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Abstract: Well-behaved densities are typically log-convex with heavy tails and log-concave with
light ones. We discuss a benchmark for distinguishing between the two cases, based on the
observation that large values of a sum X1 + X2 occur as result of a single big jump with heavy tails
whereas X1, X2 are of equal order of magnitude in the light-tailed case. The method is based on the
ratio |X1 − X2|/(X1 + X2), for which sharp asymptotic results are presented as well as a visual tool
for distinguishing between the two cases. The study supplements modern non-parametric density
estimation methods where log-concavity plays a main role, as well as heavy-tailed diagnostics such
as the mean excess plot.
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1. Introduction

General interest towards non-parametric thinking has increased over the last few years.
One example is density estimation under shape constraints instead of requiring the membership
of a parametric family. Here, a particularly robust alternative to parametric tests is provided by
searching for the best fitting log-concave density. Another example is the mean excess plot that aims
at distinguishing light and heavy tails.

Throughout the paper, we consider i.i.d. random variables X, X1, X2, . . . > 0 with common
distribution F having density f and tail F(x) = P(X > x). Then, X is (right) heavy-tailed if EesX = ∞
for all s > 0 and light-tailed otherwise. The density f is log-concave, if f (x) = eφ(x), where φ is a concave
function. If φ is convex, then f is log-convex. This paper aims to illustrate that light-tailed asymptotic
behaviour is associated with log-concave densities. Likewise, log-convexity seems to be connected to
heavy-tailed behaviour. One can use the connection to assess potential heavy-tailedness by searching
for patterns that are typically present among distributions with log-concave or log-convex densities.

Log-concavity is a widely studied topic in its own right [1,2]. There also exists substantial
literature regarding its connections to probability theory and statistics [3,4]. Several papers
concentrate on the statistical estimation of density functions assuming log-concavity [5,6]. This is
due to the fact that log-concavity provides desirable statistical properties for estimators. For instance,
maximum likelihood estimation becomes applicable and the estimate is unique. The topic is
discussed in detail in the beginning of [7]. Unfortunately, much less emphasis seems to be put on
verification of the log-concavity property itself. Specifically, it seems to be relatively little studied if it
is feasible that the sample be generated by a log-concave distribution. See, for example [8,9].

A distribution with a log-concave density f is necessarily light-tailed. In contrast, f is log-convex
in the tail in the standard examples of heavy tails such as regular variation, the lognormal distribution
and Weibull case F(x) = e−xα

with α < 1. An important class of heavy-tailed distributions are the
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subexponential ones defined by P(X1 + X2 > d) ∼ 2F(d). The intuition underlying this definition is
the principle of a single big jump: X1 + X2 is large if one of X1, X2 is large, whereas the other remains
typical. This then motivates

R =
|X1 − X2|
X1 + X2

(1)

being close to 1. In contrast, the folklore is that X1, X2 contribute equally to X1 + X2 with light tails.
We are not aware of general rigorous formulations of this principle, but it is easily verified in explicit
examples like a gamma or normal F (see further below) and, for a large number of summands
rather than just 2, it is supported by conditioned limit theorems (see e.g., ([10] (VI.5))). However,
it was recently shown in [4] that these properties of R hold in greater generality and that asymptotic
properties of the corresponding conditioned random variable

Yd = R
∣∣X1 + X2 > d (2)

provide a sharp borderline between log-convexity and log-concavity.
In this paper, we provide a wider perspective in terms of both sharper and more general

limit results and of the usefulness for visual statistical data exploration. To this end, we propose
a feature based nonparametric test. It can be used as a visual aid in identification of log-concavity or
heavy-tailed behaviour. It complements earlier ways to detect signs of heavy-tailedness such as the
mean excess plot [11]. Further tests based on probabilistic features have been previously utilised in
e.g., [12–14].

2. Background

A property holds eventually, if there exists a number y0 so that the property holds in the set
[y0, ∞). Standard asymptotic notation is used for limiting statements. These and basic properties of
regularly varying functions with parameter α, denoted RV(α), can be recalled from e.g., [15].

We note that the principle of a single big jump relates to the fact that joint distributions of
independent random variables concentrate probability mass to different regions. For example,
a distribution with tail function F(x) = e−xα

satisfies

F(x) = o(F(x/2)2)

for α > 1 and
F(x/2)2 = o(F(x))

for α ∈ (0, 1), as x → ∞. We refer to [16–19] for related work in this direction. It is shown in Lemma 1.2
of [4] that log-concavity or log-concavity of the density is closely related to the occurrence of the
principle of a single big jump. A further observation in this direction is the following lemma. It states
that contour lines of joint densities of independent variables behave differently for log-concave and
log-convex densities, and thereby leads naturally to different concentrations of probability mass of
joint densities (recall that a contour line corresponding to a value p ∈ R of joint density f : R2 → R is
the set of points in the plane defined as {(x, y) ∈ R2 : f (x, y) = p}).

Lemma 1. Suppose X1 and X2 are i.i.d. unbounded non-negative random variables. Assume further
that they have a common twice differentiable density function f of the form

f (x) = e−h(x),

where h is a strictly increasing function.
If f is log-concave (log-convex), then, for any fixed p ∈ (0, e−h(0)), there exists a convex (concave)

function ψp defining a contour line of fX1,X2 corresponding to p such that fX1,X2(x, ψp(x)) = p for all
x ∈ [0, h−1(− log p− h(0))].
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Lemma 1 implies that log-convex and log-concave densities cause maximal points of joint
densities to accumulate into different regions in the plane. Log-convex densities tend to put
probability mass near the axis, while log-concave densities have a tendency to concentrate mass near
the graph of the identity function. The exponential density is the limiting case where all contour
lines are straight lines. More generally, for fα(x) = Cαe−xα

, where Ca > 0 is an integration constant,
the contour lines are circles for α = 2, straight lines for α = 1, and parabolas for α = 1/2.

3. Theoretical Results

The emphasis of the paper is on the mathematical formulation of the connection between
log-convexity and the principle of a single big jump. However, some additional theoretical results are
provided concerning convergence rates of the conditional ratio defined in Equation (3). These rates,
or estimates for the rates, are obtained in some standard distribution classes. Their proofs are mainly
based on sharp asymptotics of subexponential distributions obtained in [20–22]. Recall that some
main classes of such distributions are RV(α), meaning regularly varying ones, where F(x) = L(x)/xα

with α > 0 and L(·) are slowly varying, Weibull tails with F(x) = e−xα
for some α ∈ (0, 1), and

lognormal tails which are close to the case γ = 2 of F(x) = e− logγ x for x ≥ 1 and some γ > 1; we
refer in the following to this class as lognormal type tails.

3.1. Convergence Properties

Define the function g : (0, ∞)→ [0, 1] by

gX(d) = g(d) = E
[
|X1 − X2|
X1 + X2

∣∣∣X1 + X2 > d
]

. (3)

It can be viewed as a generalisation of the function fZd considered in [4] and has the same
interpretation as in the case with densities: if both X1 and X2 contribute equally to the sum X1 + X2,
then g should eventually obtain values close to 0; similarly, if only one of the variables tends to be the
same magnitude as the whole sum, then g is close to 1 for large d. Note also that g is scale independent
in the sense that gaX(d) = gX(d/a) for all a > 0. Due to this property, two or more samples can be
standardised to have, say, equal means in order to obtain graphs on the same scale.

In Proposition 1, sharp asymptotic forms of g are exhibited in some classes of distributions.

Proposition 1. The following convergence rates hold for g defined in Equation (3).

1. Let X be RV(α) with α > 1, eventually decreasing density f . Then,

g(d) = 1− c
d
+ o(1/d) where c =

2αE[X]

α + 1
.

2. Let X be Weibull distributed with α < 1. Then,

g(d) = 1− o(dα−1). (4)

3. Let X be of lognormal type. Then,

g(d) = 1− o(logγ−1 x/x). (5)

Remark 1. In the case of Weibull and lognormal distributions, the implication is that g(d) converges
to 1 at a larger rate than their associated hazard rates tend to zero. In addition, inspection of the proof
shows

lim inf
d→∞

d | g(d)− 1 | > 0.
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This implies that the actual convergence rate can not be substantially larger than in the regularly
varying case, where the leading term is explicitly identified.

The light-tailed case appears to be more difficult to study than the heavy-tailed case. Difficulty
arises mainly from the lack of good asymptotical approximations for probabilities of the form
P(X1 + X2 > d) when P(X1 > d) decays much faster than e−d. Interestingly, the full asymptotic
form of g can be recovered in the special case of the normal distribution if we allow X to obtain
negative values.

Proposition 2. Suppose that X is normally distributed with E[X] = 0 and Var[X] = 1/
√

2. Then,

g(d) =
c
d
+ o(1/d), where c = E [|X1 − X2|] . (6)

The following theorem can be used to assess if a sample is coming from a source with log-concave
density. It can be seen as a natural continuation as well as a generalisation to [4].

Theorem 1. Assume the density f is twice differentiable and eventually log-concave. Then,

lim sup
d→∞

g(d) ≤ 1
2

. (7)

Similarly, if f is eventually log-convex, then

lim inf
d→∞

g(d) ≥ 1
2

. (8)

4. Statistical Application: Visual Test

Suppose (X1, Y2), (X2, Y2), . . . is a sequence of i.i.d. vectors whose components are also i.i.d.
One can formulate the empirical counterpart of Quantity (3) by setting

ĝ(d, n) =

n

∑
k=1

Rk1(Xk + Yk > d)

n

∑
k=1

1(Xk + Yk > d)
, (9)

where

Rk =
|Xk −Yk|
Xk + Yk

,

and 1(A) is the indicator function of the event A.

Remark 2. Equation (9) requires as input a two-dimensional sequence of random variables. One can
form such a sequence from a real valued i.i.d. source Z1, Z2, . . . , ZN using any pairing of the Zi.
Obvious examples are to take Xk = Z2k−1, Yk = Z2k to take the set {(Xk, Yk)} as all pairings of the Zk
or as a randomly sampled subset of these N(N − 1)/2 pairings. If the data is truly i.i.d, this should
not have any effect on the outcome.

4.1. Examples and Applications

A graph of ĝ(d, n) as function of d can be used to determine if the data support the density being
log-concave or light-tailed behaviour. According to Theorem 1, the graph should then stay below 1/2.
Figures 1–4 illustrate such graphs using experimental data.
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The test method is visual. A similar idea has been used at least in the classical mean excess plot,
where one visually assesses if the tail excess in the sample points is increasing at the level, as is the
case for heavy tails.

(a) (b) (c)

Figure 1. Graphs of ĝ(d, n) for n = 10, 000 for Gamma distributed random variables with shapes
0.2, 1 and 5 in figures (a), (b) and (c), respectively. All variables are standardised to have mean 3.

(a) (b) (c)

Figure 2. Graphs of ĝ(d, n) for n = 10, 000 for Weibull distributed random variables with shapes
0.2, 1 and 5 in figures (a), (b) and (c), respectively. All variables are standardised to have mean 3.

Figure 3. Graph of ĝ(d, n) from a classical set of Danish fire insurance data that can be obtained for
instance from data set ‘danish’ in the R package [23]. The data is scaled to have mean 1. The sample
is traditionally used to illustrate how heavy-tailed data behaves. A similar set of data was previously
used in [24]. The graph supports the usual finding that the data set is heavy-tailed.
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Figure 4. The graphs of multiple versions of ĝ(d, n) based on a dataset obtained from Hansjörg
Albrecher (private communication) and related to occurrences of floods in a particular area. The data
is scaled to have mean 1. The sample size is n = 39. Bivariate vectors (X1, Y1), . . . , (X19, Y19) were
sampled several times randomly without replacement from the original data. The overall appearance
of the paths points to the data being heavy- rather than light-tailed.

4.2. Finer Diagnostics

The idea of plotting ĝ(d, n) as a function of d was introduced as a graphical test for distinguishing
between heavy-tailed and log-concave light tailed distributions. It seems reasonable to ask if the plot
can be used for finer diagnostics, in particular to further specify the tail behaviour of F when F was
found to be heavy-tailed. Such an idea would be based on the rate of convergence of ĝ(d, n) to 1.

To gain some preliminary insight, we simulated R = 5000 = 5 · 103 and R = 5 · 106 i.i.d pairs
of r.v.’s X1, X2 from an F which was either RV(1.5), lognormal(0,1) or Weibull(0.4). The results are in
Figure 5 as plots of d

(
1− ĝ(d, n)

)
, with three runs in each subfigure.

A first conclusion is that a sample size of R = 5000 is grossly insufficient for drawing conclusions
about the way in which ĝ(d, n) approaches 1—random fluctuations take over long before a systematic
trend is apparent. The sample size R = 5 · 106 is presumably unrealistic in most cases, but even for
this, the picture is only clear in the RV case. Here, d

(
1− ĝ(d, n)

)
seems to have a limit c, as it should be,

and the plot is in good agreement with the value 2.4 = 2αE[X]/(α+ 1) of c predicted by Proposition 1.
Whether a limit exists in the lognormal or Weibull case is less clear. The results of Proposition 1

are less definite here, but, actually, a heuristic argument suggests that the limit c should exist and be
2E[X]. To this end, let X(1) < X(2) be the order statistics. According to subexponential theory (see,
in particular, [25]), X(1), X(2) are asymptotically independent given X1 + X2 > d, with X(1) having
asymptotic distribution F and X(2) being of the form d + e(d)E with e(d), and E as in the proof of
Proposition 1. For large d, this gives

|X1 − X2|
X1 + X2

∼
X(2) − X(1)

X(2)
∼

1− X(1)/X(2)

1 + X(1)/X(2)
∼ 1− 2X(1)/X(2). (10)

In the lognormal or Weibull case, one has e(d) = o(d) and so d + e(d)E ∼ d. Taking expectations
gives the conjecture.
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Figure 5. d
(
1 − ĝ(d, n)

)
. Pareto in the first row, lognormal in the second, and Weibull in the last.

R = 5000 (left), R = 5× 106 (right).

For the Weibull, 2E[X] = 6.65, and the R = 5 · 106 part of Figure 5 is rather inconclusive
concerning the conjecture. We did one more run with R = 5 · 107 over a range of parameters (the
variance σ2 of log X for the lognormal and β for the Weibull). All X1, X2 were normalized to have
mean 1 so that the conjecture would assert convergence to c = 2. This is not seen in the results in
Figure 6. Large values of σ2 and small values of β could appear to give convergence, but not to 2.
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Figure 6. R = 5× 107. Lognormal (left), Weibull (right).

It should be noted that the heuristics give the correct result in the RV case. Namely, here we
can take e(d) = d and P(E > x) = 1/(1 + x)α. This easily gives E1/(1 + E) = α/(α + 1) so that
Quantity (10) is approximately 1− 2αE[X]/d(α + 1), as rigorously verified in Proposition 1.

The overall conclusion is that the finer diagnostic value of the method is quite limited,
and restricted to RV and sample sizes which may be unrealistically large in many contexts.

5. Proofs

Proof of Lemma 1. Suppose h is concave and p ∈ (0, 1). The contour line corresponding to value p is
formed as the set of points (x, y) that satisfy fX1,X2(x, y) = p, or equivalently

h(x) + h(y) = − log p. (11)

For any such pair (x, y) one can solve Equation (11) for y to obtain

y = h−1(− log p− h(x)). (12)

Firstly, h−1 is convex as the inverse of an increasing concave function. Secondly, the composition
of an increasing convex function and a convex function remains convex. Thus, as a function of x,
Expression (12) defines a convex function when x ∈ [0, h−1(− log p − h(0))]. Thus, one can define
ψp(x) = h−1(− log p− h(x)).

If h is convex, the proof is analogous.

The following technical lemma is needed in the proof of Proposition 1. It applies to Pareto,
Weibull and lognormal type distributions. Indeed, condition (13) follows from Proposition 1.2;
(ii) of [21] and further needed assumptions are easily verified apart from strong subexponentiality,
which is known to hold in the mentioned examples.

Lemma 2. Suppose X1 and X2 are non-negative i.i.d. variables with a common density f , where the
hazard rate r(d) = f (d)/F(d) is eventually decreasing with r(d) = o(1). Assume further that

P(X1 + X2 > d)− 2P(X1 > d) ∼ 2E[X] f (d). (13)

Then,
2P(X1 > d) + 2 f (d)E[X]

P(X1 + X2 > d)
= 1 + o(r(d)). (14)

If in addition F(d/2)2 = o(F(d)), then

P(X1 ≤ d/2, X2 ≤ d, X1 + X2 > d)
P(X1 > d)

= E[X]r(d) + o(r(d)). (15)
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Proof. Equality (13) implies subexponentiality of X1. Writing

2P(X1 > d) + 2E[X] f (d)
P(X1 + X2 > d)

= 1 +
−(P(X1 + X2 > d)− 2P(X1 > d)) + 2E[X] f (d)

P(X1 + X2 > d)

and observing that the nominator on the right-hand side is of order E[X]r(d)o(1)2F(d) proves
Equation (14) since 2P(X1 > d)/P(X1 + X2 > d)→ 1 by subexponentiality.

Equality (13) implies

P(X1 + X2 > d)
2P(X1 > d)

= 1 +
2E[X] f (d)(1 + o(1))

2P(X1 > d)
= 1 +E[X]r(d) + o(r(d)). (16)

On the other hand, writing

{X1 + X2 > d, X2 > X1} = {X1 ≤ d/2, X2 > d}
∪ {X1 ≤ d/2, X2 ≤ d, X1 + X2 > d}
∪ {X1 > d/2, X2 > d/2}
= A1 ∪ A2 ∪ A3

gives
P(X1 + X2 > d)

2P(X1 > d)
=

2P(A1) + 2P(A2) + P(A3)

2P(X1 > d)
= 1 +

P(A2)

P(X1 > d)
+ o(r(d)).

Since we know from Equation (16) that the leading term tending to zero must be E[X]r(d),
Equation (15) holds.

Proof of Proposition 1. Suppose X is regularly varying with index α. In light of Lemma 2, we only
need to establish

E
[X1 − X2

X1 + X2
; X1 > X2, X1 + X2 > d

]
= F(d)

(
1− c

d
+

α

d
EX + o(1/d)

)
. (17)

The contribution to the l.h.s of Equation (17) from

E
[X1 − X2

X1 + X2
; X1 > X2, X2 > Ad, X1 + X2 > d

]
is of order O

(
F(d/2)F(Ad)

)
= O

(
d−2α+ε

)
for any A > 0 and ε > 0. Thus, it can be neglected. We are

left with estimating

E
[X1 − X2

X1 + X2
; X1 > X2, X2 ≤ Ad, X1 + X2 > d

]
= E

[X1 − X2

X1 + X2
; X2 ≤ Ad, X1 + X2 > d

]
=
∫ Ad

0
E
[X1 − y

X1 + y
; X1 + y > d

]
f (y)dy.

We will bound this quantity from above and below, assuming A < 1/2.
Firstly,

∫ Ad

0
E
[X1 − y

X1 + y
; X1 + y > d

]
f (y)dy ≤

∫ Ad

0
E
[(

1− 2(1− A)y
X1

)
; X1 + y > d

]
f (y)dy.
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Now, given X > x, X − x is approximately distributed as xE for large x where P(E > z) =

1/(1 + z)α. Hence, dominated convergence gives

E
[ 1

X

∣∣∣X > z
]
∼ E

[ 1
z(1 + E)

]
, z→ ∞.

We get

∫ Ad

0
E
[(

1− 2(1− A)y
X1

)
; X1 + y > d

]
f (y)dy

≤
∫ Ad

0

(
1− 2(1− A)y

(d− y)
(1 + o(1))E 1

1 + E

)
F(d− y) f (y)dy

=
∫ Ad

0

(
1− 2(1− A)y

(d− y)
α

α + 1

)
F(d− y) f (y)dy + η1(d)

≤
∫ Ad

0

(
1− 2(1− A)y

d
α

α + 1

)(
F(d) + y f (d)

)
f (y)dy + η1(d) + η2(d)

≤
∫ Ad

0

(
1− 2(1− A)y

d
α

α + 1

)(
F(d) +

yα

d
F(d)(1 + A)

)
f (y)dy + η1(d) + η2(d)

≤ F(d)
(

1− 2(1− A)EX
d

α

α + 1
+

αEX(1 + A)

d

)
+ η1(d) + η2(d).

Here, the error terms η1(d) and η2(d) are of order o(F(d)/d). The latter error comes from Taylor
expansion of function F(d− y) around point y = 0. The fact that f is assumed eventually decreasing
guarantees that f (x) ∼ αx−α−1L(x), when F(x) = x−αL(x).

Secondly, for the lower bound, we have that

∫ Ad

0
E
[X1 − y

X1 + y
; X1 + y > d

]
f (y)dy ≥

∫ Ad

0
E
[(

1− 2y
X1

)
; X1 + y > d

]
f (y)dy.

As before, we get

∫ Ad

0
E
[(

1− 2y
X1

)
; X1 + y > d

]
f (y)dy

≥
∫ Ad

0

(
1− 2y

(d− y)
(1 + o(1))E 1

1 + E

)
F(d− y) f (y)dy

=
∫ Ad

0

(
1− 2y

(d− y)
α

α + 1

)
F(d− y) f (y)dy + η1(d)

≥
∫ Ad

0

(
1− 2y

d
α

α + 1

)(
F(d) + y f (d)

)
f (y)dy + η1(d) + η2(d)

≥
∫ Ad

0

(
1− 2y

d
α

α + 1

)(
F(d) +

yα

d
F(d)(1− A)

)
f (y)dy + η1(d) + η2(d)

≥ F(d)
(

1− 2EX
d

α

α + 1
+

αEX(1− A)

d

)
+ η1(d) + η2(d)

for error terms η1 and η2 of order o(F(d)/d).
Repeating the argument with arbitrarily small A > 0 and combining the upper and lower

estimates allows one to deduce
d
∣∣∣ g(d)−

(
1− c

d

) ∣∣∣→ 0,

as d→ ∞, which proves the claim.
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Suppose then that X is Weibull distributed. Now assumptions of Lemma 2 are satisfied with
r(d) = αdα−1. Since F(d/2)2 = O

(
e−cxα)

for some c > 1 depending on α, we only need to find the
order of

E
[X1 − X2

X1 + X2
; X1 > X2, X2 ≤ d/2, X1 + X2 > d

]
. (18)

In fact, proceeding similarly as in the regularly varying case, it can be seen that
Quantity (18) equals ∫ d/2

0
E
[
1− 2y

X1 + y

∣∣∣X1 + y > d
]

F(d− y) f (y)dy. (19)

It is known that (X1 − z)/e(z)|X1 > z, where e(z) = 1/(αzα−1), converges in distribution to
a standard exponential variable, as z→ ∞. Because e(z/2)/z = o(1), it holds for y ∈ [0, d/2] that

E
[

1− 2y
X1 + y

∣∣∣X1 + y > d
]

= 1− 2y
d
E

 1
e(d−y)

d
X1−(d−y)

e(d−y) + 1

∣∣∣X1 + y > d


= 1− 2y

d
(1 + o(1))

(the interchange of expectation and convergence is justified by dominated convergence). In addition,
the same error term can be used for any y.

Thus, Quantity (19) can be written as

∫ d/2

0

(
1− 2y

d
(1 + o(1))

) [
F(d) +

∫ d

d−y
f (s)ds

]
f (y)dy

= F(d)
∫ d/2

0

(
1− 2y

d

)
f (y)dy

+ F(d)

∫ d/2
0

[∫ d
d−y

(
1− 2y

d (1 + o(1))
)

f (s)ds
]

f (y)dy

F(d)
+ o(F(d)/d).

Now, using the definition of A2 from Lemma 2 with Equality (15), we get∫ d/2
0

[∫ d
d−y f (s)ds

]
f (y)dy

F(d)
=

P(A2)

P(X1 > d)
= E[X]r(d) + o(r(d))

and ∫ d/2
0 (2y/d)

[∫ d
d−y f (s)ds

]
f (y)dy

F(d)
= 2E[X1/d|A2]

P(A2)

P(X1 > d)
= o(r(d)),

since
E[X1/d|A2] = o(1). (20)

Equation (20) follows from the fact that conditionally to A2, all probability mass concentrates
near small values of X1/d.



Risks 2017, 5, 10 12 of 14

Gathering estimates and using Equation (14) of Lemma 2 yields

g(d) = (1 + o(r(d))
2E
[

X1−X2
X1+X2

; X1 > X2, X2 ≤ d/2, X1 + X2 > d
]

2P(X1 > d) + 2 f (d)E[X]

= (1 + o(r(d))
2F(d)[1− 2E[X]/d + o(1/d) +E[X]r(d)− o(r(d)) + o(e−(c−1)dα

)]

2F(d)(1 +E[X]r(d))

= 1 + o(r(d)) = 1 + o(dα−1).

This shows Equation (4), and Equation (5) can be obtained using similar calculations with
e(z) = z/ logγ−1 z.

Proof of Proposition 2. Note first that X1 + X2 and X1 − X2 are independent in the normal case.
Denote Z = X1 + X2 so that Z ∼ N (0, 2). Let e(d) = F(d)/ f (d) be the mean excess function of
Z (inverse hazard rate). It is then standard that e(d) is of order 1/d and that (Z − d)e(d)|Z > d
converges in distribution to a standard exponential. Writing

g(d) =
E
[
|X1 − X2|

]
d

E

 1
e(d)

d
Z−d
e(d) + 1

∣∣∣ Z > d

 , (21)

it follows in the same way as in the proof or Proposition 1 that the r.h.s. of Equation (21) is (c/d)(1 +
o(1)). This proves the claim.

Proof of Theorem 1. Suppose f is log-concave and twice differentiable. Since

g(d) =

∫ ∞
d

∫ z
0 |1− 2y/z| f (z− y) f (y)dy dz∫ ∞

d

∫ z
0 f (z− y) f (y)dy dz

,

it suffices to show that, for a fixed z, it holds that∫ 1

0
|1− 2s| fZz(s)ds ≤ 1

2
,

where

fZz(s) =
f (zs) f (z(1− s))∫ 1

0
f (zx) f (z(1− x))dx

, s ∈ [0, 1]. (22)

In fact, by symmetry, one only needs to show

∫ 1/2

0
(1− 2s)( fZz(s)− 1)ds ≤ 0. (23)

It is known from the proof of Proposition 2.1 of [4] that fZz is increasing in [0, 1/2]. Since fZz is
non-negative and integrates to one over interval [0, 1], there exists a number a ∈ (0, 1/2) such that
fZz(s) ≤ 1 when s ≤ a and fZz(s) > 1 when s > a. Therefore,

∫ 1/2

0
(1− 2s)( fZz(s)− 1)ds

=
∫ a

0
(1− 2s)( fZz(s)− 1)ds +

∫ 1/2

a
(1− 2s)( fZz(s)− 1)ds

≤ (1− 2a)
[∫ a

0
( fZz(s)− 1)ds +

∫ a

0
( fZz(s)− 1)ds

]
= 0,



Risks 2017, 5, 10 13 of 14

which proves Inequality (23). Generally, if f is log-concave and twice differentiable in the set [x0, ∞),
then fZz is increasing in the set [x0/z, 1/2]. The difference from the presented calculation vanishes in
the limit d→ ∞, and thus Inequality (7) holds.

If f is eventually log-convex, the proof is analogous and Inequality (8) holds.
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