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Abstract: Optimal forms of reinsurance policies have been studied for a long time in the actuarial
literature. Most existing results are from the insurer’s point of view, aiming at maximizing the
expected utility or minimizing the risk of the insurer. However, as pointed out by Borch (1969), it is
understandable that a reinsurance arrangement that might be very attractive to one party (e.g., the
insurer) can be quite unacceptable to the other party (e.g., the reinsurer). In this paper, we follow
this point of view and study forms of Pareto-optimal reinsurance policies whereby one party’s
risk, measured by its value-at-risk (VaR), cannot be reduced without increasing the VaR of the
counter-party in the reinsurance transaction. We show that the Pareto-optimal policies can be
determined by minimizing linear combinations of the VaRs of the two parties in the reinsurance
transaction. Consequently, we succeed in deriving user-friendly, closed-form, optimal reinsurance
policies and their parameter values.

Keywords: optimal reinsurance treaties; value at risk; Pareto optimality

1. Introduction

Reinsurance is a transaction whereby one insurance company (the reinsurer) agrees to indemnify
another insurance company (the reinsured, cedent or primary company) against all or part of
the loss that the latter sustains under a policy or policies that it has issued. For this service, the
ceding company pays the reinsurer a premium, and there are many premium calculation principles
(e.g., [1,2]; see also [3,4]).

Mathematically, let X be the loss for an insurer from a policy or a group of policies. Assume that
under a reinsurance treaty, a reinsurer covers the ceded part of the loss, say f (X), where 0 ≤ f (X) ≤ X,
for a premium Pf . The primary insurer’s retained loss is denoted by I f (X) = X − f (X).
Commonly-used forms of reinsurance treaties are the excess-of-loss treaty, where f (X) = (X − d)+
with deductible level (attaching point) d > 0; and the quota-share treaty, where f (X) = aX with a
constant (share) 0 ≤ a ≤ 1.

Optimal forms of reinsurance have been studied extensively in the literature. Most of the results
obtained are from the cedent’s point of view. That is, the question asked is: for a given premium
principle, what is the optimal functional form and/or parameter values of the ceded function f , such
that the cedent’s expected utility is maximized or its risk minimized? For example, by maximizing the
cedent’s expected utility, Arrow [5] concluded that “given a range of alternative possible reinsurance
contracts, the reinsured would prefer a policy offering complete coverage beyond a deductible.”
Borch [6] showed that for a fixed premium and expected reinsurance payments, the variance of
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the cedent’s losses is minimized by the excess-of-loss reinsurance policy. In recent years, various
solutions to the optimal reinsurance problem have been obtained where the value-at-risk (VaR) and
the tail-value-at-risk (TVaR) have been used to measure the cedent’s risk level (e.g., [7–13] and the
references therein).

Borch [14] argues that “there are two parties to a reinsurance contract, and that an arrangement
which is very attractive to one party may be quite unacceptable to the other.” However, as pointed out
by [15], optimal forms of ceded functions considering both the cedent and the reinsurer had scarcely
been discussed until quite recently. For example, Ignatov et al. [16] study the optimal reinsurance
contracts under which the finite horizon joint survival probability of the two parties is maximized.
Kaishev and Dimitrova [17] derive explicit expressions for the probability of joint survival up to a
finite time of the cedent and the reinsurer, under an excess of loss reinsurance contract with a limiting
and a retention level. Golubin [18] studies the problem of designing the Pareto-optimal reinsurance
policy by maximizing a weighted average of the expected utility of the insurer and the reinsurer.
Dimitrova and Kaishev [19] introduce an efficient frontier type approach to setting the limiting and
the retention levels, based on the probability of joint survival. Cai et al. [20] analyse the optimal
reinsurance policies that maximize the joint survival probability and the joint profitable probability of
the two parties and derive sufficient conditions for optimal reinsurance contracts within a wide class
of reinsurance policies and under a general reinsurance premium principle. Using the results of [20],
Fang and Qu [21] derive optimal retentions of combined quota-share and excess-of-loss reinsurance
that maximize the joint survival probability of the two parties. Cai et al. [22] study the optimal forms of
reinsurance policies that minimize the convex combination of the VaRs of the cedent and the reinsurer
under two types of constraints that describe the interests of the two parties. For the determination of
the optimal excess of loss contract considering the dependency between the losses of the insurer and
the reinsurer, we refer to [23] and the references therein.

A closely-related problem to optimal reinsurance is the so-called optimal transfer of risks among
partners, where everybody’s interests are considered simultaneously. The usual approach is to identify
Pareto-optimal treaties, whereby no agent can be made better off without making another agent worse
off. For results in this area, we refer to, e.g., [6,7,24,25] and the references therein.

In this paper, we determine Pareto-optimal reinsurance policies under which one party’s risk,
measured by its VaR, cannot be reduced without increasing that of the other party in the reinsurance
contract. We consider two classes of ceded functions:

C1 :=
{

f : f is convex, non-decreasing and 0 ≤ f (x) ≤ x for all x
}

and:
C2 :=

{
f : f and I f are non-decreasing and 0 ≤ f (x) ≤ x for all x

}
.

Note the inclusion C1 ⊂ C2, which has been verified by [13]. Furthermore, for every f ∈ C2,
both f and I f are Lipschitz continuous, and they are comonotonic.

The requirements that the ceded function f is non-decreasing and that the bounds 0 ≤ f (x) ≤ x
hold for all x are needed in C1 and C2 to avoid the moral hazard problem in reinsurance. The additional
requirement of the convexity of f in C1 essentially requires that f (x) approaches infinity linearly when
x → ∞ and thus disallows the popular layered reinsurance policies. Nevertheless, this class includes
the important quota-share and the excess-of-loss reinsurance policies. Note also that both classes are
of interest in the more general context of economic theory with two agents having conflicting interests.
Optimal reinsurance problems with admissible classes C1 and C2 have been studied extensively in the
literature, and we refer to [13] for an informative review.

For simplicity of discussion, we assume that the reinsurance premiums are determined by the
expected premium principle:

Pf = (1 + θ)E[ f (X)] (1)
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where θ > 0 is the safety loading. Hence, the cedent’s total loss becomes:

C f = X− f (X) + (1 + θ)E[ f (X)],

and the reinsurer’s total loss under the reinsurance contract is:

R f = f (X)− (1 + θ)E[ f (X)].

In this paper, we use VaR to measure the insurer’s and reinsurer’s risk level. A natural starting
point for measuring the (joint) risk of the cedent and the reinsurer is a bivariate risk measure, such as
the bivariate VaR ([26]) of the pair C f and R f . However, since the ceded loss f (X) and the retained
loss I f (X) are comonotonic (see [27,28] for a very detailed discussion of the concept of comonotonicity
with applications), the set of values of the bivariate VaRs of C f and R f is determined by values of the
univariate VaR of C f and R f . Therefore, the Pareto-optimal reinsurance policies could be determined
by minimizing a linear combination of the univariate VaRs of C f and R f . We note in this regard that the
optimization criterion of minimizing linear combinations of the risks of the cedent and the reinsurer
was adopted by [7,22]. Our arguments provide an additional economic meaning to such criteria.

Although VaR is not sub-additive in general, it was shown that it is sub-additive in the deep
right tail in many cases of interest (e.g., [29]). General results related to optimal forms of reinsurance
(risk exchanges) using the so-called distortion risk measures exist in the literature, and we refer
to [7,8,25]. The distortion risk measures are very general and include VaR, TVaR and proportional
hazards transforms as special cases. The feature of the current paper is that we extend the geometric
approach of [12] to our optimization problem that considers the interests of the two parties.
The geometric proofs facilitate intuition and enable us to avoid lengthy and complex mathematical
arguments. We derive closed-form and user-friendly formulas for the optimal reinsurance policies and
thus provide a convenient route for practical implementation of our results.

The rest of the paper is organized as follows. Section 2 provides preliminaries and shows
(cf. [25]) that the form of Pareto-optimal reinsurance policies can be determined by minimizing linear
combinations of the cedent’s and the reinsurer’s risks. In Sections 3 and 4, we determine optimal
reinsurance forms and derive the corresponding optimal parameters when the feasible classes of
ceded functions are C1 and C2, respectively. There, we also provide illustrative numerical examples.
Section 5 provides further insights regarding the results of our numerical examples. Section 6 concludes
the paper.

2. Preliminaries

Let FX and SX denote the cumulative distribution function (c.d.f.) and the survival function of
X, respectively. Furthermore, let FC f and FR f denote the c.d.f.’s of C f and R f , respectively. Then, the
individual VaRs of the cedent and the reinsurer under the reinsurance contract are:

VaRα(C f ) = inf{x : FC f (x) ≥ α}

and:

VaRα(R f ) = inf{x : FR f (x) ≥ α},

respectively. To consider the risk of both the cedent and the reinsurer, we propose to use the bivariate
lower orthant VaR introduced by [26], which is:

VaRα(C f , R f ) = ∂{(y, z) ∈ R2 : FC f ,R f (y, z) ≥ α}.
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For any ceded function f ∈ C2, the random variables C f and R f are comonotonic, and so:

VaRα(C f , R f ) = ∂{(y, z) ∈ R2 : min{FC f (y), FR f (z)} ≥ α}

= ∂{(y, z) ∈ R2 : FC f (y) ≥ α, FR f (z) ≥ α}.

Therefore, when the “joint” risk of the cedent and the reinsurer is measured by their bivariate
lower orthant VaR, one could work with the marginal VaRs of C f and R f , instead of the much more
complicated joint VaR.

In the following, we assume that the probability levels in the VaRs used by the cedent and the
reinsurer are possibly different, say αc and αr, respectively, and then determine the Pareto-optimal
reinsurance policies (ceded functions f ) in the sense that one party’s risk, measured by its VaR,
cannot be reduced without increasing the other party’s VaR. Mathematically, let f ∗ denote a ceded
function in an admissible set C, such as C1 or C2. Let the corresponding cedent’s and reinsurer’s
total losses under the ceded function f ∗ be denoted by C f ∗ and R f ∗ , respectively. Then, f ∗ is a
Pareto-optimal reinsurance policy if there is no ceded function f 6= f ∗ belonging to the admissible set
C, such that:

VaRαc(C f ) ≤ VaRαc(C f ∗)

and:

VaRαr (R f ) ≤ VaRαr (R f ∗),

with at least one of the inequalities being strict. To find the Pareto-optimal reinsurance policies,
we utilize the following proposition.

Proposition 1. All Pareto-optimal reinsurance policies f in C i, i ∈ {1, 2}, can be determined by solving
the problem:

min
f∈C i

{
βVaRαc(C f ) + (1− β)VaRαr (R f )

}
, (2)

where 0 ≤ β ≤ 1.

Proof. Similar to the discussion on page 90 of [30], one method to find Pareto-optimal decisions is to
choose two positive constants k1, k2 and find:

min
f∈C i

{
k1VaRαc(C f ) + k2VaRαr (R f )

}
.

Without loss of generality, we set k1 = β and k2 = 1− β with 0 ≤ β ≤ 1. In more detail, let g be a
function belonging to C i and minimizing (2), then there cannot exist in C i any function f 6= g such that
VaRαc(C f ) ≤ VaRαc(Cg) and VaRαr (R f ) ≤ VaRαr (Rg) with at least one of the inequalities being strict,
because otherwise, we would have:

βVaRαc(C f ) + (1− β)VaRαr (R f ) < βVaRαc(Cg) + (1− β)VaRαr (Rg).

This is a contradiction to the assumed property of function g.
Furthermore, for any two ceded functions f1, f2 ∈ C i, the family { fγ, 0 ≤ γ ≤ 1} of ceded

functions defined by fγ(x) = γ f1(x) + (1− γ) f2(x), is a subset of C i and satisfies:

VaRαc(C fγ
) = γVaRαc(C f1) + (1− γ)VaRαc(C f2) (3)

and:
VaRαr (R fγ

) = γVaRαr (R f1) + (1− γ)VaRαr (R f2). (4)



Risks 2017, 5, 11 5 of 22

Equation (3) is satisfied because:

VaRαc(C fγ
) = VaRαc(I fγ

(X) + Pfγ
)

= VaRαc(γC f1 + (1− γ)C f2)

= γVaRαc(C f1) + (1− γ)VaRαc(C f2),

where the last equality is due to the fact that C f1 and C f2 are non-decreasing functions of the same
random variable X and therefore comonotonic. Similarly, Equation (4) is satisfied. Therefore, Condition
C on page 90 of [30] is satisfied, and we conclude that all Pareto-optimal reinsurance policies in C i can
be found by solving Problem (2).

In view of Proposition 1, throughout the rest of this paper, we seek optimal reinsurance policies
by solving the optimization problem:

min
f∈C i

{
βVaRαc(C f ) + (1− β)VaRαr (R f )

}
for i ∈ {1, 2}, which is equivalent to minimizing:

H( f ) = βVaRαc

(
− f (X) + Pf

)
+ (1− β)VaRαr

(
f (X)− Pf

)
. (5)

As shown by [13], we have C1 ⊂ C2, and every function f ∈ C2 is Lipschitz-continuous and,
hence, continuous. Consequently (e.g., [27]), for every f ∈ C2, we have VaRα

(
f (X)

)
= f

(
VaRα(X)

)
,

and thus, with ac = VaRαc(X) and ar = VaRαr (X), the optimization problem becomes:

min
f∈C i
H( f ) = min

f∈C i

{
− β · f (ac) + (1− β) · f (ar) + (2β− 1)(1 + θ)E[ f (X)]

}
, i = 1, 2. (6)

Since we allow SX(0) < 1, the relationships between the probability levels αc and αr, as well as
SX(0) need to be discussed. Namely, we have the following observations:

1. If 1− αc ≥ SX(0) and 1− αr ≥ SX(0), then ac = ar = 0. Thus,

• when β > 1/2, the solution to Problem (6) is f ∗(x) = 0 for all x;
• when β < 1/2, the solution is f ∗(x) = x;
• when β = 1/2, the objective function is always zero.

2. If 1− αc < SX(0) and 1− αr ≥ SX(0), then ac > 0 and ar = 0. Thus,

• when β < 1/2, the optimal ceded function is f ∗(x) = x;
• when β > 1/2, the form of the optimal ceded function is similar to the case when β = 1,

with only the risk and the profit of the cedent considered (the solution for the latter case can
be found in Case 2 of Sections 3.2 and 4.2 below);

• when β = 1/2, the optimal ceded function is f ∗(x) = x.

3. If 1− αc ≥ SX(0) and 1− αr < SX(0), then ac = 0 and ar > 0. Thus,

• when β > 1/2, the solution to Problem (6) is f ∗(x) = 0 for all x;
• when β < 1/2, the form of the optimal ceded function is similar to the case when β = 0,

with only the risk and the profit of the reinsurer being considered (the solution for the latter
case can be found in Case 3 of Sections 3.2 and 4.2 below).

• when β = 1/2, the optimal ceded function is f ∗(x) = 0 for all x.

Throughout the rest of this paper, we only consider the optimal forms of reinsurance policies
under the conditions 1− αc < SX(0) and 1− αr < SX(0).

Now, we are ready to determine the optimal forms of f , the task that makes up the contents of the
following two sections. Namely, in Section 3, we consider the case when the admissible set of ceded
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functions is C1 and in Section 4 when the admissible set is C2. As noted earlier, both classes are of
interest in the broad context of economic theory, with the class C2 being more relevant to reinsurance
policies. Nevertheless, the class C1 includes the important quota share and excess-of-loss reinsurance
policies that provide natural reference points for analysing the optimal reinsurance policies in C2.

3. Optimal Reinsurance Policies When f ∈ C1

In this section, we determine optimal insurance policies under the condition that f ∈ C1,
which means that f is convex and non-decreasing and the retained loss function I f (x) = x − f (x)
is non-decreasing. These conditions are also assumed by [11,12], where they in fact require that f is
Lipschitz-continuous (cf., e.g., Section 2 of [13]) and that f (x) linearly tends to infinity when x → ∞.

3.1. Functional Form of the Ceded Function

Here, we determine the functional form of the solution to the minimization problem:

min
f∈C1
H( f ) = min

f∈C1

{
− β · f (ac) + (1− β) · f (ar) + (2β− 1)(1 + θ)E[ f (X)]

}
. (7)

We subdivide our following analysis into three cases.

3.1.1. Case 1: β > 1/2

In this case, the coefficients in front of f (ar) and E[ f (X)] on the right-hand side of Equation (7) are
positive, and the coefficient in front of f (ac) is negative. Thus, for any ceded function f , we determine
the functional form of an optimal ceded function f ∗, such that f ∗(ac) = f (ac) and:

(1− β) f ∗(ar) + (2β− 1)Pf ∗ ≤ (1− β) f (ar) + (2β− 1)Pf .

This requires f ∗(ar) and also the entire function f ∗ to be as small as possible.
As we see from Figure 1, the convexity of f implies that the above requirements are satisfied by

the ceded function:

f ∗(x) = c(x− d)+, (8)

where c ∈ ( f ′(ac−), f ′(ac+)) and d ∈ [0, ac] are any constants. Since the slope of f should not
exceed one, we must have c ∈ [0, 1].

0

f(x)

f∗(x)

d ac ar

(a) ac < ar

0

f(x)

f∗(x)

d acar

(b) ar < ac

Figure 1. Optimal ceded functions in C1: Case 1.
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Remark 1. It is clear from the above proof that the result for the optimal form of reinsurance
policy is valid as long as Pf1 ≤ Pf2 whenever f1(x) ≤ f2(x) for all x. Obviously, this condition
is satisfied by the distortion premium calculation principle (e.g., [2]), which has been assumed in, for
example [8,25], among others. For a discussion of the validity of this condition in the case of the
weighted premium calculation principle, we refer to [3]. In the current paper, we adopt the simplest
expectation premium principle (Equation (1)) for the simplicity of presentation.

3.1.2. Case 2: β < 1/2

In this case, the coefficient in front of f (ar) on the right-hand side of Equation (7) is positive,
and those in front of f (ac) and E[ f (X)] are negative. Therefore, to solve Problem (7), for any ceded
function f , we search for a function f ∗, such that f ∗(ar) = f (ar) and:

β f ∗(ac) + (1− 2β)Pf ∗ ≥ β f (ac) + (1− 2β)Pf ,

which requires f ∗(ac) and also the entire function f ∗ to be as large as possible.
As we see from Figure 2, the convexity of f implies that the above requirements are satisfied by

the ceded function:

f ∗(x) =

{
ηx when 0 ≤ x < ar,
x− (1− η)ar when x ≥ ar,

(9)

where η ∈ [0, 1] can be any constant.

0

f(x)

f∗(x)

ac ar

(a) ac < ar

0

f(x)

f∗(x)

acar

(b) ar < ac

Figure 2. Optimal ceded functions in C1: Case 2.

3.1.3. Case 3: β = 1/2

In this case, Problem (7) simplifies to:

min
f∈C1
{ f (ar)− f (ac)} . (10)

Since f is non-decreasing, we have that when αc < αr, then Problem (10) is solved by any ceded
function f ∗, which is constant on the interval [ac, ar]. Since f ∗ has to be convex, this in turn requires f ∗

to be constant on [0, ac]. Since f ∗(0) = 0, we conclude that any function f ∗ in C1 with f ∗(x) = 0 on
[0, ar] is Pareto-optimal.

When αc > αr, then because the slope of the ceded function is no more than one, Problem (10)
is solved by f ∗, which increases at the rate of one in the interval [ar, ac], which in turn requires f ∗
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to increase at the rate of one for all x > ac because of the convexity assumption. In summary, any
function f ∗ in C1 with f ∗′(x) = 1 on [ar, ∞) is Pareto-optimal.

When αc = αr, the objective function is constant.

3.2. Parameter Values of the Optimal Ceded Function

When β > 1/2, then the optimal ceded function f ∗ is given by Equation (8) for which the
parameters c and d need to be determined. When β < 1/2, then the optimal ceded function is given by
Equation (9) for which the parameter η needs to be determined. We accomplish these tasks below by
subdividing our considerations into four cases.

3.2.1. Case 1: β > 1/2 and αc < αr

In this case, the optimal ceded function is given by Equation (8) with d < αc < αr,
and optimization Problem (7) becomes:

min
(c,d)∈[0,1]×[0,ac ]

g1(c, d),

where:

g1(c, d) = c
(
−β(ac − d) + (1− β)(ar − d) + (2β− 1)(1 + θ)

∫ ∞

d
SX(t)dt

)
.

Following [11,12], we use the notations:

θ∗ =
1

1 + θ
,

d∗ = S−1
X (θ∗),

Q(β, ac, ar) =
βac − (1− β)ar

2β− 1
,

U(x) = S−1
X (x) + (1 + θ)

∫ ∞

S−1
X (x)

SX(t)dt.

Theorem 1. Under the conditions β > 1/2 and αc < αr, the optimal ceded function is f ∗(x) = c(x− d)+
with the following parameters:

1. c = 1 and d = d∗ when θ∗ < SX(0) and U(θ∗) < Q(β, ac, ar);
2. c ∈ [0, 1] is any constant and d = d∗ when θ∗ < SX(0) and U(θ∗) = Q(β, ac, ar);
3. c = 1 and d = 0 when θ∗ ≥ SX(0) and (1 + θ)E[X] < Q(β, ac, ar);
4. c ∈ [0, 1] is any constant and d = 0 when θ∗ ≥ SX(0) and (1 + θ)E[X] = Q(β, ac, ar).

If none of the above conditions are satisfied, then f ∗(x) = 0 for all x.

Proof. We only prove Part (1) because the proofs of the other parts are similar. To minimize function
g1(c, d) over (c, d) ∈ [0, 1]× [0, ac], we first take the derivative of g1(c, d) with respect to d and have:

∂g1(c, d)
∂d

= c(2β− 1)
(

1− (1 + θ)SX(d)
)

,

which is an increasing function in d. Consequently, the function g1(c, d) is convex in d.
Since θ∗ < SX(0), the derivative ∂g1(c, d)/∂d is negative at d = 0 and is equal to zero at d∗. It is
easy to show that ac < ar if and only if ac > Q(β, ac, ar). Then, the condition U(θ∗) < Q(β, ac, ar)

indicates that d∗ < U(θ∗) < ac, and so, the deductible level d∗ minimizes the function g1(c, d) when
c > 0.
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Next, setting d = d∗, we have:

g1(c, d∗) = c(2β− 1)
(

U(θ∗)−Q(β, ac, ar)
)
< 0. (11)

Because U(θ∗) < Q(β, ac, ar) by assumption, g1(c, d∗) is minimized at c = 1. Overall, assuming
c > 0, function g1(c, d) is minimized at (c, d) = (1, d∗). Noting that g1(0, d) = 0 > g1(1, d∗), we obtain
the desired result.

Remark 2. We have the following observations:

• When β = 1, then only the cedent is considered. In this case, Q(β, ac, ar) = ac and
f ∗(x) = (x − d∗)+ when U(θ∗) < ac. Therefore, when U(θ∗) > ac, then f ∗(x) = 0 for all x,
and the primary insurance company will not purchase any reinsurance policy. This result agrees
with those derived by [11,12].

• When β ↘ 1/2, then Q(β, ac, ar) ∼ (ac − ar)/(4β− 2) < 0, and the optimal value of c is zero.
Therefore, f ∗(x) = 0 for all x.

• The value of d∗ in the excess-of-loss reinsurance policy does not depend on the choice of β whenever
U(θ∗) ≤ Q(β, ac, ar).

3.2.2. Case 2: β > 1/2 and αc > αr

In this case, the optimal ceded function is given by Equation (8) with d < αc. The order between d
and ar is not, however, determined. Therefore, the optimization problem is:

min
(c,d)∈[0,1]×[0,ac ]

g2(c, d),

where:

g2(c, d) = c
(
−β(ac − d) + (1− β)(ar − d)+ + (2β− 1)(1 + θ)

∫ ∞

d
SX(t)dt

)
,

which is a continuous function in c and d. Note, however, that the left-hand derivative
∂g2(c, d)/∂d|d=ar− is not equal to the right-hand derivative ∂g2(c, d)/∂d|d=ar+. With the
additional notations:

θ∗β =
β

(2β− 1)(1 + θ)
,

d∗β = S−1
X (θ∗β),

Uβ(x) = S−1
X (x) +

1
θ∗β

∫ ∞

S−1
X (x)

SX(t)dt,

we have the following theorem.

Theorem 2. Under the conditions β > 1/2 and αc > αr, the optimal ceded function is f ∗(x) = c(x− d)+
with the following parameters:

1. c = 1 and d = d∗ when 1− αr < θ∗ < SX(0) and Q(β, ac, ar) > U(θ∗);
2. c ∈ [0, 1] is any constant and d = d∗ when 1− αr < θ∗ < SX(0) and Q(β, ac, ar) = U(θ∗);
3. c = 1 and d = ar when θ∗ < 1− αr < θ∗β, and ac > Uβ(1− αr);
4. c ∈ [0, 1] is any constant and d = ar when θ∗ < 1− αr < θ∗β, and ac = Uβ(1− αr);
5. c = 1 and d = d∗β when 1− αc < θ∗β < 1− αr and ac > Uβ(θ

∗
β);

6. c ∈ [0, 1] is any constant and d = d∗β when 1− αc < θ∗β < 1− αr and ac = Uβ(θ
∗
β);

7. c = 1 and d = 0 when θ∗ ≥ SX(0) and Q(β, ac, ar) > (1 + θ)E[X];
8. c ∈ [0, 1] is any constant and d = 0 when θ∗ ≥ SX(0) and Q(β, ac, ar) = (1 + θ)E[X].

If none of the conditions above are satisfied, then f ∗(x) = 0 for all x.
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Proof. We prove Parts (1), (3) and (5) only, because the proofs of the other parts are similar.

Part (1):

The derivative of g2(c, d) with respect to d is given by:

∂g2(c, d)
∂d

=

{
c(2β− 1)

(
1− (1 + θ)SX(d)

)
when d < ar,

c(2β− 1)
(

β
2β−1 − (1 + θ)SX(d)

)
when d > ar.

Assuming c > 0, we have that ∂g2(c, d)/∂d is increasing in d > 0. The condition 1− αr < θ∗ <

SX(0) ensures that ∂g2(c, d)/∂d is negative at d = 0, increases to zero at d∗ = S−1
X (θ∗) < ar and

becomes positive for d > d∗. Therefore, the objective function is minimized at d = d∗. At d = d∗, the
derivative ∂g2(c, d)/∂c is given by Formula (11). Therefore, as in the proof of Theorem 1, the condition
U(θ∗) < Q(β, ac, ar) ensures that g2(c, d) is minimized at (c, d) = (1, d∗).

Part (3):

When θ∗ < 1− αr < θ∗β, the derivative ∂g2(c, d)/∂d is negative for d < ar and positive for d > ar.
Therefore, the function g2(c, d) is minimized at d = ar, assuming c > 0. Next, since:

g2(c, ar) = cβ
(
Uβ(1− αr)− ac

)
and Uβ(1 − αr) < ac by assumption, the function g2(c, d) is minimized at (c, d) = (1, ar) with
g2(1, ar) < 0. Noting that g2(0, ar) = 0 > g2(1, ar), the desired result follows.

Part (5):

Since θ∗ < θ∗β, the assumption θ∗β < 1 − αr implies θ∗ < 1 − αr. Therefore, the derivative
∂g2(c, d)/∂d is negative for d < ar, equal to zero at d = d∗β ∈ (ar, ac) and positive afterwards. Therefore,
the objective function is minimized at d = d∗β. Note that the condition ac > Uβ(θ

∗
β) implies d∗β < ac.

Furthermore, since:

g2(c, d∗β) = c

(
−β(ac − d∗β) + (2β− 1)(1 + θ)

∫ ∞

d∗β
SX(t)dt

)
= cβ

(
Uβ(θ

∗
β)− ac

)
and Uβ(θ

∗
β) < ac by assumption, the objective function g2(c, d) is minimized at (c, d) = (1, d∗β) when

c > 0. Noting that g2(0, d) = 0 > g2(1, d∗β), the desired result follows.

Remark 3. We have the following observations:

• When β = 1, then θ∗β = θ∗ and Uβ(x) = U(x). Thus, the result is exactly the same as in the first
bullet at the end of Case 1 above. The value of αr makes no difference here because only the
cedent’s risk is considered when β = 1.

• When β↘ 1/2, then Q(β, ac, ar) ∼ (ac − ar)/(4β− 2)↗ ∞, θ∗β ↗ ∞ and Uβ(θ
∗
β) = 0. Therefore,

Parts (1) and (3) of Theorem 2 apply. We have:

f ∗(x) =

{
(x− d∗)+ when θ∗ > 1− αr,
(x− ar)+ when θ∗ < 1− αr.
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3.2.3. Case 3: β < 1/2 and αc < αr

With the optimal ceded function f ∗ given by Equation (9), Problem (7) reduces to:

min
η∈[0,1]

g3(η),

where:

g3(η) = −βηac + (1− β)ηar + (2β− 1)(1 + θ)

(
η
∫ ar

0
xdFX(x) +

∫ ∞

ar
(x− ar + ηar)dFX(x)

)
.

Taking the derivative of g3(η) with respect to η, we have:

g′3(η) = −βac + (1− β)ar + (2β− 1)(1 + θ)

( ∫ ar

0
xdFX(x) + arSX(ar)

)
= (1− 2β) (Q(β, ac, ar)− (1 + θ)E[X ∧ ar]) ,

(12)

where X ∧ ar = min{X, ar}. Therefore, g3(η) achieves its minimum at η = 1 when the quantity on
the right-hand side of Equation (12) is negative. Otherwise, the minimum is at η = 0. Consequently,
we have the following theorem.

Theorem 3. Under the conditions β < 1/2 and αc < αr, the optimal ceded function is:

f ∗(x) =

{
ηx when 0 ≤ x < ar,
x− (1− η)ar when x ≥ ar,

with the parameter:

η =


1 when (1 + θ)E[X ∧ ar] > Q(β, ac, ar),
0 when (1 + θ)E[X ∧ ar] < Q(β, ac, ar),
any constant ∈ [0, 1] when (1 + θ)E[X ∧ ar] = Q(β, ac, ar).

Remark 4. A few observations follow:

• When β ↗ 1/2, then g′3(η) → (ar − ac)/2 > 0. In this case, η∗ = 0 and the optimal reinsurance
policy is f ∗(x) = (x− ar)+.

• When β = 0 and only the reinsurer’s risk is considered, Theorem 3 holds with Q(β, ac, ar) = ar.

3.2.4. Case 4: β < 1/2 and αc > αr

With the optimal reinsurance function f ∗ given by Equation (9), Problem (7) becomes:

min
η∈[0,1]

g4(η),

where

g4(η) = −β(ac − ar + ηar) + (1− β)ηar

+(2β− 1)(1 + θ)

(
η
∫ ar

0
xdFX(x) +

∫ ∞

ar
(x− ar + ηar)dFX(x)

)
.

Taking the derivative of g4(η) with respect to η, we get:

g′4(η) = (1− 2β)
(

ar − (1 + θ)E[X ∧ ar]
)

,
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which yields the following theorem.

Theorem 4. Under the conditions β < 1/2 and αc > αr, the optimal ceded function is:

f ∗(x) =

{
ηx when 0 ≤ x < ar,
x− (1− η)ar when x ≥ ar,

with the parameter:

η =


1 when (1 + θ)E[X ∧ ar] > ar,
0 when (1 + θ)E[X ∧ ar] < ar,
any constant ∈ [0, 1] when (1 + θ)E[X ∧ ar] = ar.

Note that Theorems 3 and 4 are quite similar, with the role of Q(β, ac, ar) in the former theorem
played by ar in the latter one.

3.3. An Illustrative Example

In this section, we construct a numerical example to illustrate the Pareto optimality of the
reinsurance policies that we derived above. Specifically, we assume that the loss variable X follows the
exponential distribution with the survival function SX(x) = e−0.001x for x ≥ 0. Let the safety loading
parameter be θ = 0.2. Then, θ∗ = 1/(1 + θ) = 0.833, d∗ = S−1

X (θ∗) = 182.3 and U(θ∗) = 1182.3.
We discuss two scenarios.

3.3.1. Scenario A: αc = 0.95 and αr = 0.99

In this case, ac = 2995.7 and ar = 4605.2. Applying Theorems 1 and 3, we have:

f ∗1 (x) =


(x− 4605.2)+ when β ∈ [0, 0.5),
0 when β ∈ (0.5, 0.654),
(x− 182.3)+ when β ∈ (0.654, 1].

When β = 0.5, then:

f ∗1A(x) =

{
0 when x ≤ 4605.2,
unspecified when x > 4605.2.

When β = 0.654, then:

f ∗1A(x) = c(x− 182.3)+

for any constant c ∈ [0, 1]. The values of VaR(C f ∗1A
) versus VaR(R f ∗1A

) are reported in Table 1.

Table 1. VaRs of the cedent and the reinsurer when f ∈ C1.

VaRαc(C f ∗1A
) VaRαr (R f ∗1A

)

β ∈ [0, 0.5) 3005.73 −10
β = 0.5 between 2995.73 and 3005.73 between −10 and 0
β ∈ (0.5, 0.654) 2995.73 0
β = 0.654 between 1182.32 and 2995.73 between 0 and 3422.85
β ∈ (0.654, 1] 1182.32 3422.85

We have the following observations:
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• For β ∈ (0.654, 1], the insurer is “more important”. As a result, it retains the “good” risk in the
layer of losses (0, S−1

X (θ∗)) and cedes the rest. For β ∈ [0, 0.5), the reinsurer is “more important”,
and it assumes the risk above ar. As a result, the chance of a payment is so small that its VaR does
not increase; it actually reduces to −10 because of the collected premium. For β ∈ (0.5, 0.654),
no agreement is reached between the two parties.

• From Table 1, we see that when β gets larger and the cedent becomes increasingly important,
then VaRαc(C f ∗1A

) decreases, whereas VaRαr (R f ∗1A
) increases.

• When β = 0.5 and β = 0.654, the optimal ceded functions are only partially specified, and the
risk of the two parties varies in some range. For example, when β = 0.5, then VaRαc(C f ∗1A

) is
maximized by choosing f ∗1A(x) = (x− 4605.2)+ because the cedent is choosing a maximal ceded
function and paying a maximal reinsurance premium (within the partially-specified optimal ceded
functions). However, its VaR does not reduce with such a high deductible value. On the other hand,
VaRαc(C f ∗1A

) is minimized with f ∗1A(x) = 0, within the partially-specified optimal ceded functions.

3.3.2. Scenario B: αc = 0.99 and αr = 0.95

In this case, we have ac = 4605.2 and ar = 2995.7. Applying Theorems 2 and 4, we have:

f ∗1B(x) =

{
(x− 2995.7)+ when β ∈ [0, 0.5),
(x− 182.3)+ when β ∈ (0.5, 1].

(13)

When β = 0.5,

f ∗1B(x) =

{
x− d when x ≥ 2995.7,
unspecified when x < 2995.7,

(14)

where d ∈ [0, 2995.7] can be any constant. The values of VaR(C f ∗1B
) versus VaR(R f ∗1B

) are reported in
Table 2.

Table 2. VaRs of the cedent and the reinsurer when f ∈ C1.

VaRαc(C f ∗1B
) VaRαr (R f ∗1B

)

β ∈ [0, 0.5) 3055.73 −60
β = 0.5 between 1182.32 and 3055.73 between −60 and 1813.41
β ∈ (0.5, 1] 1182.32 1813.41

4. Optimal Reinsurance Policy When f ∈ C2

In this section, we determine optimal reinsurance policies when f ∈ C2, that is when both f and
the retained loss function I f are non-decreasing. Comparing this situation with the earlier f ∈ C1,
we can now deal with non-convex ceded functions, such as f (x) = min{x, l} for any retention level
l > 0. Mathematically, the problem becomes:

min
f∈C2
H( f ) = min

f∈C2

{
− β · f (ac) + (1− β) · f (ar) + (2β− 1)(1 + θ)E[ f (X)]

}
. (15)

As pointed out in the Introduction, solutions to similar problems exist in the literature, and we
refer to [7,8,25] for details and further references. Our contribution in this paper is to generalize the
geometric arguments of [12] to the situation when the interests of both the cedent and the reinsurer
are taken into account, and we do so in such a way that allows us to avoid lengthy mathematical
arguments and consequently helps us to gain useful intuition. In addition, for all scenarios considered,
we are able to provide explicit recipes for determining optimal reinsurance policies.

In Section 4.1 below, we derive optimal forms of ceded functions, and in Section 4.2, we determine
parameter values of the optimal functions. Section 4.3 contains an illustrative numerical example,
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which is a continuation of that of Section 3.3. Throughout the rest of this section, we assume 1− αc <

SX(0) and 1− αr < SX(0).

4.1. Functional Form of the Ceded Function

We have subdivided our considerations into three cases.

4.1.1. Case 1: β > 1/2

Similarly to Case 1 of Section 3.1.1, we determine the functional form of the ceded function f ∗ in
the following manner. For any f ∈ C2, we seek f ∗, such that f ∗(ac) = f (ac) and:

(1− β) f ∗(ar) + (2β− 1)Pf ∗ ≤ (1− β) f (ar) + (2β− 1)Pf .

This requires f ∗(ar), as well as the entire function f ∗ to be as small as possible for a fixed value of
f ∗(ac).

As we see from Figure 3, because f is non-decreasing with a slope not exceeding one,
the aforementioned requirements are satisfied by the function:

f ∗(x) = min{(x− d)+, ac − d}

=


0 when x ≤ d,
x− d when d < x < ac,
ac − d when x ≥ ac,

(16)

where d ∈ [0, ac] can be any constant. The optimal value of d will be determined in Section 4.2 below.
In reinsurance jargon, the above specified optimal form of the reinsurance policy is for the reinsurer to
provide coverage over the layer (d, ac).

0

f(x)

d ac ar

f∗(x)

(a) ac < ar

0

f(x)

d acar

f∗(x)

(b) ar < ac

Figure 3. Optimal ceded functions in C1: Case 1.

4.1.2. Case 2: β < 1/2

Similarly to Case 2 of Section 3.1.1, since the coefficients in front of f (ac) and Pf in objective
Function (15) are negative, the optimal reinsurance policy is found by seeking f ∗, such that
f ∗(ar) = f (ar) and:

β f ∗(ac) + (1− 2β)Pf ∗ ≥ β f (ac) + (1− 2β)Pf .
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As we see from Figure 4, these requirements are satisfied by the function:

f ∗(x) = min{x, d}1{x≤ar} + (x− ar + d)1{x>ar}

=


x when 0 ≤ x ≤ d,
d when d < x ≤ ar,
x− ar + d when x > ar,

(17)

where d ∈ [0, ar] can be any constant. Hence, the optimal form of the reinsurance policy is for the
reinsurer to provide a coverage except for the layer (d, ar). In other words, the insurer retains losses in
the layer (d, ar).

0

f(x)

d ac ar

f∗(x)

(a) ac < ar

0

f(x)

d acar

f∗(x)

(b) ar < ac

Figure 4. Optimal ceded functions in C1: Case 2.

4.1.3. Case 3: β = 1/2

In this case, the minimization problem (15) simplifies to:

min
f∈C2
{ f (ar)− f (ac)} .

When αc < αr, because the ceded function is non-decreasing, this requires f ∗ to be constant on
the interval (ac, ar). Therefore, any function f ∗ in C2 with f ∗(x) = c on (ac, ar), where c ∈ [0, ac] is a
constant, is Pareto-optimal.

When αc > αr, because the slope of the ceded function cannot exceed one, the function f ∗ increases
at the rate of one on the interval (ar, ac). Therefore, any function f ∗ in C2 with f ∗′(x) = 1 on (ar, ac)

is Pareto-optimal.
Finally, when αc = αr, then the objective function is always constant.

4.2. Parameter Values of the Optimal Ceded Function

In this section, we obtain parameter values of the optimal ceded functions that we derived in
Section 4.1. Four cases are considered separately.

4.2.1. Case 1: β > 1/2 and αc < αr

Let:
θ∗ =

1
1 + θ

and:
d∗ = S−1

X (θ∗).
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Theorem 5. Under the conditions β > 1/2 and αc < αr, the optimal ceded function is f ∗(x) =

min{(x− d)+, ac − d} with the parameter:

1. d = d∗ when 1− αc < θ∗ < SX(0);
2. d = 0 when θ∗ ≥ SX(0).

In addition, when θ∗ ≤ 1− αc, then f ∗(x) = 0 for all x.

Proof. With the function f ∗ given by Equation (16), optimization Problem (15) becomes:

min
d∈[0,ac ]

g5(d),

where:

g5(d) = (2β− 1)
(
(1 + θ)

∫ ac

d
SX(x)dx− ac + d

)
.

The derivative:

g′5(d) = (2β− 1)(1− (1 + θ)SX(d))

is increasing in d. Therefore, when 1− αc < θ∗ < SX(0), then g5(d) is minimized at 0 < d∗ < ac.
When θ∗ > SX(0), then g5(d) is minimized at d = 0. Finally, when θ∗ < 1− αc, then g5(d) is minimized
at d = ac, and so, f ∗(x) = 0.

4.2.2. Case 2: β > 1/2 and αc > αr

With the function f ∗ given by Equation (16), optimization problem (15) reduces to:

min
d∈[0,ac ]

g6(d),

where:

g6(d) = −β(ac − d) + (1− β)(ar − d)+ + (2β− 1)(1 + θ)
∫ ac

d
SX(x)dx.

Let:
θ∗β =

β

(2β− 1)(1 + θ)

and
d∗β = S−1

X (θ∗β).

We calculate the derivative:

g′6(d) =

{
(2β− 1)(1 + θ)(θ∗ − SX(d)) when d < ar,
(2β− 1)(1 + θ)(θ∗β − SX(d)) when d > ar,

which is an increasing function in d, and so, we have the following theorem.

Theorem 6. Under the conditions β > 1/2 and αc > αr, the optimal ceded function is f ∗(x) = min{(x−
d)+, ac − d} with the parameter:

1. d = d∗ when 1− αr < θ∗ < SX(0);
2. d = ar when θ∗ < 1− αr < θ∗β;
3. d = d∗β when θ∗ < 1− αr and 1− αc < θ∗β < 1− αr;
4. d = 0 when θ∗ ≥ SX(0).

If none of the above conditions are satisfied, then f ∗(x) = 0 for all x.
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Proof. We use similar arguments to those in Theorem 2. We illustrate them here by proving Part (1)
only. When 1− αr < θ∗ < SX(0), the derivative g′6(d) reaches zero at d∗ = S−1

X (θ∗) ∈ (0, ar) and then
remains positive for d > d∗. Therefore, g6(d) reaches its minimum at d∗ = S−1

X (θ∗). With this, we
conclude the proof of Theorem 6.

4.2.3. Case 3: β < 1/2 and αc < αr

With the function f ∗ given by Equation (17), optimization Problem (15) reduces to:

min
d∈[0,ar ]

g7(d),

where the objective function is:

g7(d) =

 −βd + (1− β)d + (2β− 1)(1 + θ)
(∫ d

0 SX(x)dx +
∫ ∞

ar
SX(x)dx

)
when d < ac,

−βac + (1− β)d + (2β− 1)(1 + θ)
(∫ d

0 SX(x)dx +
∫ ∞

ar
SX(x)dx

)
when d > ac.

Thus:

g′7(d) =

{
(1− 2β)(1 + θ)(θ∗ − SX(d)) when d < ac,
(1− 2β)(1 + θ)(θ∗β − SX(d)) when d > ac,

which leads us to the following theorem, whose proof is similar to that of Theorem 3 and thus omitted.

Theorem 7. Under the conditions β < 1/2 and αc < αr, the optimal ceded function is:

f ∗(x) = min{x, d}1{x≤ar} + (x− ar + d)1{x>ar}

with the parameter:

1. d = d∗ when 1− αc < θ∗ < SX(0);
2. d = ac when θ∗ < 1− αc < θ∗β;
3. d = d∗β when θ∗ < 1− αc and 1− αr < θ∗β < 1− αc;
4. d = ar when θ∗ < 1− αc and θ∗β < 1− αr;
5. d = 0 when θ∗ ≥ SX(0).

If none of the above conditions are satisfied, then f ∗(x) = 0 for all x.

4.2.4. Case 4: β < 1/2 and αc > αr

With the function f ∗ given by Equation (17), optimization Problem (15) reduces to:

min
d∈[0,ar ]

g8(d),

where:

g8(d) = −β(ac − ar + d) + (1− β)d + (2β− 1)(1 + θ)

(∫ d

0
SX(x)dx +

∫ ∞

ar
SX(x)dx

)
.

Thus,

g′8(d) = (1− 2β)(1 + θ)(θ∗ − SX(d)),

which gives us the following theorem.

Theorem 8. Under the conditions β < 1/2 and αc > αr, the optimal ceded function is:

f ∗(x) = min{x, d}1{x≤ar} + (x− ar + d)1{x>ar}
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with the parameter:

1. d = d∗ when 1− αr < θ∗ < SX(0);
2. d = ar when θ∗ < 1− αr < SX(0);
3. d = 0 when θ∗ ≥ SX(0).

If none of the above conditions are satisfied, then f ∗(x) = 0 for all x.

4.3. The Illustrative Example Continued

In this subsection, we continue the illustrative example of Section 3.3, but now assume that the
admissible class of ceded functions is C2.

4.3.1. Scenario A: αc = 0.95 and αr = 0.99

Applying Theorems 5 and 7, we have:

f ∗2A(x) =

{
min

{
x, 182.3

}
1{x≤4605.2} + (x− 4422.9)1{x>4605.2} when β ∈ [0, 0.5),

min
{
(x− 182.3)+, 2813.4

}
when β ∈ (0.5, 1].

When β = 0.5, then:

f ∗2A(x) =

{
d when 2995.7 ≤ x ≤ 4605.2,
unspecified otherwise,

where d ∈ [0, 2995.7] can be any constant.
The values of VaR(C f ∗2A

) versus VaR(R f ∗2A
) are reported in Table 3.

Table 3. VaRs of the cedent and the reinsurer when f ∈ C2.

VaRαc(C f ∗2A
) VaRαr (R f ∗2A

)

β ∈ [0, 0.5) 3025.41 −29.68
β = 0.5 between 1122.32 and 3025.41 between −29.68 and 1873.41
β ∈ (0.5, 1] 1122.32 1873.41

We have the following observations:

• Since the cedent and the reinsurer have more choices when f ∈ C2, their VaRs under the
optimal reinsurance policy f ∗2A are lower than the corresponding ones under f ∗1A. In particular,
the reinsurer’s risk is reduced significantly even when β = 1.

• For β ∈ [0, 0.5), the reinsurer assumes the “good” risk in the layer (0, S−1
X (θ∗)), as well as losses

greater than 4422.9. The former layer creates profit, and the latter layer does not contribute to its
VaR because the chance of penetration is too small compared with the probability level αr used in
its VaR.

• For β ∈ (0.5, 1), the insurer retains the “good” risk in the layer (0, S−1
X (θ∗)), as well as the losses

greater than 2813.4. The former layer creates profit, and the latter layer does not contribute to its
VaR because the chance of penetration is too small compared with the probability level αc used in
its VaR.

4.3.2. Scenario B: αc = 0.99 and αr = 0.95

Applying Theorems 6 and 8, we have:

f ∗2B(x) =

{
min

{
x, 182.3

}
1{x≤2995.7} + (x− 2813.4)1{x>2995.7} when β ∈ [0, 0.5),

min
{
(x− 182.3)+, 4422.85

}
when β ∈ (0.5, 1].
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When β = 0.5,

f ∗2B(x) =

{
x− d when x ∈ [2995.7, 4605.2],
unspecified when x ∈ [0, 2995.7) ∪ (4605.7, ∞),

(18)

where d ∈ [0, 2995.7] can be any constant. The values of VaR(C f ∗2B
) versus VaR(R f ∗2B

) are reported
in Table 4.

Table 4. VaRs of the cedent and the reinsurer when f ∈ C2.

VaRαc(C f ∗2B
) VaRαr (R f ∗2B

)

β ∈ [0, 0.5) 3073.43 −77.67
β = 0.5 between 1170.33 and 3073.43 between −77.67 and 1825.38
β ∈ (0.5, 1] 1170.33 1825.38

5. A Numerical Comparison of the Optimal Reinsurance Policies in C1 and C2

In Sections 3.3 and 4.3, we derived the Pareto-optimal reinsurance policies in C1 and C2,
respectively. In this section, we compare the two cases.

In Figure 5, we depict f ∗1A and f ∗2A obtained for Scenario A with the proportional reinsurance
f1(x) = ax when a varies from zero to one and also with the excess-of-loss reinsurance f2(x) = (x− d)+
when the deductible level d varies from zero to 4605.2 = max{ac, ar}. The following can be concluded
from the figure.

Figure 5. VaRs of the cedent and the reinsurer under different policies: Scenario A.

• The efficient frontier for the VaRs of the two parties with f ∈ C1 is represented by the path from
A = (1182.32, 3422.85) to B = (2995.72, 0) and then to C = (3005.73,−10). Note that the points
between A and B represent the VaRs of the two parties resulting from the optimal policies obtained
with β = 0.5. The points between B and C represent the VaRs of the two parties resulting from the
optimal policies obtained with β = 0.654.
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• The efficient frontier for the VaRs of the two parties when f ∈ C2 is represented by the path from
D = (1122.32, 1873.41) to E = (3025.41,−29.68).

• For the quota-share reinsurance with f1(x) = ax where a ranges from zero to one, the VaRs of the
two parties go from B to F = (1200, 3405.2). When f ∈ C1, the quota-share reinsurance policy is
quite close to the efficient frontier.

• For the excess-of-loss reinsurance f2(x) = (x− d)+ with d ranging from zero to ar = 4605.2, the
VaRs of the two parties go along the path F → A→ G → C with G = (3055.47, 1545.43).

From Figure 5, we conclude that if the reinsurer worries about the right-hand tail more than
the primary insurer (αc < αr), then the difference between the efficient frontiers obtained for f ∈ C1

and f ∈ C2 is significant. This means that the convexity requirement in the definition of C1 is quite
restrictive to the reinsurer, and the coverage with an upper limit (which is not allowed in C1) is
valuable. In the case when the convexity of the ceded function must be required, quota-share policies
are quite efficient.

In Figure 6, we compare f ∗1B and f ∗2B obtained for Scenario B with the quota-share reinsurance
policies f1(x) = ax when a ranges from zero to one and the excess-of-loss reinsurance policies
f2(x) = (x− d)+ when the deductible d ranges from zero to 4605.2 = max{ac, ar}.

Figure 6. VaRs of the cedent and the reinsurer under different policies: Scenario B.

In particular, we observe the following:

• The efficient frontier for the VaRs of the two parties with f ∈ C1 is represented by the path from
A = (1182.32, 1813.41) to B = (3055.73,−60).

• The efficient frontier for the VaRs of the two parties when f ∈ C2 is represented by the path from
C = (1170.33, 1825.38) to D = (3073.43,−77.67). In fact, it can algebraically be shown that the
path from B to A is actually a part of the path from D to C. That is, by allowing f ∈ C2, the efficient
frontier is extended from the path B→ A to the path D → C.

• For the quota-share reinsurance with the parameter a ranging from zero to one, the VaRs of the
two parties are represented by the path from E = (4605.7, 0) to F = (1200, 1795.7). We see that
when αc > αr, the quota-share reinsurance policies are not efficient.
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• For the excess-of-loss reinsurance with the parameter d ranging from zero to ac = 4605.2, the VaRs
of the two parties change along the path F → A→ B→ E. We see that setting d ∈ (0, ar) is quite
efficient, whereas setting d ∈ (ar, ac) is not.

From Figure 6, we conclude that if the primary insurer worries about the right-hand tail more than
the reinsurer (αc > αr), then the excess-of-loss policies with the deductible level ranging from S−1

X (θ∗)

to ar provide a good part of the efficient frontier. The quota-share policies are in general inefficient.

6. Conclusions

In this paper, we have extended the geometric approach of [12] to obtain the optimal reinsurance
policies accommodating both the cedent’s and the reinsurer’s interests. Specifically, we have derived
the forms of optimal reinsurance functions and also specified their parameter values within two
classical sets of admissible ceded functions. We have adopted the same value-at-risk measure for
assessing risks of the two parties, but at possibly different probability levels. Illustrative numerical
examples have been constructed to illuminate our theoretical findings and their practical implications.
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