Supplementary Materials

This supplementary information includes details of feature fabrication, additional experimental variations and associated concentration profiles across the three exit ports for the devices under consideration.

For the first generation devices, the fabrication process began by creating masks for pattern transfer. Two families of masks were produced: fields of geometric features and blank fields (channels). Fabrication procedures were the same for both. Masks were drawn in Inventor (Autodesk, San Rafael, CA, USA) and printed on transparencies (resolution better than 5080 dpi) using a commercial vendor (PageWorks Cambridge, MA, USA). These transparency masks were taped to a blank 12.7 cm \times 12.7 cm glass plate and secured directly into a commercial mask holder (ABM Mask Aligner, Scotts Valley, CA, USA) for pattern transfer. Generation 1 devices were fabricated on glass microscope slides. Borosilicate, soda lime, and quartz slides were evaluated, and etch rates, surface roughness, and uniformity were considered. Etch rates on quartz slides were extremely slow while the borosilicate slides produced features with significant roughness. The best results were obtained with soda lime glass substrates (Ted Pella Inc., Redding, CA, USA). Evaluations also showed that the desirable etch depth (~5 µm) could not be obtained using a photoresist mask. A metal mask was instead transferred to the glass substrates using a lift-off process [1].

Soda lime glass microscope slides (2.54 cm \times 7.62 cm) were extensively cleaned for at least 3 h in piranha cleaning solution followed by copious rinsing with deionized water. Negative photoresist (product NR-7 P1000, Futurrex Inc., Franklin, NJ, USA) was spun onto the substrates using the manufacturers recommended protocol. The photoresist was patterned on a mask aligner with 365 nm light and developed in RD6 solution (Futurrex, Inc). A thin layer of gold (100 nm) with an adhesion layer of chromium (30 nm) was deposited on the slides using an electron-beam evaporator (Temescal, model FC-2000, Livermore, CA, USA). Chromium was chosen as an adhesion layer because it was found to be more resistant than titanium to the glass etchants. The glass slides where placed in an acetone bath to dissolve the photoresist and transfer the pattern onto the slides by lift-off process. Glass slides with metal feature masks were etched in buffered oxide etch (BOE) solution with constant stirring (BOE:HCl:H2O 1.5:1:6 by vol.). The conditions utilized resulted in etch rates of 1.25–1.5 µm/min. Slower etch rates and the presence of hydrochloric acid were found to reduce surface roughness following the etch process. Slides were thoroughly cleaned in DI water and sequentially placed in warm (40°C) Aqua Regia solution (HCl:HNO₃, 3:1) and Chrome etch (CR-9, Cynatek Corp. Fremont, CA, USA) to remove the Au and Cr layers, respectively. Finally, slides were cleaned in piranha solution, rinsed, and dried.

For the second generation of devices, patterns were drawn in L-Edit software (Tanner EDA, Monrovia, CA, USA). These patterns were converted to GDSII format, used to expose glass photomask blanks on a Heidelberg DWL-66 Laser Pattern Generator (Heidelberg Instruments, Heidelberg, Germany), developed with AZ developers, and etched with CR-9 chrome etchant using standard procedures. Second generation devices were fabricated on four inch silicon wafers. Similar to the glass slides, they were first cleaned, dried, and patterned with NR-7 photoresist. In this case, however, material was removed from the silicon wafers using the Bosch process in a plasma assisted deep reactive ion etching station (Oxford Instruments, Tubney Wood, Abingdon, UK). The chosen

conditions allowed etch rates of roughly $1-1.25 \mu m/step$. After etching, the wafers were stripped of excess photoresist and cleaned in an oxygen plasma.

During process development, devices were characterized by both light and electron microscopy to verify the integrity of the geometric feature shapes after etching. Fabrication conditions were adjusted until the desired geometry was realized in the substrates. For the first generation glass devices, the mask features were made larger (1:1.5) to compensate for lateral etch due to the isotropic nature of the wet etch process, and features with curved side walls resulted. The Bosch DRIE process is inherently anisotropic and produced features with near vertical sidewalls. The etch depths for each slide/wafer were measured with a surface profilometer (KLA-Tencor, model Alpha-Step 500, Milpitas, CA, USA). Etch depths for glass devices were found to range between 4 μ m and 6 μ m and, in some cases, exhibited considerable variability across the field. The DRIE process produced depths of 5–10 μ m with high uniformity across a single wafer as well as high reproducibility across multiple wafers. While the generation 1 glass devices provided desirable transparency, the uniformity of the features was of concern.

Table S1. Results for experiments conducted with generation 1 glass devices utilizing improper inlet port location. Nanoparticle concentration in the initial solution is 1.11×10^{16} p/L for these experiments. Ratios are calculated as the concentration at the exit port relative to the initial nanoparticle concentration. APS: 3-aminopropyltriethoxysilane.

Channel/ Features	Functional group	[Group] (mM)	*	Inlet side port	Center port	Far side port
			[NP] (Pp/L)	11.1	11.1	11.1
Channel	-	-	Ratio	1.00	1.00	1.00
Footuros			[NP] (Pp/L)	11.1	11.2	11.1
reatures	-	-	Ratio	1.00	1.01	1.00
<u>Oleanna</u> 1	A DS	50	[NP](Pp/L)	11.1	11.1	11.1
Channel	AI S	50	Ratio	1.00	1.00	1.00
Footuras	ADS	50	[NP] (Pp/L)	11.1	11.0	11.1
reatures	Ars	50	Ratio	1.00	0.99	1.00
Features	A DS	150	[NP] (Pp/L)	11.1	11.1	11.0
	APS	130	Ratio	1.00	1.00	0.99

Table S2. Results for experiments conducted with generation 1 glass devices. Nanoparticle concentration in the initial solution is 1.11×10^{16} p/L for these experiments. Ratios are calculated as the concentration at the exit port relative to the initial nanoparticle concentration. PTS: phenyltrimethoxysilane; NFS: nonafluorohexyltriethoxysilane.

Channel/	Functional	[Group]	Solution	*	Inlet side	Center	Far side
Features	group	(mM)	pН	-	port	port	port
Channal				[NP] (Pp/L)	11.1	11.1	11.1
Channer	-	-	-	Ratio	1.00	1.00	1.00
Fasturas				[NP] (Pp/L)	11.0	11.1	11.2
reatures	-	-	-	Ratio	0.99	1.00	1.01
Channal	A DS	50		[NP] (Pp/L)	11.1	11.1	11.1
Channel	Ar5	30		Ratio	1.00	1.00	1.00
Fasturas	A DS	50		[NP] (Pp/L)	10.7	11.0	11.5
reatures	AP5	30		Ratio	0.96	0.99	1.04
Fasturas	A DS	150		[NP] (Pp/L)	11.0	11.0	11.3
reatures	AF5	130		Ratio	0.99	0.99	1.02
Channal	A DS	50	7.0	[NP] (Pp/L)	11.1	11.1	11.1
Channel	Ar5	30	7.0	Ratio	1.00	1.00	1.00
Fasturas	APS	50	7.0	[NP] (Pp/L)	10.7	11.0	11.5
reatures		50	7.0	Ratio	0.96	0.99	1.04
Factures	APS	150	7.0	[NP] (Pp/L)	11.0	11.0	11.3
reatures				Ratio	0.99	0.99	1.02
Channal	APS	50	8 5	[NP] (Pp/L)	11.1	11.1	11.1
			0.5	Ratio	1.00	1.00	1.00
Fasturas	APS	50	8.5	[NP] (Pp/L)	11.0	11.0	11.3
reatures				Ratio	0.96	0.98	1.05
Fasturas	APS	150	8.5	[NP] (Pp/L)	10.9	11.2	11.3
reatures				Ratio	0.97	1.00	1.02
Channal	DTS	50		[NP] (Pp/L)	11.1	11.1	11.1
Channer	F15	30	-	Ratio	1.00	1.00	1.00
Factures	DTC	50		[NP] (Pp/L)	10.7	10.9	11.7
reatures	F15	30	-	Ratio	0.96	0.98	1.05
Fasturas	DTC	150		[NP] (Pp/L)	10.8	11.1	11.3
reatures	F15	130	-	Ratio	0.97	1.00	1.02
Channel	NES	50		[NP] (Pp/L)	11.1	11.1	11.1
	1113	50	-	Ratio	1.00	1.00	1.00
Factures	NES	50		[NP] (Pp/L)	11.0	10.9	11.4
reatures	11173	50	-	Ratio	0.99	0.98	1.03
Factures	NEC	150		[NP] (Pp/L)	10.7	11.0	11.5
reatures	1115	150	-	Ratio	0.96	0.99	1.04

Figure S1. Generation 1 performance-functionalization. Nanoparticle concentrations obtained for each exit port of the functionalized generation 1 devices. Results for both the channel only (50 mM) and the feature bearing devices (150 mM) are shown. Bars are, from left to right, exit port on the inlet side, at the center, and furthest from the inlet side. Nanoparticle solutions utilized for these experiments were 1.11×10^{16} p/L. Data presented is the average of three replicates.

Figure S2. Generation 1 performance-pH. Nanoparticle concentrations obtained for each exit port of the APS functionalized generation 1 devices for solutions of varied pH. Results for both the channel only (50 mM) and the feature bearing devices (150 mM) are shown. Bars are, from left to right, exit port on the inlet side, at the center, and furthest from the inlet side. Nanoparticle solutions utilized for these experiments were 1.11×10^{16} p/L. Data presented is the average of three replicates.

Table S3. Results for experiments conducted with generation 2 glass devices. Nanoparticle concentration in the initial solution is 2.2×10^{13} p/L for these experiments. Ratios are calculated as the concentration at the exit port relative to the initial nanoparticle concentration. CES: carboxyethylsilanetriol.

Channel/Features	Functional group	Flow rate (mL/min)	*	Inlet side port	Center port	Far side port
Channal	Naua	0.25	[NP] (Tp/L)	22.7	22.0	21.3
Channel	INOILE	0.25	Ratio	1.03	1.00	0.97
<u>Classed</u>	Nama	0.22	[NP] (Tp/L)	21.3	22.7	22.0
Channel	None	0.25	Ratio	0.97	1.03	1.00
D est as a	Nama	0.27	[NP] (Tp/L)	18.7	23.8	23.3
Features	None	0.27	Ratio	0.85	1.08	1.06
Fastures	None	0.25	[NP] (Tp/L)	19.6	23.8	23.3
Features	None	0.25	Ratio	0.89	1.00	1.12
Channel	ADC	0.26	[NP] (Tp/L)	22.7	21.3	21.6
Channel	APS	0.20	Ratio	1.03	0.97	0.98
Channel	A DC	0.29	[NP] (Tp/L)	22.2	21.8	22.0
Channer	Ars	0.28	Ratio	1.01	0.99	1.00
Footuros	A DS	0.22	[NP] (Tp/L)	18.9	21.1	25.1
Features	AF 5	0.22	Ratio	0.86	0.96	1.14
Footuros	A DS	0.25	[NP] (Tp/L)	20.9	21.1	23.8
Features	APS	0.25	Ratio	0.95	0.95	1.08
Channel	CES	0.26	[NP] (Tp/L)	20.7	22.0	23.1
Channel			Ratio	0.95	1.00	1.04
Channel	CES	0.25	[NP] (Tp/L)	20.5	21.3	23.3
Channel			Ratio	0.95	1.02	1.03
Features	CES	0.25	[NP] (Tp/L)	20.9	22.0	22.9
reatures			Ratio	0.94	1.00	1.05
Features	CES	0.26	[NP] (Tp/L)	20.9	22.4	22.7
1 catures			Ratio	0.93	0.97	1.06
Channel	PTS	0.17	[NP](Tp/L)	20.9	22.0	23.1
			Ratio	0.95	1.00	1.05
Channel	DTC	0.19	[NP](Tp/L)	20.9	22.7	22.4
	115	0.17	Ratio	0.95	1.03	1.02
Features	PTS	0.25	[NP](Tp/L)	20.7	21.6	23.5
1 catures	115	0.25	Ratio	0.94	0.98	1.07
Features	PTS	0.28	[NP](Tp/L)	20.9	21.3	23.8
Teatures	115	0.28	Ratio	0.95	0.97	1.08
Channel	NFS	0.27	[NP](Tp/L)	22.2	22.0	22.0
Channel	NI 5	0.27	Ratio	1.01	0.99	1.00
Channel	NFS	0.25	[NP] (Tp/L)	21.6	21.8	22.4
Challing	NFS	0.25	Ratio	0.98	1.00	1.02
Features	NFS	0.25	[NP] (Tp/L)	21.8	22.0	22.2
i catules	111.0	0.20	Ratio	0.99	1.00	1.01
Features	NFS	0.24	[NP] (Tp/L)	20.7	21.1	24.2
Features	NFS	0.24	Ratio	0.94	0.96	1.10

Figure S3. Generation 2 performance - Functionalization. Nanoparticle concentrations obtained for each exit port of the generation 2 devices for solutions in water. Functionalized devices were prepared using 20 mM precursor solutions. Results for both the channel only and the feature bearing devices are shown. Bars are, from left to right, exit port on the inlet side, at the center, and furthest from the inlet side. Nanoparticle solutions utilized for these experiments were 2.2×10^{13} p/L. Data presented is the average of at least three replicates.

Table S4. Results for experiments conducted with generation 2 glass devices in which the inlet port was on the improper side of the device. Nanoparticle concentration in the initial solution is 2.2×10^{13} p/L for these experiments. Ratios are calculated as the concentration at the exit port relative to the initial nanoparticle concentration.

Channel/Features	Functional group	Flow rate (mL/min)	*	Inlet side port	Center port	Far side port
Features	Name	0.24	[NP] (Tp/L)	21.8	22.4	21.6
	None	0.24	Ratio	1.00	1.02	0.98
	N	0.00	[NP] (Tp/L)	22.2	22.0	22.0
Features	None	0.29	Ratio	1.01	1.00	0.99

Table S5. Results for experiments conducted with generation 2 glass devices. Nanoparticle concentration in the initial solution is 2.2×10^{13} p/L for these experiments. Ratios are calculated as the concentration at the exit port relative to the initial nanoparticle concentration.

Channel/Features	Functional Flow rate Solution		Inlet side	Center	Far side		
	group	(mL/min)	pН		port	port	port
Channal	Nono	0.25	65	[NP] (Tp/L)	21.6	21.6	22.9
Channel	None	0.23	0.3	Ratio	0.98	0.98	1.04
Channal	Nono	0.22	65	[NP] (Tp/L)	22.0	21.6	21.8
Channel	None	0.25	0.3	Ratio	1.00	0.98	0.99
Fasturas	Nono	0.27	65	[NP] (Tp/L)	22.4	22.4	21.3
reatures	None	0.27	0.3	Ratio	1.02	1.02	0.97
Faaturaa	Nono	0.25	65	[NP] (Tp/L)	22.7	21.1	22.0
reatures	None	0.23	0.5	Ratio	1.03	0.96	1.00
Channel	Nora	0.25	7.5	[NP] (Tp/L)	22.7	22.0	21.3
Channel	None	0.25	1.5	Ratio	1.03	1.00	0.97
Channal	Nono	0.22	75	[NP] (Tp/L)	21.1	22.7	22.0
Channel	None	0.23	7.5	Ratio	0.97	1.03	1.00
Fasturas	Nono	0.27	75	[NP] (Tp/L)	18.7	23.8	23.3
reatures	None	0.27	1.5	Ratio	0.85	1.08	1.06
Fasturas	None	0.25	7.5	[NP] (Tp/L)	19.6	22.0	24.6
reatures		0.25		Ratio	0.89	1.00	1.12
Channal	Nono	0.25	0.5	[NP] (Tp/L)	22.2	21.6	22.2
Chaimer	None	0.23	9.5	Ratio	1.01	0.98	1.01
Channal	Nono	0.22	0.5	[NP] (Tp/L)	22.2	21.3	22.9
Channel	None	0.25	9.5	Ratio	1.01	0.97	1.04
Fasturas	Nono	0.27	0.5	[NP] (Tp/L)	21.1	22.7	22.4
reatures	None	0.27	9.5	Ratio	0.96	1.03	1.02
Fasturas	Nono	0.25	0.5	[NP] (Tp/L)	20.7	22.9	22.4
reatures	None	0.23	9.5	Ratio	0.94	1.04	1.02
Channal	A DC	0.27	65	[NP] (Tp/L)	21.8	20.9	23.1
Channel	APS	0.27	0.3	Ratio	0.99	0.95	1.05
Channel	ADC	0.20	65	[NP] (Tp/L)	21.8	20.9	22.7
Channel	APS	0.29	0.3	Ratio	0.99	0.95	1.03

Table S5. Cont.

Channel/	Functional	Flow rate	Solution	*	Inlet side	Center	Far side
Features	group	(mL/min)	pН		port	port	port
Footures	ADS	0.27	65	[NP] (Tp/L)	15.8	21.6	28.6
reatures	Ars	0.27	0.5	Ratio	0.72	0.98	1.30
Fastures	ADC	0.20	65	[NP] (Tp/L)	17.8	20.9	27.3
Features	APS	0.29	0.3	Ratio	0.81	0.95	1.24
Classing 1	ADC	0.22	7.5	[NP] (Tp/L)	21.1	22.4	22.4
Channel	APS	0.22	1.5	Ratio	0.96	1.02	1.02
Channel	ADC	0.25	7.5	[NP] (Tp/L)	22.0	21.6	22.2
Channel	APS	0.25	1.5	Ratio	1.00	0.98	1.01
Г. (A DC	0.25	7.5	[NP] (Tp/L)	12.1	24.0	29.9
Features	APS	0.25	7.5	Ratio	0.55	1.09	1.36
	A DC	0.00		[NP] (Tp/L)	19.6	18.9	27.5
Features	APS	0.26	7.5	Ratio	0.89	0.86	1.25
	4.0.0	0.00	0.5	[NP] (Tp/L)	21.1	21.8	22.7
Channel	APS	0.22	9.5	Ratio	0.96	0.99	1.03
	4.0.0	0.05	o -	[NP] (Tp/L)	21.8	21.8	22.2
Channel	APS	0.25	9.5	Ratio	0.99	0.99	1.01
	4.0.0	0.05	0.5	[NP] (Tp/L)	20.2	22.2	23.5
Features APS	APS	5 0.25	9.5	Ratio	0.92	1.01	1.07
	Features APS	0.26	9.5	[NP] (Tp/L)	21.1	20.7	24.2
Features				Ratio	0.96	0.94	1.10
at 1 ang	and a	0.25	6.5	[NP] (Tp/L)	20.9	21.1	23.8
Channel	Channel CES			Ratio	0.95	0.96	1.08
Channel	CES	0.27	(5	[NP] (Tp/L)	20.9	21.8	23.5
Channel	CES		0.3	Ratio	0.95	0.99	1.07
Fastures	CES	0.29	0.00	[NP] (Tp/L)	13.4	23.1	29.5
Features	CES	0.28	0.3	Ratio	0.61	1.05	1.34
Easturas	CES	0.26	6.5	[NP] (Tp/L)	12.3	20.2	33.4
reatures	CES	0.20		Ratio	0.56	0.92	1.52
Channel	CES	0.23	75	[NP] (Tp/L)	21.3	22.2	22.4
	CES	0.23	1.5	Ratio	0.97	1.01	1.02
Channal	CES	0.24	75	[NP] (Tp/L)	20.9	21.3	22.7
	CES	0.24	7.5	Ratio	0.95	0.97	1.03
Footures	CES	0.27	75	[NP] (Tp/L)	13.2	25.5	27.5
reatures	CES	0.27	1.5	Ratio	0.60	1.16	1.25
Footures	CES	0.20	75	[NP] (Tp/L)	20.9	22.9	22.4
reatures	CES	0.30	1.5	Ratio	0.95	1.04	1.02
Channel	CES	0.25	0.5	[NP] (Tp/L)	21.8	21.6	22.4
	CES	0.25	9.5	Ratio	0.99	0.98	1.02
Channel	CES	0.28	0.5	[NP] (Tp/L)	21.8	21.8	22.7
	CES	0.28	9.3	Ratio	0.99	0.99	1.02
Features	CES	0.27	9.5	[NP] (Tp/L)	21.3	22.2	22.9
	CED	0.27		Ratio	0.97	1.01	1.02
Features	CES	0.25	95	[NP] (Tp/L)	21.3	21.8	22.4
Features	CES	0.25	9.5	Ratio	0.97	0.99	1.04

Figure S4. Generation 2 performance-pH. Nanoparticle concentrations obtained for each exit port of the generation 2 devices for solutions at varied pH. Functionalized devices were prepared using 20 mM precursor solutions. Results for both the channel only and the feature bearing devices are shown. Bars are, from left to right, exit port on the inlet side, at the center, and furthest from the inlet side. Nanoparticle solutions utilized for these experiments were 2.2×10^{13} p/L. Data presented is the average of at least three replicates.

Table S6. Results for experiments conducted with generation 2 glass devices. Nanoparticle concentration in the initial solution is 2.2×10^{14} p/L for these experiments. Ratios are calculated as the concentration at the exit port relative to the initial nanoparticle concentration.

Channel/Features	Functional Group	Flow rate (mL/min)	*	Inlet side port	Center port	Far side port
Channal	Nama	0.22	[NP] (Tp/L)	222	222	211
Chaimer	INOILE	0.25	Ratio	1.01	1.01	0.96
Channel	None	0.26	[NP] (Tp/L)	220	224	211
Chaimer	INOILE	0.20	Ratio	1.00	1.02	0.96
Fastures	None	0.28	[NP] (Tp/L)	216	227	218
reatures	None	0.28	Ratio	0.98	1.03	0.99
Fastures	None	0.20	[NP] (Tp/L)	218	218	222
reatures	None	0.29	Ratio	0.99	0.99	1.01
Channel	ΔPS	0.26	[NP] (Tp/L)	227	213	218
Chaimer	AI 5	0.20	Ratio	1.03	0.97	0.99
Channel	APS	0.29	[NP] (Tp/L)	218	213	227
	AIB	0.27	Ratio	0.99	0.97	1.03
Features	APS	0.26	[NP] (Tp/L)	220	213	227
	AIB	0.20	Ratio	1.00	0.97	1.03
Features	APS	0.28	[NP] (Tp/L)	216	224	218
reatures	AI 5		Ratio	0.98	1.02	0.99
Channel	CES	0.27	[NP] (Tp/L)	218	218	227
Chaimer	CES	0.27	Ratio	0.99	0.99	1.03
Channel	CES	0.28	[NP] (Tp/L)	218	218	231
Chaimer	CLO		Ratio	0.99	0.99	1.03
Features	CES	0.28	[NP] (Tp/L)	205	218	227
			Ratio	0.93	0.99	1.03
Features	CES	0.30	[NP] (Tp/L)	218	216	222
			Ratio	0.99	0.98	1.01
Channel	PTS	0.19	[NP](Tp/L)	222	220	220
	115	0.17	Ratio	1.00	1.00	1.00
Channel	PTS	0.20	[NP] (Tp/L)	217	218	227
	115	0.20	Ratio	0.98	0.99	1.03
Features	PTS	0.28	[NP] (Tp/L)	218	218	222
	115	0.20	Ratio	0.99	0.99	1.01
Features	PTS	0.26	[NP] (Tp/L)	207	220	220
	115	0.20	Ratio	0.94	1.00	1.02
Channel	NFS	0.26	[NP] (Tp/L)	217	222	220
	1110	0.20	Ratio	0.98	1.01	1.00
Channel	NFS	0.28	[NP] (Tp/L)	218	213	227
	INF Ø	0.28	Ratio	0.99	0.97	1.03
Features	NFS	0.21	[NP] (Tp/L)	198	213	257
	111.0	0.21	Ratio	0.90	0.97	1.17
Features	NFS	0.25	[NP] (Tp/L)	216	220	224
Features	INFS	0.25	Ratio	0.98	1.00	1.02

Channel/	Functional	Flow rate	Solution	*	Inlet side	Center	Far side
Features	group	(mL/min)	pН		port	port	port
Channel	ADS	0.24	6.5	[NP] (Tp/L)	211	224	224
Channel	Ars	0.24	0.5	Ratio	0.96	1.02	1.02
Channal	ADC	0.25	6.5	[NP] (Tp/L)	213	227	220
Channel	APS	0.23	0.3	Ratio	0.97	1.03	1.00
Feetunes	ADC	0.26	(5	[NP] (Tp/L)	209	213	238
Features	APS	0.20	0.3	Ratio	0.95	0.97	1.08
Easturas	ADC	0.27	6.5	[NP] (Tp/L)	205	227	229
reatures	APS	0.27	0.3	Ratio	0.93	1.03	1.04
Channal	ADC	0.22	75	[NP] (Tp/L)	220	229	213
Channel	AP5	0.22	7.5	Ratio	1.00	1.04	0.97
Channal	ADC	0.22	75	[NP] (Tp/L)	218	220	222
Channel	AP5	0.25	7.5	Ratio	0.99	1.00	1.01
Feetunes	ADC	0.22	75	[NP] (Tp/L)	209	202	249
Features	APS	0.22	7.5	Ratio	0.95	0.92	1.13
Feetunes	ADC	0.22	7.5	[NP] (Tp/L)	220	220	220
Features	APS	0.23		Ratio	1.00	1.00	1.00
Channal	A DC	0.24	0.5	[NP] (Tp/L)	216	222	222
Channel	APS 0.24	0.24	9.5	Ratio	0.98	1.01	1.01
	A DC	0.22	9.5	[NP] (Tp/L)	224	218	218
Channel	APS	0.22		Ratio	1.02	0.99	0.99
Feetunes	ADC	0.22	0.5	[NP] (Tp/L)	216	218	227
Features	AP5	0.25	9.5	Ratio	0.98	0.99	1.03
Feetunes	ADC	0.22	9.5	[NP] (Tp/L)	207	233	244
Features	APS	0.22		Ratio	0.94	1.06	1.11
Channal	CES	0.25	6.5	[NP] (Tp/L)	227	220	213
Channel	CES	0.25		Ratio	1.03	1.00	0.97
Channal	CES	0.26	(5	[NP] (Tp/L)	224	211	227
Channel	CES	0.26	0.5	Ratio	1.02	0.96	1.03
Feetunes	CES	0.27	(5	[NP] (Tp/L)	216	224	220
Features	CES	0.27	0.3	Ratio	0.98	1.02	1.00
Frating	OFS	0.26	(5	[NP] (Tp/L)	202	218	240
Features	CES	0.26	0.5	Ratio	0.92	0.99	1.09
C1 1	OFS	0.22	7.5	[NP] (Tp/L)	224	213	222
Channel	CES	0.22	7.5	Ratio	1.02	0.97	1.01
Channel	CES	0.25	75	[NP] (Tp/L)	220	218	224
Channel	CES	0.25	7.5	Ratio	1.00	0.99	1.02
Easterna	CEQ	0.27	75	[NP] (Tp/L)	207	220	231
reatures	CES	0.27	1.3	Ratio	0.94	1.00	1.05

Table S7. Results for experiments conducted with generation 2 glass devices. Nanoparticle concentration in the initial solution is 2.2×10^{14} p/L for these experiments.

Table S7. Cont.									
Channel/	Functional	Flow rate	Solution	*	Inlet side	Center	Far side		
Features	group	(mL/min)	pН		port	port	port		
Footuras	CES	0.25	75	[NP] (Tp/L)	211	220	229		
reatures	CES	0.23	7.5	Ratio	0.96	1.00	1.04		
Channel	CES	0.27	9.5	[NP] (Tp/L)	224	218	224		
				Ratio	1.02	0.99	1.02		
Channal	CES	0.25	9.5	[NP] (Tp/L)	222	213	224		
Channel				Ratio	1.01	0.97	1.02		
Fastures	CES	0.25	9.5	[NP] (Tp/L)	209	233	242		
reatures	CE5	0.25		Ratio	0.95	1.06	1.10		
Easturas	CES	0.26	9.5	[NP] (Tp/L)	218	218	222		
Features	CES			Ratio	0.99	0.99	1.01		

* [NP] = nanoparticle concentrations in Tera (10^{12}) particles per liter.

Reference

1. Li, P.C.H. *Microfluidic Lab-on-a-Chip for Chemical and Biological Analysis and Discovery*; CRC Press: Boca Raton, FL, USA, 2006.