27 A a

(n = 33)
0.11 3.57 A a

(n = 29)
0.16 3.61 A a

(n = 30)
0.13

Skeletal
type II

6.42 B a

(n = 30)
0.25 6.28 B a

(n = 29)
0.23 6.19 B a

(n = 37)
0.15 6.08 B a

(n = 25)
0.17

Skeletal
type III

0.53 C a

(n = 26)
0.29 0.30 C a

(n = 30)
0.27 0.70 C a

(n = 29)
0.30 0.28 C a

(n = 32)
0.23

Ad1-PNS
(mm)

Skeletal
type I

19.29 A a

(n = 31)
0.56 19.82 A a

(n = 33)
0.66 20.67 A a

(n = 29)
0.89 20.64 A a

(n = 30)
0.69

Skeletal
type II

18.02 A,B a

(n = 30)
0.77 18.79 A a

(n = 29)
0.80 18.52 A a

(n = 37)
0.61 21.33 A b

(n = 25)
0.52

Skeletal
type III

16.81 B a

(n = 26)
0.98 19.81 A b

(n = 30)
0.62 21.55 A b

(n = 29)
0.64 21.46 A b

(n = 32)
0.79

Ad2-PNS
(mm)

Skeletal
type I

13.51 A a

(n = 31)
0.45 14.02 A a

(n = 33)
0.58 15.11 A a

(n = 29)
0.70 15.63 A a

(n = 30)
0.71

Skeletal
type II

12.06 A a

(n = 30)
0.44 13.06 A a

(n = 29)
0.72 14.12 A b

(n = 37)
0.56 16.44 A b

(n = 25)
0.47

Skeletal
type III

12.23 A a

(n = 26)
0.82 14.04 A a

(n = 30)
0.55 16.10 A b

(n = 29)
0.89 16.82 A b

(n = 32)
0.65

McUP
(mm)

Skeletal
type I

9.40 A a

(n = 31)
0.38 10.39 A a

(n = 33)
0.60 10.39 A a

(n = 29)
0.75 11.45 A a

(n = 30)
0.74

Skeletal
type II

7.72 A a

(n = 30)
0.39 8.16 B a

(n = 29)
0.50 9.99 A b

(n = 37)
0.54 12.01 A b

(n = 25)
0.52

Skeletal
type III

8.80 A a

(n = 26)
0.71 9.84 A a

(n = 30)
0.58 11.74 A b

(n = 29)
0.71 12.89 A b

(n = 32)
0.67

McLP
(mm)

Skeletal
type I

9.07 A a

(n = 31)
0.54 10.15 A a

(n = 33)
0.54 10.33 A a

(n = 29)
0.69 10.07 A a

(n = 30)
0.04

Skeletal
type II

9.90 A a

(n = 30)
0.53 9.03 A,B a

(n = 29)
0.50 9.44 A a

(n = 37)
0.41 9.970 A a

(n = 25)
0.78

Skeletal
type III

9.90 A a

(n = 26)
0.58 9.65 B a

(n = 30)
0.52 10.05 A a

(n = 29)
0.47 11.59 A b

(n = 32)
0.55

A–C Values with different capital superscript letters in a column indicate significant differences after a two-way
ANOVA and Tukey’s test (p ≤ 0.05). a,b Values with different lowercase superscript letters in a row are significant
compared with the corresponding 7/8 YO group after a one-way ANOVA and Dunnett’s test (p ≤ 0.05).

3.1. Cephalometric Analysis Data

Our results found that the SNA, SNB, and ANB values in skeletal types I and II were
not significantly increased in any age group (p > 0.05) (Table 2). However, the SNB value
was significantly increased in the 13/14 YO group with skeletal type III (p < 0.05). The
ANB values were significantly different between skeletal types in all study age groups. In
addition, a significant difference in SNB values was found between children with skeletal
types II and III (p < 0.05). In contrast, there was no difference in SNA values between the
three skeletal types in any age group.
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3.2. Upper Pharyngeal Airway Dimensions

The ANOVA with Dunnett’s test revealed significant differences in Ad1-PNS, Ad2-
PNS, and McUP, but not McLP, between the 7/8 YO and the other age groups in skeletal
types II and III (p < 0.05). Based on these results, the null hypothesis that there were no
differences in the upper pharyngeal airway dimensions among 7–14-year-old children with
different skeletal types was rejected. Therefore, our findings suggest that the Ad1-PNS,
Ad2-PNS, and McUP dimensions increased in an age-dependent manner (Table 2). There
were no significant differences in Ad2-PNS, McUP, and McLP among the three skeletal
types in the 7/8 YO group. However, the Ad1-PNS values were significantly different
between skeletal types I and III in this age group. Furthermore, we found that the skeletal
patterns did not affect most of the upper pharyngeal dimensions in any age group.

4. Discussion

The upper pharyngeal airway comprises several important structures that support
the respiratory system’s function, i.e., the surrounding soft tissue conditions, such as the
adenoids or tonsils, and the position of the maxilla and mandible. Therefore, it is important
to investigate the age-related changes in upper airway dimensions between skeletal types
I, II, and III children. The aim of this study was to use a lateral cephalometric analysis to
define the changes in the upper pharyngeal airway dimensions throughout the growth
range of 7–14-year-old children with skeletal types I, II, and III.

Because the vertical dimension impacts the A and B points, the ANB angle may not
represent the actual anteroposterior relationship of the jaws [34]. However, the ANB
angle is accepted to determine the anteroposterior skeletal pattern. The ANB angle was
used to measure the relationship of the maxilla and mandible in this study. Although the
homogeneity of the ANB angles in skeletal type III group can be critiqued, the age and
ANB angle values in other skeletal types were comparable (Table 1).

As expected, our results showed a difference in ANB angles among the three skeletal
types in growing children. Our findings are in line with those of Kim et al. [12] who reported
a correlation between the upper airway volumes and ANB angles in preadolescents. In
addition, the SNB values significantly increased from skeletal types II to III in all age groups.
However, the skeletal patterns did not affect the SNA values in our study. Our results
agreed with those of a previous study [35].

Our results found that the upper pharyngeal airway dimensions, Ad1-PNS and Ad2-
PNS, increased with age-related growth, similar to a previous study [36]. It has been
observed that the upper airway dimensions rapidly increase until the age of 13 [19]. Dur-
ing active growth, body maturity might be associated with the dimensions of the upper
pharyngeal airway.

In our study, skeletal types II and III children showed age-dependent significant
increases in their upper pharyngeal airway dimensions in almost all variables. However,
the significantly narrower anteroposterior dimensions in the younger age group were not
found in skeletal type I. The soft tissue structures surrounding the upper pharyngeal airway,
such as the adenoids, may not have much of an effect on the upper pharyngeal airway in
skeletal type I. Goncalves et al. [7] also found that the airway width increased with age;
however, their study pooled all dental malocclusions together and more than half of the
subjects were angle class II. In a study with a large sample size, Mislik et al. [14] reported
that the mean upper airway dimensions remained stable between age groups. Our data
suggest that the airway dimensions may be established at an early age and remain stable
only in skeletal type I children.

Several studies have suggested relationships between the upper pharyngeal airway
and anteroposterior skeletal pattern [12,37]. The skeletal class II children had smaller airway
dimensions than those with skeletal classes I and III; however, these differences were not
always significant [37]. Regarding the skeletal type, Alves et al. [38] found that the type of
malocclusion did not affect most upper airway dimensions. In contrast, Kerr [39] revealed
that class II malocclusion patients had narrower nasopharyngeal dimensions compared
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with class I patients. In the present study, 7-year-old children with skeletal type I had
the widest upper pharyngeal airway dimensions. However, the upper pharyngeal airway
dimensions were comparable in all skeletal types in 14-year-olds. Our results agreed with
Gu et al. [8], who evaluated 12-year-old children and found weak associations between
the upper airway and craniofacial structures. In the present study, neither significant
differences between skeletal types nor age groups were found in terms of the SNA values.
The anteroposterior position of the mandible, which was represented by the SNB, might
affect the upper pharyngeal airway. Muto et al. [40] reported that the pharyngeal airway
was larger with mandibular prognathism. The retrognathic mandible might be a factor for
decreased dimensions of the upper pharyngeal airway.

In the present study, the upper pharyngeal airway dimensions significantly increased
in the 10/11 YO and 13/14 YO groups compared with the 7/8 YO groups, which is the
mandibular growth spurt phase according to Scammon’s growth curve [41]. Therefore,
mandible growth may be a factor influencing the increase in upper pharyngeal airway di-
mensions. A future correlative longitudinal investigation of the upper pharyngeal airways
of different skeletal patterns and mandibular growth will enhance our understanding of
the relationship between mandibular growth and respiratory function.

In the present study, the increase in upper pharyngeal airway dimensions was age-
dependent only in skeletal types II and III in 7–14-year-old children. At 7 years old,
children with skeletal types II and III had narrower upper airway dimensions than those
with skeletal type I. Because a skeletal discrepancy was also shown in the transverse
dimension, a future study of the pharyngeal space should include a three-dimensional
analysis. The early correction of skeletal types II and III might reduce the possibility of
developing breathing disorders, such as snoring in children. Our results may be useful for
diagnosis and treatment planning in orthodontics. Future studies should be undertaken to
assess other contributing factors that potentially affect upper airway disorders.

In the present study, we collected the data from lateral cephalograms from an initial
orthodontic screening phase from 2014 to 2019. The sample size used in this study ex-
ceeded the minimum requirements. We evaluated the changes in the upper pharyngeal
airway dimensions in children with skeletal types I, II, and III throughout the growth of
7–14-year-olds using a lateral cephalometric analysis. The increase in upper pharyngeal
airway dimensions was age-dependent only in skeletal types II and III. However, signif-
icantly increased dimensions were not found in skeletal type I. The upper pharyngeal
airway dimensions significantly increased from 11 years old when compared with the
7/8 YO groups, which is the period of the mandibular growth spurt phase. Therefore,
the mandible growth may be a factor that influences the increase in the upper pharyngeal
airway dimensions.

Our results should be considered with caution. Because the upper pharyngeal airway
involves complex anatomic structures, three-dimensional (3D) CBCT can optimally be
used to provide a valuable three-dimensional analysis of the airways. If available, a CBCT
examination of a pediatric patient should be performed when traditional radiography
cannot provide an adequate diagnosis. Although using CBCT remains ideal, the child’s
cooperation is required during CBCT scanning [42,43]. Lateral cephalograms have limited
use in assessing the upper pharyngeal airway because they provide only a two-dimensional
(2D) evaluation of the anteroposterior dimension. Moreover, the volume and thickness of
the upper pharyngeal airway cannot be detected with a lateral cephalogram [44]. How-
ever, a study showed that measurements of the pharyngeal airway space using lateral
cephalograms were similar to 3D-computed tomography (CT) scans, with a predictability
rate of 92% [45]. Therefore, despite their limitations, lateral cephalograms can be a good
supplementary tool because of their repeatability and reliability in evaluating the upper
pharyngeal space [46].

Aboudara et al. [18] found a positive relationship between the linear dimensions
from lateral cephalograms and the volume from CT scans of the upper pharyngeal airway
in adolescents. Furthermore, Major et al. [47] suggested that cephalograms could be
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used as a screening tool for upper airway blockages, because they found a correlation
between the linear measurements of the upper airway in a cephalogram. In addition, lateral
cephalograms have been used as a supplementary imaging modality with a medical history
for screening the constricted upper pharyngeal airway in pediatric OSA patients [48]. In
the present study, lateral cephalograms were chosen to evaluate the upper pharyngeal
airway dimensions because they are simple, readily available, and adhere to the as low as
diagnostically acceptable principle of radiation for routine use for children [49]. Despite
its shortcomings in diagnosis, cephalometry offers considerable advantages over other
techniques, including being cost-effective and providing minimal exposure to radiation [18].

Taken together, our results suggest that growth is a factor in increasing the size of the
upper pharyngeal airway dimensions. These dimensions increased in an age-dependent
manner. In addition, the upper pharyngeal airway at Ad2-PNS in children with skeletal
types II and III was significantly wider in the 13/14 YO group compared with the 7/8 YO
group. However, we found that the SNB, but not SNA, was significantly increased in
skeletal type III children. These results suggest that age has a marked influence on the
mandible development compared with that of the maxilla.

5. Conclusions

In this study, we compared the upper pharyngeal airway dimensions of 7/8-, 9/10-,
11/12-, and 13/14-year-old children with skeletal types I, II, and III. Significant differences
between age groups were found in terms of the Ad1-PNS, Ad2-PNS, McUP, and McLP
values in skeletal types II and III. Therefore, this study suggests that the upper pharyngeal
airway dimensions are related to age, especially in children with skeletal type III. Further-
more, we found that the SNB, but not SNA, was significantly increased in skeletal types II
and III children. These results suggest that age has a marked influence on the mandible
development compared with that of the maxilla.
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