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Abstract: Designing post retirement benefits requires access to appropriate investment instruments to
manage the interest rate and longevity risks. Post retirement benefits are increasingly taken as a form
of income benefit, either as a pension or an annuity. Pension funds and life insurers offer annuities
generating long term liabilities linked to longevity. Risk management of life annuity portfolios for
interest rate risks is well developed but the incorporation of longevity risk has received limited
attention. We develop an immunization approach and a delta-gamma based hedging approach to
manage the risks of adverse portfolio surplus using stochastic models for mortality and interest rates.
We compare and assess the immunization and hedge effectiveness of fixed-income coupon bonds,
annuity bonds, as well as longevity bonds, using simulations of the portfolio surplus for an annuity
portfolio and a range of risk measures including value-at-risk. We show how fixed-income annuity
bonds can more effectively match cash flows and provide additional hedge effectiveness over coupon
bonds. Longevity bonds, including deferred longevity bonds, reduce risk significantly compared to
coupon and annuity bonds, reflecting the long duration of the typical life annuity and the exposure
to longevity risk. Longevity bonds are shown to be effective in immunizing surplus over short and
long horizons. Delta gamma hedging is generally only effective over short horizons. The results of
the paper have implications for how providers of post retirement income benefit streams can manage
risks in demanding conditions where innovation in investment markets can support new products
and increase the product range.
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1. Introduction

Post retirement benefits in the form of an income benefit, either as a pension or an annuity, provide
a hedge against both investment risks and mortality risk for an individual. Pension funds and life
insurers offer these pensions and annuities generating long term liabilities linked to both interest
rates and aggregate improvements in longevity of its pensioners and annuitants. Risk management
of these pensions and life annuity portfolios needs to take into account interest rate risks as well as
longevity risk. The risk arises from a mismatch in changes in the value of assets and liabilities as
interest rates and future mortality expectations change, resulting in a potentially adverse change in
portfolio surplus.

Interest rate risk immunization has a long tradition in the optimal selection of portfolios of
bonds to match insurance liabilities in both the actuarial and the financial literature. The classical
approach to interest rate immunization of an insurer’s liabilities is Redington’s theory of immunization
which is based on a deterministic shock to a flat yield curve [1]. Fisher and Weil [2] extended the
analysis to a non-flat yield curve. Extensions of interest rate immunization to multiple liabilities and
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non-constant shocks as well as the application of linear programming techniques to select immunized
bond portfolios are presented in Shiu [3-5].

Immunization has been applied to mortality risk. Tsai and Chung [6] and Lin and Tsai [7]
derive duration and convexities for a range of life annuity and life insurance product portfolios.
They then construct portfolios of life annuity and life insurance products that immunize mortality
risk, a form of natural hedging. They consider alternative duration and convexity matching strategies
with differing assumptions for mortality shocks. Lin and Tsai [7] use Value-at-Risk measures for the
time zero surplus and the Lee-Carter model to assess the effectiveness of the immunization strategies.
They consider instantaneous proportional and parallel shifts in the one-year survival probability (py)
and the one-year death probability (g,). Tsai and Chung [6] apply a linear hazard transformation to
mortality immunization allowing a proportional and parallel shift in mortality rates. Only mortality
shocks and portfolios of life annuity and life insurance products are considered.

Luciano et al. [8] develop delta-gamma hedging for annuity providers allowing for both stochastic
interest rates and stochastic mortality rates. They use zero coupon bonds and zero coupon survival
bonds as the assets in the hedging strategies and pure endowment contracts as the liability. Using delta
and gamma risk measures based on their stochastic interest rate and mortality models, they select
portfolios that have zero delta and zero gamma for both mortality and financial risk.

We consider the immunization of a life annuity portfolio and the extension of linear programming
approaches to the selection of fixed-income and longevity bonds. We consider only static hedging since
this provides a consistent approach for comparison. We use simulation and a range of risk measures
including volatility, value-at-risk and expected shortfall for the portfolio surplus and comparisons
of these risk measures to assess the effectiveness of the immunization and hedging strategies.
Both duration and convexity matching approaches, commonly used in fixed interest portfolio selection,
as well as delta-gamma hedging, commonly used to hedge derivatives, with stochastic interest rate
and mortality models are considered and compared. We implement immunization and delta-gamma
hedging for an asset portfolio consisting of fixed-income coupon and annuity bonds as well as longevity
linked bonds. Annuity bonds pay a level stream of principal and interest and have the potential to
better match life annuity cash flows. Longevity bonds link payments to mortality.

We consider traditional immunization approaches using duration and convexity since this is
standard in measuring risk for fixed income portfolios and has direct relevance for bond portfolios to
match life annuity cash flows. Delta-gamma hedging, that is usually most relevant for derivative cash
flows, have the potential to select bond portfolios when both interest rate and longevity risk are to be
hedged. Bonds are derivatives of the underlying interest rates, or in the case of the longevity bonds,
both the underlying interest rates and mortality rates.

The main results are that longevity bonds are very effective in immunizing longevity risk. Only a
small number of both short and long maturity longevity bonds are required to immunize life annuity
liabilities. Annuity bonds better match the expected cash flows of life annuity liabilities over coupon
bonds, but longevity bonds better manage the risk. Over short horizons both immunization and
delta-gamma hedging are effective in selecting bond portfolios for life annuities. Over longer horizons,
immunization is more effective. Delta-gamma hedging is based on stochastic models for both interest
rate and mortality risk and is less robust to these underlying risks over longer horizons as compared
to immunization.

This paper is structured as follows: Section 2 describes the modelling framework for the
underlying mortality model and interest rate model respectively. Section 3 outlines the construction
of portfolios including derivation of pricing, delta, gamma, duration and convexity results. Section 4
provides details of the bond portfolios used in the immunization and hedging based on both available
and hypothetical bonds. Section 5 presents the linear program used for selecting the immunization
bond portfolios and compares the cash flows of the annuity liability with the bond portfolios. Section 6
presents the linear program used for the delta-gamma hedging strategies and compares the cash flows
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for the bond portfolios with the annuity liability. Section 7 uses the stochastic models to compare the
hedge performance of the immunization and hedging bond portfolios. Section 8 concludes the paper.

2. Stochastic Models and Calibration

The risk of adverse portfolio surplus for a life insurer with a life annuity portfolio arises
from adverse changes in the value of the assets relative to the value of the liabilities. Traditional
immunization approaches aim to minimize this risk using deterministic shocks to yield curves and
revaluing the assets and the liabilities. Asset portfolios of bonds are selected to minimize the changes
in surplus. Delta-gamma hedging selects assets by matching the sensitivity of asset and liability
values to changes in the underlying financial and demographic variables that determine these values.
This hedging uses stochastic models of the underlying risks.

In order to compare these different approaches, we develop stochastic mortality and interest
rate models. The models are used to derive pricing formulas to value the assets and liabilities as
well as to quantify mortality and interest rate risk for a life annuity portfolio. By using simulation of
the portfolio surplus of an annuity portfolio we are able to compare delta-gamma hedging strategies
with immunization strategies. To do this we compare the hedge effectiveness of these approaches by
simulating the surplus of a life annuity fund with asset portfolios selected using both immunization and
delta-gamma hedging. We then compute risk statistics for the surplus using standard risk measures of
volatility, value-at-risk and expected shortfall. The effectiveness of these approaches are then compared
based on the reduction in these different risk measures for the different portfolios.

The risk factors in the interest rate model are assumed to be independent of those in the mortality
model. We use Australian mortality and interest rate data to calibrate the models. Australian mortality
and interest rate experience is representative of many developed economics. Australia has a well
developed bond market including coupon bonds and annuity bonds.

2.1. Mortality Model

The mortality model is a two-factor Gaussian stochastic Makeham model based on Schrager [9].
This has been used in a number of studies of longevity risk. The model is affine and gives closed
form solutions for survival probabilities. The mortality intensity for an individual aged x at time ¢t is
given by:

He() = Vi () + Ya(b)c" M

where Y (f) and Y;(t) are the base and age-dependent mortality risk factors respectively. As time
passes an individual ages so that the age x is increasing as time increases.
The stochastic differential equations for the mortality risk factors are:

dY;(t) = —a;Y;(t)dt + o dW2(t) , fori = 1,2 )

where Y;(0) = Y; fori =1,2;a; > 0and 0; > 0; dW;@(t)dWéQ(t) = 0 and we assume the two mortality
factors are independent, consistent with the assumption made in Biffis [10], Blackburn and Sherris [11]
and Wong et al. [12].

Pricing longevity bonds and life annuities requires the mortality dynamics under a risk-neutral
measure Q. The longevity risk market is not liquid enough to calibrate risk premiums and there is
no agreed basis for the size of these risk premiums. Since the risk premium will impact both assets
and liabilities and will offset to a significant extent, and it will not explicitly impact the risk measures
used, it is assumed zero, and we use the real world measure P for pricing and risk measures. This is
the assumption made by Luciano et al. [8].

Based on the affine framework, the forward survival probability is

S(x, " T) _ E? [e_ ftT Hx(u)du] — ,C(xt,T)=Dy (x,t,T)Y1(t)=Da(x,t,T) Y (t) )
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where C(x,t,T), D1(x,t,T) and Do(x,t,T) are of the forms:

2 o2 c2(x+t)
C(X, i’, T) = 2071% |:LZ1(T — t) — 2(1 — Eiul(T*t)) + %(1 — E2ﬂ1(Tt)):| + WZEIW (4)
X [(az —log(c))(T—t) —2(1— e (a2-10g(c))(T—1)y 4 %(1 _ eZ(Hzlog(C))(Tt))]
_ ,—a1(T—t)
Dy(x,t,T) = 2200 ®)
ap
— o~ (a2—1og(c))(T—t)
Dy(x,t,T) = il e (6)

ap —log(c)

with boundary conditions C(x, T, T) =0, D1(x, T, T) = 0and D(x, T, T) = 0.
The mortality model is calibrated to Australian Mortality Data for males aged 50-100 and years

1960-2009 obtained from the Human Mortality Database [13]. We used the estimation methods in

Koopman and Durbin [14] and Wong et al. [12] based on the Kalman filter. The calibrated parameters

for the mortality model are shown in Table 1.

Table 1. Parameters of the Calibrated Mortality Model—Australian Population Males Aged 50 to 100
for years 1960 to 2009.

Parameter Estimate Standard Error

ay 0.00621 1.48e-04
ap 0.000742 1.93e-05
o1 0.000204 5.92e-07
0 0.0000148 7.79e-09

c 1.092 6.19e-06

Figure 1 shows the historical mortality rate with the projected mortality rates from the calibrated
model. Mean absolute relative error (MARE) range between 4% and 18% for the fitted ages from 50 to
100, similar to Schrager’s results when calibrated to Dutch mortality data.

Historical and Projected Mortality Rate Data for Australian Population 1960-2050 Ages 50—100
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Figure 1. Historical (1960-2009) and Projected (2010-2050) Mortality Rates for Australian Population
Males Aged 50-100.
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2.2. Interest Rate Model

The instantaneous interest rate r(¢) is modelled as a single-factor Cox-Ingersoll-Ross (CIR) process
with its dynamics under the risk neutral (Q measure given by:

Ar(t) = (6, = r())dt + 07/ r(HAWR (1) )

where x, > 0 is the speed of mean reversion of r(t), 6, > 0 is the long-run mean of r(t), or > 0is
the volatility of the short rate process, and 2x,0, > 0’,,2 needs to be satisfied to ensure the process is
positive [15].

The dynamics of the interest rate under the P measure, where the over-bar is used for the real
world parameters, is given by:

dr(t) = %@ — r(0)dt+or/r(DdW; (1) ®)
- Kr(Gr—r(t))dt+U,m<dWﬁ@(t)—Ar(t,r(t))dt> )

where N
/\; _ o (£ 7(8)) (10)
r(t)
Ky =K + AL (11)
%0,
= 12
=T (12)

Ar(t,7(t)) is the market premium of interest rate risk and we assume A,(t,7(t)) to be a function of
\/7(t) so that A/ is a constant.
The forward zero coupon bond price is given by:

B(t,T) = E?[e* ffr(u)du] — G (ET) =Dy (£T)r(t) (13)

where C,(t,T) and D, (t, T) are given by:

2.0 2 e(7r+Kr)(T—t)
C(t,T)="L1lo 4 14
2 'Yr(T_t) -1
D,(t,T) = (e ) (15)

(9r + Kr)(e%(Tft) — 1)+ 27

Tr =1/ K2 + 20}2 (16)

with boundary conditions C,(T,T) = 0 and D,(T,T) = 0.

The CIR interest model parameters are estimated from zero-coupon bond yield data for
40 different maturities (3, 6,9, ..., 117, 120 months) using daily data from 4 January 1993 to 31 July
2014 along with daily short rate data. The zero-coupon bond yield and short rate data were obtained
from the Reserve Bank of Australia.

The estimation technique is adopted from Rogers and Stummer [16] and Kladivko [17]. It uses
the General Method of Moments (GMM) approach with M + 2 moment conditions. M is the number
of different maturities for the zero coupon bond data, in our case M = 40. The first M moments fit the
yield curve allowing estimation of the implied market interest rate risk premium. The last 2 moments
fit the time series data of short rates and match the mean and variance of the real world CIR interest rate
process. This calibration method estimates the model parameters as well as the market risk premium

with
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using both yield curve and short rate data. The parameter estimates were found to be consistent across
time when we fit the model to data for different time periods using the GMM. Fitting the model only
to the yield curve data results in unreasonable estimates for the parameters.

The calibrated parameters of the interest model are shown in Table 2.

Table 2. Parameters of the Calibrated Interest Rate Model—Australian Interest Rate Data 4 January
1993 to 31 July 2014.

Parameter! Estimate Standard Error

Xy 0.445 0.0022
0, 0.0523 0.0012
oy 0.0414 0.0013
Ay —-0.111 0.0022

1%, and 0, are parameters under P measure.

The model parameters imply an Australian long-term interest rate of approximately 5.2%.
The parameters under the Q measure are x, = 0.334 and 6, = 0.0697. The standard errors for
the parameter estimates are derived using numerical approximation of the asymptotic variance matrix
as in Métyas [18].

Figure 2 shows the 50-year yield curve used for product pricing.

0.055 - Yield Curve for 50 years as at 30-June-2014 (Real-world Measure)
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Figure 2. Yield Curve for 50 years as at 30 June 2014.

3. Life Annuity Immunization

Our approach is to consider the immunization and hedging strategy from the perspective of an
annuity provider issuing whole-life annuities with level monthly payments to males aged 65 at 30 June
2014. All life annuities are single premium and the insurer invests these premiums into fixed-income
securities and longevity-linked securities. Our focus is on interest rate and longevity risk and we do
not include idiosyncratic mortality risk or basis risk. Risk is measured by considering the surplus
distribution on the portfolio taking into account the assets and liabilities. Risk measures used are
volatility of the surplus as well as value-at-risk and expected shortfall. The effectiveness of the different
asset portfolios is assessed by comparing these differing risk measures. A portfolio that produces a
lower value for these risk measures is considered as more effective in managing the risk.

The initial number of policyholders is 100, the coupon bonds have a face value of 100 and the
payment amount for the annuity bonds and the longevity bonds is $1. These values are used for
convenience and are in effect arbitrary. The important determinant of the bond portfolios selected is
the weights in each of the assets.

We use linear programming to solve for the optimal bond portfolio allocation. The methods used
are standard in the literature for selection of asset portfolios to match liability cash flows.The linear
programming approach of Shiu [4] and Panjer et al. [19] is extended to include both interest rate and
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mortality risk. To reflect the situation in practice, we take into consideration a wide range of different
fixed-income securities and select the optimal portfolios from these. We select portfolios from more
than 60 coupon bonds and annuity bonds, including maturities and securities available in the market,
along with hypothetical longevity bonds. The details of the bonds are covered in Section 4. We assume
all securities are non-callable, and default free. Credit risk is assumed fully hedged and does not
impact the interest rate or longevity risk analysis.

The immunization approach aims to match time weighted values or the duration of the assets
and liabilities where values are determined using the current interest rates and mortality rates. In our
implementation we follow the approach in Panjer et al. [19] which aims to minimize surplus risk of
the portfolio based on the convexity of the cash flows, while matching duration. This is used for bond
portfolio selection and this approach is consistent with fixed income approaches. For derivatives, risk
is usually measured with sensitivities based on the delta and gamma of the underlying securities,
which in fixed interest portfolio selection are equivalent to modified duration and convexity.

3.1. Duration, Convexity, Delta and Gamma

For the immunization we adapt the Fisher-Weil cash flow duration and Fisher-Weil convexity
measures to longevity linked cash flows. We also use delta and gamma. These are defined in Tables 3-5
for the asset and liability cash flows. Table 3 gives the Fisher-Weil duration and convexity measures
along with the delta and gamma definitions used for the assets.

Table 3. Fisher-Weil Duration and Convexity, Delta and Gamma.

X DX _ My % _ By X Ay
D=% M= Dduoy=-F D=7
F_C T _ vy = _ vy & L
C=35 Tyun=-> Iy, = —p Ly =7

Table 4. Fisher-Weil Dollar Duration and Convexity for Asset and Liability Cash Flows.

Fixed-Income Securities (k) Longevity-Linked Securities (j) Liabilities

ay = Y1 Axt - B(0,1) aj = Y1 Ajr - Sx(0,£)B(0, 1) I'=Y4>1 Lt Sx(0,4)B(0,t)
D[”k} = thl Ak,t ~t-B(0,t) D[”ﬂ Zt>1 ]t t Sx(o t) (O,t) D[l] Zt>1 Lp-t- Sx(o t)B(O, )
Clay] = Yis1 A £ B(0,t) C[a]] Yis1A -5x(0,t)B(0,t) C[l] = Yi>1 Le t2 Sx(0,£)B(0,t)

Table 4 gives the formulae used for cash flow prices, dollar duration and dollar convexity
of assets and liabilities used in Table 3. To indicate whether we use interest only bond cash
flows or mortality dependent cash flows we use the index k for fixed-income securities and j for
longevity-linked securities.

B(0,t) denotes the time—0 zero coupon bond price with maturity value of 1 at time t, and Sx(0, t)
the risk-neutral survival probability for a cohort age x to survive ¢ years from time—0. Ay, is the cash
flow at time ¢ for a fixed-income cash flow. A;; is the cash flow at time t for a survival dependent cash
flow. Ly is the liability cash flow at time ¢.

Table 5 gives the delta and gamma sensitivities for the factors in the stochastic mortality and
interest rate models. There are two factors in the mortality model and hence a delta and gamma for
each factor is required.
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Table 5. Delta and Gamma for Asset and Liability Cash Flows.

Fixed-Income Securities (k) Longevity-Linked Securities (j) Liabilities
ay = th1aAk,t 'AB(% t) aj = Y>1 ?j,t : SAX(% t())B(O/Ot) I =Y gt : SxL(OS/ f)B(lgrt)
> +-B(0,t i>1 Ajt t ki +>1 Lt-Sx(0,¢)B(0,¢
Ar(O)[ak] _ [E’lar?o) (01)] Bro) [’1]‘] (X /ar(t<) )B(0.1)] Ar(O)m _ e ar((()) )B(0.1)]
_ P[Ei1 AxeBOD)] P[Li1 AjS:(0.4)B(0,1)] _ P[E LeS:(0,H)BO)]
ol = W okl - oE WO% £)B(0,¢)] ol = 9L L< i3 )(%Zf) B(0,1)]
) Aol = 3 [Zm A'atyi‘lz% t)B(OIt)] ot [Em Ltm <(0) £)B(0,4)]
- Pl = mznﬂg&g%ﬁ>(&ﬂ ol = azpéég%%smn]
- Ay, (0 )[ il = [ = ’atyzzo) ’ | Ay, (0) ] = === taY;(o)
P[Li1 A8 (0.H)B(0,1) 9*[Eio1 Li-S<(0,6) B(0,4)]
- ranﬂ_ ]dn@y Tmmmz 9(Y;(0))2

We now derive expressions for the value, duration, convexity, delta and gamma of the liabilities
ans assets. We do this for a general time ¢ so that only cash flows occurring after time ¢ would be
included. We use time 0 values in our analysis.

3.2. Whole-Life Annuities

To consider the life annuity, the time—¢ value of a whole-life annuity is denoted by WA, (t, 0, 1, jiy).
We can write its value as the sum of a series of pure endowments PE (¢, T;, 7, yx) with maturities from
t + 1 to co. The value of the whole-life annuity at time—t can be expressed as:

WAX(t/ oo, 71, ,u\”) = :H-th Z PEX(t/ Ti/ r, ,ux) (17)

Ti=t+1

(o]
_ lrztE? Z LT < e L 1)+ (1)) du (18)
Ti=t+1
(o]

= ]lTZt Z LT, X eC(x/trTi)fDl(xrt/Ti)yl(t)fDZ(x/trTi)YZ(t) X ecr<trTz)7Dv<trTz>r(t) (19)

Ti=t+1

where 1;> is an indicator function for the alive status of the policyholder, and 7 is the time of death.
The Fisher-Weil dollar duration and convexity of WAy (t, 00,7, jiy) are then given by:

(0]

D[WAx(t,00,7,1ux)] = Y (Ti —t) x PE(t, T, 7, i) (20)
Ti=t+1

CIWAx(t,00,1,ux)] = Y (Ti—t)* x PEx(t, Ty, r, pix) (21)
Ty=t+1

The delta and gamma of WA, (t, 0o, r, uy) with respect to the mortality factors Y7 (t) and Y, () and
the interest rate r(f) are given by:

Ay, [WAx(t 00,7, 1)l = — Y, Di1(x,t,T;) X PEx(t, Ty, 7, pix) (22)
Ty=t+1

Ay, [WAx(t, 00,7, 1x)] = — Y, Da(x,t,T;) X PEx(t, Ty, 7, pix) (23)
Ti=t+1

Ay [WAx(t 00,1, 1)l = — ), Di(t,Ti) X PEx(t, Ty, 7, pix) (24)
T;=t+1

Ty, (1) [WAx(t 00,7, 1)) = Y (D1(x,t,T;))* x PEx(t, T;, 7, pix) (25)

Ty=t+1
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[0 9)

Ty, 5y [WAx(t 00,7, 1)) = Y (D2(x,t,T;))? X PEx(t, Ty, 7, pix) (26)
Ti=t+1

Loy [WAx(t 00,1, )] = ) (Di(t, T;))* x PEx(t, Ty, 7, pix) (27)
Ti=t+1

3.3. Fixed-Income Securities: Coupon Bonds and Annuity Bonds

A fixed-income coupon bond with price CB(t, T, Ty, r) consists of a sum of zero coupon bonds
with prices ZCB(t, T;, r) and maturities from T to Ty,. The time—t price is:

Ty r
CB(trTrTm;r) = EQ Z ATixe_ft r(u)du (28)
T,=T
T T
= 2: Aq;xecdbn*{”@EVU): E: ZCB(4, T, 1) (29)
T;=T T,=T

The Fisher-Weil dollar duration and convexity are:

Tﬂ‘l
D[CB(t, T, Ty, )] = Y_ (T; —t) X ZCB(t, T;,r) (30)
T,=T
T
C[CB(t, T, Tw,r)] = Y (T —t)* x ZCB(t, T;, r) (31)
T,=T

The delta and gamma for the risk factors are:

Tﬂl
Ay [CB(t, T, T, 7)) = — Y Di(t,T;) X ZCB(t, T, ) (32)
T,=T
Ay, ) [CB(t, T, Ton,7)] = Dy, (1)[CB(t, T, Ty, 7)] = 0 (33)
Ty
L, [CB(t, T, T, 7)) = Y (Dy(t, T;))? x ZCB(t, T;, 1) (34)
T,=T
l"yl(t) {CB(t, T, Tm,i’)} = Fyz(t) [CB(t, T, Tm, 7’)] =0 (35)
Tm
D[CB(t, T, Ty, r)] = Y_ (T; —t) X ZCB(t, T;,r) (36)
T,=T
Tm
C[CB(t, T, Tw,r)] = Y (Ti —t)* x ZCB(t, T;, r) (37)
T,=T

For the annuity bond value, AB(t, T, T, r), Fisher-Weil dollar duration, convexity, delta and
gamma, the cash flow at time t, AT, is adjusted to reflect the level payment and the lack of any final
principal payment. For coupon bonds the cash flows are the coupon payments before maturity and at
maturity a coupon payment and the principal repayment. For the annuity bond, each cash flow is a level
amount so that it includes both interest and principal components and no final principal repayment.
The two types of bond have quite different cash flow profiles as well as duration and convexity.
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3.4. Longevity-Linked Securities: Longevity Bonds

For the longevity bonds, LBy (t, T, Ty, 1, jix ) is used to denote the time—t value of a longevity bond
consisting of a series of zero coupon longevity bonds with values ZCLBy(t, T;, 7, vx) for maturities
from T to Ty;. The cash flows of the longevity bonds are linked to survival indices based on a reference
cohort for the Australian population. To focus on longevity risk, we assume there is no basis risk and
the annuity fund experience is the same as that of the Australian population. The time—t value of a
longevity bond can be expressed as [20]:

T T,
LBu(t, T, T, v, px) = EP| Y I x Hy, x e iUty (38)
T,=T
T
_ Z Iy x Hy. x CT) =D (x,t,T;) Y1 (£) —Da(x,t,T;) Ya (£)
T,=T 1
Xecr(t/Ti)fDi’(tlTi)r(t) (39)
T
= Y ZCLB«(t, T, 1 px) (40)
T,=T

where I} is the number of survivors of the population at time—# and Hr, is the coupon amount made at
time—T; for each survivor.
The dollar duration and convexity of LBx(t, T, Ty, , jix) are given by:

Tm
DILBx(t, T, Ty, 7, 4ix)] = Y (T; — t) X ZCLBy(t, Ty, 1, i) (41)
T,=T
Tm
CILBy(t, T, Ty, 1, px)] = Y_ (T; — t)* x ZCLBx(t, T;, 7, i) (42)
T,=T

The delta and gamma of LBy (t, T, Ty, 1, jtx) With respect to the two mortality factors Y;(t) and
Y>(t) and the interest rate r(t) are given by:

Ton

Ay, [LBx(t, T, T, 7, pix)] = — Y D1(x,t,T;) x ZCLBx(t, Ty, 1, pix) (43)
T,=T
T
Avy i) [LBx(t, T, T, 7, )] = — Y, Da(x,t, T;) X ZCLBx(t, Ty, 1, pix) (44)
T;=T
T
Ay [LBx(t, T, Ty, 7, pix)] = — Y Dy(t, T;) X ZCLBx(t, Ty, 1, i) (45)
T,=T
Tm
Ty, [LBx(t, T, T, 1, i) = Y (Di(x,1, T;))? x ZCLBx(t, Ty, 7, pix) (46)
T,=T
Ty,
Ty, [LBx(t, T, T, 7, )] = Y (Da(x,t, T;))? x ZCLBy(t, Ty, 7, ) (47)
T;=T
T
T, [LBx(t, T, T, 7, 1x)] = Y (Dy(t,Ti))?* X ZCLBx(t, T, 7, pix) (48)

T,=T
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4. Bond Markets—Coupon, Annuity and Longevity Bonds

The bonds used for selecting the immunization and hedging portfolios are based on coupon and
annuity bonds available in the Australian market as well as hypothetical annuity and longevity bonds.
We present the details on the bonds including coupon and other cash flow information, bond prices
determined using the models in the paper, the modified Fisher-Weil duration and convexity, as well
as the modified delta and gamma. The bonds considered have a wide range of maturities and cash
flow structures including both coupon and annuity bonds. Frequency of cash flows payments includes
annual, semi-annual, quarterly and monthly.

In practice coupon bonds are used to match or immunize the cash flows for life annuities.
Initially only coupon bonds are considered using Fisher-Weil dollar durations and convexity and
then delta-gamma hedging with our mortality and interest rate models. Since annuity bonds are also
available, although of shorter terms, we then consider selecting bond portfolios from all of the annuity
bonds with the inclusion of the hypothetical longer term annuity bonds.

Longevity bonds are not available and so we consider selecting the bond portfolio from
hypothetical longevity bonds. These hypothetical bonds have a range of maturities. Finally we
consider both coupon bonds and annuity bonds along with the longevity bonds.

Table 6 shows the details for the annuity liability of the portfolio. This is a whole-life annuity with
monthly payments to males currently aged 65.

Tables 7-10 give details for all the fixed-income securities we consider in the analysis.

The Government coupon bonds are all products available in the market. They have semi-annual
coupon frequency.

The coupon bonds based on the FIIG securities are hypothetical coupon paying bonds with
quarterly frequency based on the maturity of these securities.

The Waratah annuity bonds are fixed rate annuity bonds with monthly payments available in
the market.

The annuity bonds based on the FIIG securities are hypothetical annuity bonds with maturities
corresponding to securities in this market and with quarterly annuity payments.

Table 11 provides details of the hypothetical longevity bonds considered. We use maturities
ranging from 5 to 50 years for these bonds. The values are based on the expected survival probabilities
from the stochastic mortality model. We assume the longevity bond will be issued to a cohort of males
currently age 65. The initial population is 100 and the coupon amount for all the longevity bonds
are $1. The frequency of payment is assumed to be annual with the longevity index updated on a
yearly basis.
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Life Annuity

Table 6. These are details of the life annuity with monthly payments. The deltas with respect to the mortality risk factors are negative. Increases in these factors
produce lower survival probabilities used for the discount factors and hence lower annuity values. The interest rate delta is also negative. Increases in the short
rate produce lower zero coupon bond prices and hence lower annuity values. For a 65 year old, the Fisher-Weil duration is 8.12 years. Interest rate sensitivity for
the stochastic interest rate model is lower than the Fisher-Weil duration. The delta for the mortality risk factor Y; (¢) is of a similar magnitude as the duration, with
opposite sign. Y1 () reflects the level of mortality, whereas Y; (t) captures the impact of age.

Code Maturity TTM Freq Price Zyl ) Zyz(t) Zr(t) f){l(t) fyz(t) fr(t) D 5

IA-WL o0 o0 12 127.67 —7.79 —5.08E+03 —-2.27 98.20 7.85E+07 5.78 8.12 109.23

List of Government Coupon Bonds

Table 7. These are semi-annual coupon paying bonds available in the bond market. Codes used are those for the ASX. Maturities range up to 18.8 years and Fisher-Weil
durations range up to 11.82 years with the longest duration exceeding that of the life annuity. The interest rate deltas range up to 2.62 and are all similar for bonds
maturing longer than 4 years. Fisher-Weil convexity varies much more than interest rate gamma across the maturity range of the bonds.

Code Sector Coupon Maturity TTM FV Freq Price A D C
GSBS-CB-14 Government 4.50 % 21/10/2014 0.31 100 2 101.39 —0.29 0.09 0.31 0.10
GSBS-CB-15 Government 4.75 % 21/10/2015 1.31 100 2 102.65 —1.03 1.08 1.28 1.65
GSBM-CB-17 Government 4.25% 21/07/2017 3.06 100 2 102.05 -1.79 3.35 2.85 8.53
GSBA-CB-18 Government 5.50 % 21/01/2018 3.56 100 2 106.13 —1.90 3.83 3.21 11.10
GSBS-CB-18 Government 3.25 % 21/10/2018 431 100 2 95.33 —2.15 4.77 4.02 16.93
GSBG-CB-23 Government 5.50 % 21/04/2023 8.81 100 2 101.44 —2.47 6.49 6.99 56.56
GSBG-CB-24 Government 2.75 % 21/04/2024 9.82 100 2 79.06 —2.62 7.16 8.39 77.99
GSBG-CB-25 Government 3.25% 21/04/2025 10.82 100 2 80.99 —2.60 7.13 8.85 89.19
GSBG-CB-26 Government 4.25 % 21/04/2026 11.82 100 2 88.01 —2.56 6.97 9.04 96.85
GSBG-CB-27 Government 4.75 % 21/04/2027 12.82 100 2 9141 —2.54 6.91 9.35 106.67
GSBG-CB-29 Government 3.25% 21/04/2029 14.82 100 2 74.11 —2.61 7.22 11.04 147.40
GSBG-CB-33 Government 4.50 % 21/04/2033 18.82 100 2 83.37 —2.55 6.94 11.82 186.06
GSBG-CB-15 Government 6.25 % 15/04/2015 0.79 100 2 103.77 —0.68 0.47 0.78 0.61
GSBK-CB-16 Government 4.75 % 15/06/2016 1.96 100 2 102.13 —1.39 1.97 1.89 3.66
GSBC-CB-17 Government 6.00 % 15/02/2017 2.63 100 2 107.13 —1.63 2.77 2.43 6.23
GSBE-CB-19 Government 5.25 % 15/03/2019 471 100 2 103.81 —2.15 4.88 417 18.85
GSBG-CB-20 Government 4.50 % 15/04/2020 5.80 100 2 98.56 —2.33 5.68 5.10 28.25
GSBI-CB-21 Government 5.75 % 15/05/2021 6.88 100 2 104.08 —2.38 6.01 5.74 36.91
GSBM-CB-22 Government 5.75 % 15/07/2022 8.05 100 2 105.28 —2.40 6.22 6.38 47.39
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e List of Coupon Bonds Based on Securities Offered on FIIG

Table 8. These are hypothetical coupon paying bonds with coupons and maturities corresponding to index linked bonds available on the FIIG web site. We do not
include inflation in the analysis so we have used these as hypothetical coupon paying bonds with quarterly frequency. These hypothetical bonds have longer duration
compared to the Government Coupon bonds. They also have quarterly coupon cash flows.

Code Sector Coupon Maturity TT™ FV Freq Price Ayt Loy D C
ACG-CB-15 Government 4.00 % 20/08/2015 1.14 100 4 101.26 —0.93 0.87 1.12 1.26
ACG-CB-20 Government 4.00 % 20/08/2020 6.15 100 4 95.06 —2.38 5.91 542 31.87
ACG-CB-22 Government 1.25% 21/02/2022 7.65 100 4 74.54 —2.63 7.08 7.21 54.15
ACG-CB-25 Government 3.00 % 20/09/2025 11.23 100 4 77.73 —2.63 7.23 9.22 96.65
ACG-CB-30 Government 2.50 % 20/09/2030 16.24 100 4 63.77 —2.65 7.40 12.31 181.46
SAFA-CB-15 Semi-govern 4.00 % 20/08/2015 1.14 100 4 101.26 —0.93 0.87 1.12 1.26
TCV-CB-20 Semi-govern 4.00 % 15/08/2020 6.13 100 4 95.13 —2.37 5.90 5.40 31.72
ACT-CB-30 Semi-govern 3.50 % 17/06/2030 15.98 100 4 74.83 —2.60 7.16 11.41 161.28
QTC-CB-30 Semi-govern 2.75 % 20/08/2030 16.15 100 4 66.80 —2.63 7.31 12.01 174.92
NSWTC-CB-20 Semi-govern 3.75 % 20/11/2020 6.40 100 4 93.20 —241 6.07 5.65 34.59
NSWTC-CB-25 Semi-govern 2.75% 20/11/2025 11.40 100 4 75.47 —2.63 7.28 9.41 100.52
NSWTC-CB-35 Semi-govern 2.50 % 20/11/2035 21.41 100 4 56.85 —2.61 7.25 14.30 265.62
ELECTRANET-CB-15 Infrastructure 5.21 % 20/08/2015 1.14 100 4 102.74 —0.92 0.86 1.11 1.25
LANECOVE-CB-20 Infrastructure 4.50 % 9/09/2020 6.20 100 4 97.46 —2.37 5.88 5.40 31.89
SYDAIR-CB-20 Infrastructure 3.76 % 20/11/2020 6.40 100 4 93.25 —2.41 6.07 5.64 34.58
SYDAIR-CB-30 Infrastructure 3.12% 20/11/2030 16.40 100 4 70.42 —2.61 7.21 11.82 172.67
RABO-CB-20 ADI-IB 1.51 % 28/08/2020 6.17 100 4 81.37 —2.50 6.36 5.85 35.42
CBA-CB-20 ADI-Major Bank 3.60 % 20/11/2020 6.40 100 4 92.35 —2.41 6.09 5.67 34.79
ALE-CB-23 Other Financials 3.40 % 20/11/2023 9.40 100 4 84.89 —2.57 6.94 7.86 69.45
ENVESTRA-CB-25 Energy 3.04 % 20/08/2025 11.15 100 4 78.49 —2.61 7.19 9.12 94.87

List of Waratah Annuity Bonds Offered by the NSW Government

Table 9. These are annuity bonds with monthly payments. Terms to maturity are relatively short compared to the coupon paying bonds with a maximum of around

9 years. Fisher-Weil durations are between 3 and 5 years. Interest rate deltas do not vary much. Similar comments apply to interest rate gamma and Fisher-Weil

convexity. Since the life annuity is assumed to have monthly payments these annuity bonds have the potential to better match the cash flows for the liability but suffer

from having short maturities.

Code Sector Annuity Payment Maturity TTM Freq No. of Payment Price ) L) D C

NSWWABI1-AB-21 Semi-govern 1.00 15/10/2021 7.30 12 111 74.60 -1.79 3.77 3.43 16.17
NSWWAB2-AB-21 Semi-govern 1.00 15/10/2021 7.30 12 108 74.60 -1.79 3.77 343 16.17
NSWWAB3-AB-22 Semi-govern 1.00 15/01/2022 7.55 12 108 76.62 —1.81 3.86 3.54 17.22
NSWWAB4-AB-22 Semi-govern 1.00 15/04/2022 7.80 12 108 78.60 —1.83 3.95 3.64 18.28
NSWWAB5-AB-22 Semi-govern 1.00 15/07/2022 8.05 12 108 80.56 —1.86 4.04 3.75 19.38
NSWWAB6-AB-22 Semi-govern 1.00 15/10/2022 8.30 12 108 82.48 —1.88 413 3.85 20.50
NSWWAB7-AB-23 Semi-govern 1.00 15/01/2023 8.55 12 108 84.36 —-1.90 4.21 3.95 21.64
NSWWABS-AB-23 Semi-govern 1.00 15/04/2023 8.80 12 108 86.22 —1.92 4.29 4.06 22.81
NSWWAB9-AB-23 Semi-govern 1.00 15/07/2023 9.05 12 108 87.05 —1.96 441 4.20 24.28
NSWWAB10-AB-23 Semi-govern 1.00 15/07/2023 9.05 12 105 84.06 —2.02 4.57 4.35 25.14
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Table 10. These are hypothetical annuity bonds with maturities corresponding to index linked bonds available on FIIG. We do not include inflation in the analysis so

we have used these as hypothetical annuity bonds with quarterly frequency. Terms to maturity are longer than for the Waratah annuity bonds. We do not adjust

pricing for credit risk.

Code Sector Annuity Payment Maturity TT™M Freq No. of Payment Price Acr) L) D C
MPC-AB-25 Infrastructure 1.00 31/12/2025 11.51 4 46 34.49 —2.11 5.05 523 37.95
MPC-AB-33 Infrastructure 1.00 31/12/2033 19.52 4 78 46.99 —2.33 5.99 7.90 91.30
CIVICNEXUS-AB-32 Infrastructure 1.00 15/09/2032 18.22 4 73 45.57 —2.30 5.87 7.48 81.61
PHF-AB-29 Other Financials 1.00 15/09/2029 15.22 4 61 41.31 —2.23 5.58 6.52 60.83
PJS-AB-30 Other Financials 1.00 15/06/2030 15.97 4 64 42.46 —2.25 5.67 6.77 65.88
Novacare-AB-33 Other Financials 1.00 15/04/2033 18.81 4 76 46.97 —2.28 5.83 7.55 84.60
Praeco-AB-20 Other Corporate 1.00 15/08/2020 6.13 4 25 21.82 —1.66 3.31 2.96 11.98
Boral-AB-20 Other Corporate 1.00 16/11/2020 6.39 4 26 22.54 -1.70 343 3.07 12.92
WYUNA-AB-22 Other Corporate 1.00 30/03/2022 7.75 4 31 12.58 —1.84 3.95 3.61 17.69
JEM(CCV)-AB-22 Other Corporate 1.00 15/06/2022 7.96 4 32 26.52 —1.88 4.09 3.79 19.62
JEM-AB-35 Other Corporate 1.00 28/06/2035 21.01 4 84 48.67 —2.35 6.08 8.32 102.30
JEM(NSWSch)-AB-31 Other Corporate 1.00 28/02/2031 16.68 4 67 43.66 —2.26 5.72 6.98 70.48
JEM(NSWSch)-AB-35 Other Corporate 1.00 28/11/2035 2143 4 86 49.44 —2.34 6.06 8.38 104.73
ANU-AB-29 Other Corporate 1.00 7/10/2029 15.28 4 62 42.16 —-2.20 5.49 6.43 60.14

e List of Assumed Longevity Bonds

Table 11. These longevity bonds are hypothetical bonds with maturities at 5 year intervals up to a maximum of 50 years. They are based on a cohort aged 65 at issue.

Fisher-Weil durations at the longer maturities do not vary much with a maximum of 8.48 years. The interest rate deltas also show very little variation with maturity.

The deltas for Y; (¢) in the mortality model are of a similar magnitude to the Fisher-Weil durations. The gammas for Y (¢) are of a similar magnitude to the convexity.

The deltas for the Y5 (t) are larger and reflect the impact of age.

Code Maturity TT™M Freq Price Ayl 0) AYz(t) Ar(t) ryl (t) l"yz(,) l"r(t) D C
LB65-19 30/06/2019 5 1 420.94 —2.83 —1.00E+03 -1.71 9.92 1.31E+06 3.23 2.86 10.17
LB65-24 30/06/2024 10 1 699.86 —4.74 —1.96E+03 211 29.81 5.66E+06 4.89 4.83 31.23
LB65-29 30/06/2029 15 1 866.81 —6.19 —2.94E+03 —2.26 53.41 1.45E+07 5.58 6.36 57.03
LB65-34 30/06/2034 20 1 956.71 —7.18 —3.86E+03 —2.33 74.98 2.88E+07 5.87 7.43 81.38
LB65-39 30/06/2039 25 1 998.30 —7.77 —4.59E+03 —2.35 90.50 4.70E+07 5.98 8.07 99.45
LB65-44 30/06/2044 30 1 1,013.60 —8.03 —5.05E+03 —2.36 98.84 6.47E+07 6.03 8.36 109.46
LB65-49 30/06/2049 35 1 1,017.70 —8.12 —5.24E+03 —2.36 101.87 7.64E+07 6.04 8.46 113.21
LB65-54 30/06/2054 40 1 1,018.40 —8.13 —5.30E+03 —2.36 102.52 8.10E+07 6.04 8.48 114.03
LB65-59 30/06/2059 45 1 1,018.40 —-8.13 —5.30E+03 —2.36 102.58 8.19E+07 6.04 8.48 114.11
LB65-64 30/06/2064 50 1 1,018.40 —8.13 —5.30E+03 —2.36 102.59 8.20E+07 6.04 8.48 114.12
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5. Duration-Convexity Immunization

Bonds are selected to immunize the liability using a linear program, including both fixed-income
and longevity linked securities. We follow Panjer et al. [19] and take into account the mean-absolute
deviation of the net cash flows. The app