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Abstract: We model the logarithm of the spot price of electricity with a normal inverse Gaussian (NIG)
process and the wind speed and wind power production with two Ornstein–Uhlenbeck processes.
In order to reproduce the correlation between the spot price and the wind power production, namely
between a pure jump process and a continuous path process, respectively, we replace the small jumps
of the NIG process by a Brownian term. We then apply our models to two different problems: first, to
study from the stochastic point of view the income from a wind power plant, as the expected value of
the product between the electricity spot price and the amount of energy produced; then, to construct
and price a European put-type quanto option in the wind energy markets that allows the buyer to
hedge against low prices and low wind power production in the plant. Calibration of the proposed
models and related price formulas is also provided, according to specific datasets.

Keywords: energy markets; weather derivatives; quanto option; normal inverse Gaussian process;
stochastic models for wind energy

1. Introduction

In the last few years the production of wind energy has played an increasingly important role
as a renewable energy source. Unfortunately, such a type of energy has the limitation that it can
be generated only in the presence of a suitable amount of wind. In fact, the power plant needs a
minimum wind speed to start, and it must be stopped if the wind is too strong, to avoid structural
damages; see, e.g., Burton (2011) for more details. The unpredictability of wind, both in direction,
intensity, maximum and average speed, etc., implies the necessity for a wind energy company to
hedge the risk exposure. An important role in this sense is played by weather derivatives, financial
contracts whose underlying purpose is strictly related to weather events. They were born to cover
the risk exposure derived from some particular weather conditions, like, e.g., extreme siccity periods,
exceptional rainfalls, sudden temperature excursions, etc.; see Benth and Benth (2012) for a statistical
analysis on such derivatives, including financial contracts on temperature, wind and rain. Particular
contracts in this class are the so-called quanto options. Let us point out that the term quanto option
usually refers to the class of derivatives that allows eliminating the foreign exchange rate risk. In this
case, the asset is denominated in one currency, but it is settled in another one; see Wystup (2010) for
more details. The same label is however used to refer to a specific type of options traded in the energy
markets, and this is the case we are considering. In energy markets, quanto option refers to a class of
contracts that simultaneously take into account the volumetric, as well as the price risks. Therefore,
they represent a better, but technically more challenging, risk management tool. In particular, they
play an important role in those cases when the earnings volatility is affected by more than one factor.
As an example, let us consider the case of a wind energy company. If during a certain day, the wind
intensity is stronger than expected, then the company faces a surplus of production that must be sold
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in the market, with a consequent decrease of related electricity prices. This means that the company
will measure a loss equal to the surplus produced multiplied by the difference between the retail price
at which it would have sold the electricity and the market price at which it must now sell this surplus.
It follows that the company faces not only a direct weather effect due to the strong wind and high
production, but also an indirect one through the drop in market prices. Hence, it becomes essential for
an energy producer to hedge against these two kinds of risks, which are strictly correlated, as clarified
in the example. Quanto options are tailor made contracts offered by insurance companies that can be
bought to be covered in this sense, as they allow hedging simultaneously on the volumetric side, as
well as on the risk side.

From the mathematical point of view, in order to set up and price such a kind of contract, models
for both the spot price and the weather variables involved are required. Considering the case of a
wind energy company, we first model the income from the production of electricity in a wind power
plant, then we consider a contract that allows the company to cover its risk exposures derived from
both the market spot price of electric energy and the lack of wind energy production with respect to
theoretical laws. This means we need models for the spot price of electricity and for the wind power
production, which must also take into account the correlation between the two processes. Several
stochastic models for the spot price dynamics can be found in the literature. The most common class
of stochastic models is the mean-reversion process, introduced by Schwartz (1997) for commodities.
Nevertheless, these models admit normally-distributed price fluctuations, which seem not to be
suitable to model big changes in the prices. In order to generalize such a model, we consider a
non-Gaussian Ornstein–Uhlenbeck process, as suggested in Benth and Benth (2004). In particular,
we consider a Lévy process of normal inverse Gaussian (NIG) type, according to the historical datasets
considered. We then model the wind power production as a Gaussian Ornstein–Uhlenbeck process,
hence normally distributed as in Benth et al. (2008), and by means of the Betz law, which links the
wind power production with the wind speed via a cubic law, we also model the wind speed, leading
to two different approaches. Nevertheless, since the NIG process is a pure-jump process, it cannot be
correlated with a Brownian motion, characterized by continuous paths. On the other hand, as pointed
out in the example above, power production and electricity spot price are correlated. Therefore,
to reproduce this correlation, in the spirit of Asmussen and Rosiński (2011), we approximate the NIG
process with the sum of a scaled Brownian motion and a compound Poisson process, considered as
independent components of the spot price. In such an approximation, the Brownian motion component
represents the small jumps of the spot price, while the compound Poisson process represents the bigger
ones. By means of this approximation, we can then correlate the wind process with the Gaussian
component of the spot price.

The paper is organized as follows: In Section 2, we model the logarithm of the spot price with a
Lévy-driven process, and we calibrate it using a normal inverse Gaussian process, also providing the
numerical results. In Section 3, we model both the wind speed and the wind power production by an
Ornstein–Uhlenbeck process, and we calibrate these two models using two corresponding historical
datasets. In Section 4, we then study the income from a wind power plant defined as the expected value
between the energy produced times the spot price of electricity, and we price this income via bivariate
stochastic modeling. Here, we also introduce the approximation for the NIG process. In Section 5,
we finally use our models for both the spot price and wind in order to construct a quanto option and
hedge against weather risks.

In the paper, we provide some calibration details and numerical estimates for the parameters
involved and the price formulas obtained. In particular, the statistical analysis has been developed
using the open source software R; see www.r-project.org. The R packages used for this study are
reported as footnotes along the text.

https://www.r-project.org/
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2. Spot Price Model

Diffusion models cannot predict the jump behavior of the spot prices. A possible solution is to
consider the class of Lévy processes. Given the probability space with filtration (Ω,F , {Ft}t≥0,P),
from Benth and Benth (2012), we model the spot price process S by:

S(t) = ΛS(t)eK(t), t ≥ t0 ≥ 0, (1)

where ΛS is a deterministic process whose logarithm represents the seasonal component of the
logarithm of S, while the process K is the stochastic part following the dynamics:

dK(t) = −θSK(t)dt + dL(t), (2)

for θS > 0 a constant parameter and L a Lévy process with characteristic triplet (A, ν, γ), see
Applebaum (2009) for details. By the Itô–Doeblin formula, it can be proven that the process:

K(t) = e−θS(t−t0)K(t0) +
∫ t

t0

e−θS(t−s)dL(s), t ≥ t0 ≥ 0, (3)

is a solution of the stochastic differential Equation (2). We refer to Applebaum (2009) for more details.
In Benth and Benth (2004), the authors performed an analysis on oil and natural gas prices,

showing that the normal inverse Gaussian (NIG) process is appropriate to model the residuals of the
logarithmic spot prices. Looking at the quantile-quantile (QQ) plot for our residuals in Figure 1b,
we see how the theoretical NIG quantiles fit the sample ones, except for the left tail. Nevertheless,
comparing this plot with the theoretical Gaussian quantiles in Figure 1a, we can notice how the NIG
quantiles perform better than the Gaussian ones. Hence, we choose the process L to follow a normal
inverse Gaussian distribution, although the QQ plot shows a deviation in the left tail, unexplained
by the NIG. Other kinds of processes can be considered in order to better capture this behavior
unexplained by our chosen process.
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Figure 1. (a) QQ plot for the Gaussian distribution; (b) QQ plot for the normal inverse Gaussian
(NIG) distribution.

Let us recall some definitions. From Benth and Benth (2004), we know that an NIG process with
parameters (α, β, µ, δ) is characterized by a Lévy measure ν of the form:

ν(dx) = f (x; α, β, δ)dx, (4)
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where:
f (x; α, β, δ) :=

δα

π|x| exp (βx) J1 (α|x|) . (5)

Here, x ∈ R, µ ∈ R, δ > 0, 0 ≤ |β| ≤ α, and J1 is the modified Bessel function of the third kind
and Index 1; see (Jørgensen 1982, Appendix) for more details. Moreover, the parameters (α, β, µ, δ) can
be explained as follows: α is the steepness parameter, and a larger α gives a steeper density; β is an
asymmetry parameter, and β = 0 gives a symmetric density; δ is a scale; and µ is a location parameter.

Calibration

For the spot price, we consider the Phelix Day Base (PDB) index time series from the European
Power Exchange (EPEX) Spot Daily indices (EUR/MWh). In particular, we consider daily data for
the period from 1 January 2012–31 December 2015, for a total of 1460 daily observations, removing
29 February 2012. The eight negative values (0.55% of the total observations) in the series have been
predicted by interpolation. Aiming at studying the time series Sk := S(tk), for:

tk = k, k = 1, ..., 1460, (6)

we start by considering its logarithm, namely log(Sk), which, by Equation (1), can be represented by
the sum log(Sk) = log(ΛS(tk)) + K(tk). We then extract1 from log(Sk) the three components: trend,
seasonal and remainder, which can be seen in Figure 2. However, in this paper, we will not study the
trend and seasonal components, as we are interested in analyzing only the stochastic part. Hence,
considering log(ΛS(tk)) to be the sum of the trend and seasonal components, which are deterministic,
we focus on the stochastic component, Kk := K(tk), by means of Equation (3).
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Figure 2. Decomposition of the electricity spot price time series.

1 We use the R function stl from package stats.
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For t0 = 0 and t = tk, k ≥ 1, it becomes:

Kk = e−θSkK0 + e−θSk
∫ k

0
eθSsdL(s), (7)

where K0 := K(0), and we set εk,K := e−θSk ∫ k
k−1 eθSsdL(s), so that, by the additivity property of the

stochastic integral, we can rewrite Kk in Equation (7) as:

Kk = φKk−1 + εk,K, where φ := e−θS . (8)

Hence, the discrete process Kk is seen to be an auto-regressive model of order one (AR(1)) with
parameter φ and random noise εk,K. Denoting by φ̂ the estimate of φ2, from Equation (8), we get
θ̂S = − log φ̂, whose estimated value is reported in Table 1, while we indicate with ε̂k,K the estimated
residuals time series, which due to our assumptions, is driven by the NIG Lévy process L. By the
maximum likelihood estimation (MLE) method, we estimate3 the NIG parameters (α, β, µ, δ) by
(α̂, β̂, µ̂, δ̂), whose values are reported in Table 1 along with the 95% confidence intervals4, while
Figure 3 shows how the bell-shaped curve of the estimated NIG distribution (bold line) fits the sample
data better than the estimated Gaussian distribution (dotted line).

Table 1. Estimated parameters for the electricity spot price process.

Estimate Confidence interval (95%) Estimate Confidence interval (95%)
θ̂S 1.23 [1.08, 1.42] σ̂ε 9.87× 10−4 [9.13, 10.5]× 10−4

α̂ 4.41 [3.49, 5.33] µ̂ 2.61× 10−2 [1.24, 3.99]× 10−2

β̂ −7.80× 10−1 [−12.8,−2.77]× 10−1 δ̂ 1.53× 10−1 [1.33, 1.73]× 10−1
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Figure 3. The estimated NIG (bold line) and Gaussian (dotted line) distributions.

2 We use the R function arima from package stats.
3 We use the R function nigFit from package fBasics.
4 We use the R function boot from the package boot.
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3. Models for Wind

Betz’s law states that the power production from a wind power plant is proportional to the cubic
wind speed; see Betz (1966). According to Burton (2011), we can also assume that there is no power
generation during too high/low wind regimes, as the power plant needs a minimum wind speed, called
the cut-in wind speed, in order to start, and it must be stopped if the wind speed reaches a certain
maximum threshold, called the cut-out wind speed, above which the wind turbines risk breakage. If we
introduce m ∈ R+ as the minimum wind speed for having production and M ∈ R+ as the maximum one,
we can express the wind power production P in terms of the wind speed W by the following function:

P(t) = h W3(t) Im≤W(t)≤M . (9)

Here, h is the heat rate, being a real positive constant measuring the efficiency of the plant, which
depends, e.g., on the area of the rotor blades, on the energy loss in the turbine, on humidity, etc.;
see Burton (2011) for details. It also depends on the number of wind turbines in the plant. However,
missing this information, considering the time series for the power production and for the cubic
wind speed, we can calibrate h using a linear regression model5 for the Betz law in Equation (9),
where we define the cut-in wind speed, respectively the cut-out wind speed to be such that m = 0
and M = +∞, and the indicator function Im≤W(t)≤M is constantly equal to one. In particular, for the
wind speed, we consider the data series from the Karlsruhe Institute of Technology, measured at 100 m
above the ground (m/s), together with the data retrieved from www.50hertz.com for the wind power
production (MW). Considering the same time interval as in Section 2, to work at the same resolution
level, for the wind power production, the daily observations are obtained taking the average over
the available 96 values per each day, i.e., referred to quarters of an hour. Then, we transform the
time series from MW to MWh. The value obtained for ĥ starting from these time series is in Table 2.
In Figure 4, we report the power production time series (dotted line) obtained from the wind speed
time series by the Betz law, using the parameters in Table 2, against the real power production (bold
line), with respect to the first one hundred days in order to better capture the difference between the
two curves. In particular, Figure 4 shows some differences between the two curves. We think that
these differences can be addressed to the historical time series used for the calibration, as the power
production time series does not refer to the same geographical area of the wind speed time series.
Indeed, the measuring mast of the Karlsruhe Institute of Technology (KIT) is located at the coordinates
49◦5′33′′ N, 8◦25′33′′ E, that is in the southwest part of Germany, while the grid of 50 Hertz refers to
the northeast part of the country, as can be seen in the map available in the web site, www.50hertz.com.
Moreover, the value for the heat rate h has been estimated, as the real one was not available. In order
to have it, we would need to know the total number of wind turbines and their dimensions. Let us also
remark that the Betz law gives a theoretical maximum portion of power that can be extract from an
airstream flowing through the turbine at a given speed in a certain time instant t. However, here, we
are considering daily observations; hence, our time is discrete and not continuous, and the wind speed
may vary during a period of time. In order to take into account this effect, we refer to Villanueva and
Andrés (2010), where the wind speed probability density function is considered in order to write an
equation for the mean power transported by the airstream and the mean maximum power that can
be extracted with a rotor. Moreover, as explained in Burton (2011), for each plant, we can also define
the so-called capacity factor, which is given by the ratio between the energy delivered over a certain
period and the energy that would have been supplied if the plant had operated at its maximum rate.
Considering all these factors, we can obtain a more precise model; however, this is beyond the scope of
this study.

5 We use the R function lm from package stats.

http://www.50hertz.com/en/Grid-Data/Wind-power
http://www.50hertz.com/Portals/3/Content/Bilder/50Hertz/170411_50Hertz_Grid_Map.jpg
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Table 2. Betz’s law parameters.

m = 0

M = +∞

ĥ = 8.42± 0.38× 106
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Figure 4. Power production time series (bold line) and power production obtained by the Betz law
(dotted line), with respect to the first one hundred days.

By means of relation (9), we can perform two different approaches for P in our study, either to
model the wind speed W or to model the power production P directly. Following Benth et al. (2008),
we consider in both cases an Ornstein–Uhlenbeck (OU) process for the stochastic component of these
two wind variables. In what follows, we will develop explicitly the modeling and the calibration for
W: the same steps and results hold for P.

We consider the stochastic process W to be modeled by the following equation:

W(t) = ΛW(t)eXW (t), t ≥ t0 ≥ 0, (10)

where ΛW is a deterministic function whose logarithm represents the seasonal component of the
logarithm of W, while XW is the OU process driven by:

dXW(t) = −θW XW(t)dt + σWdB(t), (11)
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for θW , σW > 0 constant parameters and B Brownian motion. By the Itô–Doeblin formula, we can
prove that the process:

XW(t) = e−θW (t−t0)XW(t0) + σW

∫ t

t0

e−θW (t−s)dB(s) (12)

is the solution of the SDE in (11). It follows that the process XW has a Gaussian distribution with
conditional mean and variance respectively given by:

µX,W(t) := E[XW(t)| Ft0 ] = e−θW (t−t0)XW(t0) , (13)

σ2
X,W(t) := Var(XW(t)| Ft0) =

σ2
W

2θW

(
1− e−2θW (t−t0)

)
. (14)

Analogous results hold for P. In particular, the Brownian motion B in the wind power production
dynamics is considered to be the same one as for the wind speed dynamics, Equation (11). This is due
to the fact that the amount of energy produced is proportional to the cubic wind speed, as stated by
the Betz law, Equation (9); hence, P and W can be considered as driven by the same factor.

Calibration

Introducing Wk := W(tk), for tk as in Equation (6), we start by considering the logarithm of the
wind speed time series, which by means of Equation (10), can be written as log(Wk) = log (ΛW(tk)) +

XW(tk). We set log (ΛW(tk)) to be the sum of the seasonal and trend components6 and Xk := XW(tk)

to be the series of the remainders. We want to calibrate this latter series by means of Equation (11).
From now on, we omit the index W, referring to the fact that the same holds for XP, the stochastic
component of P. In particular, we indicate with X the process that can be either XW or XP, then
θ ∈ {θW , θP} and σ ∈ {σW , σP}. Considering t0 = 0 and t = tk, Equation (12) becomes:

Xk = e−θ kX0 + σe−θ k
∫ k

0
eθ sdB(s),

where X0 := X(0), and setting εk,X := σe−θ k ∫ k
k−1 eθ sdB(s), we write the discrete process Xk as an

AR(1) given by:
Xk = ψ Xk−1 + εk,X , where ψ := e−θ . (15)

Moreover, εk,X , k ≥ 1, are i.i.d. Gaussian random variables with mean zero and variance:

σ2
ε,X :=

σ2

2θ

(
1− e−2θ

)
. (16)

Indicating with ψ̂, respectively by σ̂2
ε,X, the estimates of ψ and σ2

ε,X
7, by Equation (15), we get

θ̂ = − log ψ̂, while Equation (16) gives us σ̂2 =
2θ̂σ̂2

ε,X

1−e−2θ̂
, whose values, according to our datasets, are

reported in Table 3, for both W and P.

Table 3. Estimated parameters from the calibration of the wind speed and wind power production
time series.

Estimate Confidence Interval (95%) Estimate Confidence Interval (95%)
θ̂W 7.97× 10−1 [7.00, 9.04]× 10−1 θ̂P 5.90× 10−1 [5.16, 6.71]× 10−1

σ̂2
W 1.15× 10−1 [1.07, 1.24]× 10−1 σ̂2

P 4.93× 10−1 [4.59, 5.31]× 10−1

6 We use the R function stl from package stats.
7 We use the R function arima from package stats.
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4. Income for a Wind Energy Company

The stylized income at time t0 ≥ 0 from a wind power plant up to time t ∈ [t0, T], for T ∈ (t0,+∞),
is given by the expected value of the discounted product of the power production P and the spot price
S, namely:

V0 := E
[∫ t

t0

e−r(s−t0)P(s)S(s)ds
∣∣∣∣Ft0

]
=
∫ t

t0

e−r(s−t0) fP(s)ds, (17)

where fP(t) := E[P(t)S(t)| Ft0 ] and for an r > 0 constant risk-free interest rate. In particular, we price
this income under the real-world probability P. By Equation (9), V0 can also be expressed in terms of
the wind speed W:

V0 = E
[∫ t

t0

e−r(s−t0) hW3(s) Im≤W(s)≤MS(s)ds
∣∣∣∣Ft0

]
=
∫ t

t0

e−r(s−t0) fW(s)ds, (18)

where fW(t) := E
[

hW3(t)I{m≤W(t)≤M}S(t)
∣∣∣Ft0

]
. Then, by Equations (1) and (10), we can rewrite fP

and fW by:

fP(t) = ΛP(t)ΛS(t)E
[

eXP(t)+K(t)
∣∣∣Ft0

]
, (19)

fW(t) = hΛ3
W(t)ΛS(t)E

[
e3XW (t)+K(t)I{a(t)≤XW (t)≤A(t)}

∣∣∣Ft0

]
, (20)

where a(t) := log
(

m
ΛW (t)

)
and A(t) := log

(
M

ΛW (t)

)
, for t ≥ t0. Let us recall that NIG processes

are of pure-jump type, as the continuous martingale part in their Lévy–Khintchine representation
is zero; see, e.g., Benth et al. (2008); or Tankov and Cont (2004). Therefore, an NIG process cannot
be correlated with a Brownian motion, as this is a continuous process. On the other hand, spot
price and wind power production are two correlated processes. In order to reproduce this correlation,
we split the Lévy process into two additive components as suggested in Asmussen and Rosiński (2011),
one Brownian-driven representing the small jumps of L and the other one Lévy driven for the bigger
jumps, but independent of the first one and of the wind Brownian component. We introduce this
approximation in the next subsection.

4.1. Normal Inverse Gaussian Approximation

In Asmussen and Rosiński (2011), the authors introduced for ε > 0 an approximation Lε for the
NIG Lévy process L with Lévy measure ν in Equation (4) as the sum of a scaled Brownian motion BL
and a compound Poisson process CL, namely:

Lε(t) := σεBL(t) + CL(t), t ≥ 0, (21)

where σε is the variation of the small jumps of L given by:

σ2
ε :=

∫
|x|<ε

x2ν(dx), (22)

while CL is independent of BL and with Lévy measure νε(dx) defined by:

νε(dx) := ν(dx)I|x|≥ε . (23)

To measure the accuracy for the approximation (21) and to have a criterion for the selection of
ε, Asmussen and Rosiński (2011, Theorem 3.1) suggest that the difference between the distribution
function for L(1) and for Lε(1) can be estimated by the quantity:

sup
x∈R
|P(Lε(1) ≤ x)− P(L(1) ≤ x)| ≤ 0.7975 δε, (24)
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with δε := σ−3
ε

∫
|x|<ε |x|

3ν(dx). Then, starting from the estimated parameters for the NIG Lèvy process

L in Table 1, by Equations (4) and (5), we approximate σ2
ε in Equation (22) by:

σ̂2
ε =

δ̂α̂

π

∫
|x|<ε
|x| exp

(
β̂x
)

J1 (α̂|x|) dx,

where J1 is defined for x > 0; hence, we split the domain of integration into two parts excluding zero,
respectively (−ε, 0−) and (0+, ε). In Table 1, we report σ̂ε obtained for 0± = ±10−10 and ε = 10−5,
where this latter choice has been taken in relation to Equation (24) in order to get an approximation
error of order 10−3. Similarly, by Equation (23), the estimated Lévy measure for CL is given by:

ν̂ε(dx) =
δ̂α̂

π|x| exp
(

β̂x
)

J1 (α̂|x|) I|x|≥εdx . (25)

With the approximation in Equation (21), we can easily make Lε dependent on the wind noise
through the Brownian motion BL.

4.2. Income Formulas

Introducing the processes:

Y(t) := e−θS(t−t0)Y(t0) + σε

∫ t

t0

eθS(t−s)dBL(s), (26)

Z(t) :=
∫ t

t0

eθS(t−s)dCL(s), (27)

with Y(t0) := K(t0), the Ornstein–Uhlenbeck process K in Equation (3) can be written by the sum:

K(t) = Y(t) + Z(t), t ≥ t0 ≥ 0 , (28)

where, in particular, Y and Z are independent because of the independence of BL and CL. Let us also
mention that the process Y as defined in Equation (26) has a Gaussian distribution with conditional
mean and variance respectively given by:

µY(t) := E[Y(t)| Ft0 ] = Y(t0)e−θS(t−t0) , (29)

σ2
Y(t) := Var(Y(t)| Ft0) =

σ2
ε

2θS

(
1− e−2θS(t−t0)

)
. (30)

Considering BL to be correlated with the Brownian motion B in the OU wind dynamics, Equation (11),
with constant correlation ρ ∈ [−1, 1], we find the correlation function c between Y and W (P) to be
given by:

c(t) := Corr(X(t), Y(t)) = 2ρ

√
σσε

θ + θS
· 1− e−(θ+θS)(t−t0)√

1− e−2θ(t−t0)
√

1− e−2θS(t−t0)
. (31)

In particular, by Equation (28) and the independence of Z with both X and Y, we can rewrite fP
and fW in Equation (19), respectively Equation (20), as follows:

fP(t) = ΛP(t)ΛS(t)E
[

eXP(t)+Y(t)
∣∣∣Ft0

]
E
[

eZ(t)
∣∣∣Ft0

]
, (32)

fW(t) = hΛ3
W(t)ΛS(t)E

[
e3XW (t)+Y(t)I{a(t)≤XW (t)≤A(t)}

∣∣∣Ft0

]
E
[

eZ(t)
∣∣∣Ft0

]
. (33)
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Let us introduce the functions:

f P
XY(t) := ΛP(t)ΛS(t)E

[
eXP(t)+Y(t)

∣∣∣Ft0

]
, (34)

f W
XY(t) := hΛ3

W(t)ΛS(t)E
[

e3XW (t)+Y(t)I{a(t)≤XW (t)≤A(t)}

∣∣∣Ft0

]
, (35)

fZ(t) := E
[

eZ(t)
∣∣∣Ft0

]
, (36)

for which the following results hold:

Proposition 1. The analytical expression for f P
XY in Equation (34) is given by:

f P
XY(t) = ΛP(t)ΛS(t) exp

{
1
2

Σ2
P(t) + (µX,P(t) + µY(t))

}
, (37)

where Σ2
P(t) := (1 + 2c(t)) σ2

X,P(t) + σ2
Y(t).

Proof. The proof is straightforward.

Proposition 2. The analytical expression for f W
XY in Equation (35) is given by:

f W
XY(t) = hΛ3

W(t)ΛS(t)
[

Φ(d(t, M))−Φ(d(t, m))

]
exp

{
1
2

Σ2
W(t) + (3µX,W(t) + µY(t))

}
, (38)

with Σ2
W(t) := 3 (3 + 2c(t)) σ2

X,W(t) + σ2
Y(t), and Φ the cumulative standard Gaussian distribution function,

while for w ∈ {m, M}, we define:

d(t, w) :=
log
(

w
ΛW (t)

)
− µX,W(t)

σX,W(t)
− (3 + c(t))σX,W(t) , (39)

for c(t) in Equation (31).

Proof. The proof is straightforward.

Proposition 3. The analytical expression for fZ in Equation (36) is given by:

fZ(t) = exp
{∫ t

t0

Ψ(s)ds
}

, (40)

with:
Ψ(s) :=

∫ ∞

−∞

(
ee−θS(t−s)x − 1

)
νε(dx), (41)

where νε(dx) is the Lévy measure for the compound Poisson process CL, Equation (23).

Proof. See Appendix A.

By means of Equations (38) and (37), we can evaluate f W
XY and f P

XY using the values in Tables 1–3.
We need to take into account that, starting from the wind speed time series in m/s, by the Betz law,
we obtain a time series for the production that is determined in watts (W). We thus need to convert it
into megawatt hours (MWh), as the spot price time series is in EUR/MWh. Then, let us focus on fZ.
By Equations (4), (25), (40) and (41), we get f̂Z(t) = exp (g(t)) for:

g(t) :=
∫ t

t0

∫
|x|≥ε

(
ee−θ̂S(t−s)x − 1

)
δ̂α̂

π|x| exp
(

β̂x
)

J1 (α̂|x|) dxds,
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and for t0 = 0 and t = tk, we have f̂Z(tk) = exp (g(tk)), where:

g(tk) =
∫ k−1

0

∫
(−ε,ε)C

(
ee−θ̂S(k−s−1)x − 1

)
δ̂α̂

π|x| exp
(

β̂x
)

J1 (α̂|x|) dxds, (42)

for which the following holds:

Proposition 4. The approximated value for g(tk) in Equation (42) can be obtained by gk defined by
the recursion: {

g1 = 0

gk = gk−1 +
1
2 {hk−1 + hk−2} , k ≥ 2

,

being hk defined by:

hk :=
∫
(−ε,ε)C

(
ee−θ̂Skx − 1

)
δ̂α̂

π|x| exp
(

β̂x
)

J1 (α̂|x|) dx, k ≥ 0.

Proof. Let us consider Equation (42): for k = 1, we get g1 = 0, while for k ≥ 2, we can use the trapezoidal
rule with step ∆ = 1, together with the linearity of stochastic integrals, in order to get the recursion.

Hence, by the estimate of hk
8, we can also estimate gk and consequently f̂Z(tk) by f̂ k

Z = exp(gk).
Then, from Equations (32) and (33), we get fP and fW . In Figure 5, we report the estimated fP (bold
line) and fW (dotted line) with respect to one hundred days to better capture the difference between
the two curves. We can notice that fP is mostly lower than fW . This means that, according to our
datasets, the forecasted income from a wind power plant will be higher if calculated with respect to
the wind speed. Remember indeed that the income is given by Equations (17) and (18), respectively.
Let us notice that the difference obtained between these two functions can also be due to the different
geographical areas to which the time series for the wind speed and the power production are related;
see Section 3 for more details.
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Figure 5. The estimated price functions, fP (bold line) and fW (dotted line), with respect to the first one
hundred days.

8 We use the R function integrate from package stats, together with besselK from package base.
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5. Quanto Options

In Section 3, we introduced the Betz law, which gives a theoretical maximum value for the power
that can be extracted from the wind airstream that passes through the wind turbine. Nevertheless,
this maximum is never achieved in reality, and practically, a power plant yields only a certain
percentage of such a power. Let us think for example that, due to reciprocal positions of the turbines in
a plant, there will be much turbulence in the wake of one turbine, creating a different wind structure for
the next, and so on, and in particular, we can think that this phenomenon depends on the design of the
plant itself. We can also think that the time itself affects the efficiency of a wind turbine. As damages at
the plant imply less energy production, less energy production means less income. Moreover, as the
power production is proportional to the cubic wind speed, less wind gives less production. In what
follows, we are going to construct a European put-type quanto option to cover against such risks, as
well as the price risks. We mainly follow Benth et al. (2013).

Before proceeding, let us say a few words about the pricing measure. So far, we have modeled
and priced under the real-world probability measure P. However, when it comes to pricing a
derivative contract, a risk-neutral probability measure Q is introduced in order to take into account
the risk-premium and to ensure the absence of arbitrage opportunities. Namely, we need to consider
a pricing measure Q to gain the martingale property for the underlying tradable discounted price
processes. Nevertheless, in the context of energy markets, electricity is not a storable asset; hence,
it cannot be traded in the usual way as it must be consumed once produced. This means that the
underlying spot cannot be liquidly bought and kept in a portfolio. For this reason, electricity cannot be
considered a traded asset, and the electricity spot price is not taken into account when fixing the pricing
measure. Hence, in this context, any probability measure Q equivalent to the real-world probability P
can be considered as a pricing measure. On the other hand, futures markets are liquid, and futures
contracts must have an arbitrage-free price dynamics; see (Benth et al. 2008, sct. 1.5) for more details.
A particular choice of pricing measure is simply Q = P. We use this choice here as any other will
require the modeling of the risk premium. Using Q = P gives a benchmark price that can be used to
study the risk premium.

5.1. Contract Structure

The double-hedging property of quanto options implies that the payoff function depends on the
two underlying assets. Let us indicate with π(E, I) the payoff function being dependent on the energy
price index E and on an index of power production I. In particular, considering the period [τ1, τ2],
with τ1 < τ2, we define E to be the average spot price, namely:

E :=
1

τ2 − τ1

τ2

∑
t=τ1

S(t), (43)

while I is the cumulative gap between the theoretical total maximum production given by the Betz law in
Equation (9) according to the measured wind speed W and the registered power production P, namely:

I :=
τ2

∑
t=τ1

(
hW3(t)− P(t)

)
, (44)

where we included the assumptions m = 0, M = +∞ (see Table 2), in order to simplify the resulting
formulas. Indeed for d(t, w) in Equation (39), we get d(t, 0) = −∞ and d(t,+∞) = +∞, which lead to
Φ(d(t,+∞))−Φ(d(t, 0)) = 1 in Equation (38). Let us notice that the terms in the sum of Equation (44)
are all at least non-negative, being the Betz law an upper bound for the power production, so that we
do not need to take the absolute value of the terms in the sum.
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As defined in Benth et al. (2013), if the option is exercised at time τ2, its arbitrage-free price at time
t0 ≤ τ2 is given by the discounted expected value of the payoff function, namely:

Π0 := e−r(τ2−t0)E [π(E, I)| Ft0 ] , (45)

r > 0 being the risk-free interest rate. Following Benth et al. (2013), we relate this price to futures
contracts based on the same indices. In particular, the prices at time t0 ≤ τ2 of futures contracts written
on the index E, respectively I with delivery period [τ1, τ2], are given by:

FE
t0
(τ1, τ2) = E

[
1

τ2 − τ1

τ2

∑
t=τ1

S(t)

∣∣∣∣∣Ft0

]
, (46)

FI
t0
(τ1, τ2) = E

[
τ2

∑
t=τ1

(
hW3(t)− P(t)

)∣∣∣∣∣Ft0

]
. (47)

Let us notice that the future FI
t0
(τ1, τ2) can also be seen like the difference between two different

futures contracts: the first one written on the cubic wind speed and the second one on the power
production, namely:

FI
t0
(τ1, τ2) = E

[
τ2

∑
t=τ1

hW3(t)

∣∣∣∣∣Ft0

]
−E

[
τ2

∑
t=τ1

P(t)

∣∣∣∣∣Ft0

]
= FW

t0
(τ1, τ2)− FP

t0
(τ1, τ2).

The following Lemma can be proven:

Lemma 1. The price of a quanto option whose payoff is a function of the two indices E and I is the same
as another option whose payoff is a function of the terminal values of two futures contracts written on the
same indices and with a delivery period equal to the period specified by the option, namely Equation (45) is
equivalent to:

Π0 = e−r(τ2−t0)E
[

π
(

FE
τ2
(τ1, τ2), FI

τ2
(τ1, τ2)

)∣∣∣Ft0

]
. (48)

Proof. For t0 = τ2, we get FE
τ2
(τ1, τ2) = E and FI

τ2
(τ1, τ2) = I, i.e. the futures price at the terminal time

is equal to what is being delivered.

Therefore, we consider the quanto option as written on two futures contracts traded as financial
assets. Moreover, we define the payoff function π as the product between two put derivatives:

π
(

FE
τ2
(τ1, τ2), FI

τ2
(τ1, τ2)

)
:= max

(
HE − FE

τ2
(τ1, τ2), 0

)
×max

(
HI − FI

τ2
(τ1, τ2), 0

)
, (49)

where HE, HI > 0 are the respective strike values. Such a payoff function allows the buyer to cover
against low prices, but also against low wind power production from the plant. The put-put contract
is then interesting from the point of view of a wind power producer; nevertheless, the put-call or
the call-call cases can be similarly considered. In order to calculate the expectation in Equation (48),
we need to model the futures price dynamics FE

t0
(τ1, τ2) and FI

t0
(τ1, τ2).

5.2. Futures Dynamics

Let us focus on the futures contracts introduced in Equations (46) and (47). Considering the
models introduced in Sections 2 and 3 for the spot price and the wind dynamics, the following
results hold:
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Lemma 2. For t0 < τ1, the futures value (46) takes the form:

FE
t0
(τ1, τ2) =

1
τ2 − τ1

τ2

∑
t=τ1

ΛS(t) exp
{

µY(t) +
1
2

σ2
Y(t) +

∫ t

t0

Ψ(s)ds
}

, (50)

while for t0 = T, τ1 ≤ T ≤ τ2, we get:

FE
T (τ1, τ2) =

1
τ2 − τ1

T

∑
t=τ1

S(t) +
1

τ2 − τ1

τ2

∑
t=T+1

ΛS(t) exp
{

µY(t) +
1
2

σ2
Y(t) +

∫ t

t0

Ψ(s)ds
}

, (51)

being µY and σY the mean, respectively the variance, of the process Y given in Equation (29), respectively
Equation (30), and Ψ the function defined in Equation (41).

Proof. By Equations (1) and (28) and Theorem 3, we can write that:

E [S(t)| Ft0 ]=ΛS(t)E
[

eY(t)+Z(t)
∣∣∣Ft0

]
=ΛS(t) exp

{
µY(t) +

1
2

σ2
Y(t) +

∫ t

t0

Ψ(s)ds
}

,

being Y normally distributed with mean µY and variance σY and independent from Z, so that the first
result is proven. Moreover, for τ1 ≤ T ≤ τ2, we can split the sum in Equation (46) into what is known,
that is for t ≤ T, and what is not known, that is for t > T:

FE
T (τ1, τ2) = E

[
1

τ2 − τ1

T

∑
t=τ1

S(t)

∣∣∣∣∣FT

]
+E

[
1

τ2 − τ1

τ2

∑
t=T+1

S(t)

∣∣∣∣∣FT

]
.

Then, since ∑T
t=τ1

S(t) isFT-measurable, for the first term, we can drop the conditional expectation,
while for the second one, we refer to the previous step.

Lemma 3. For t0 < τ1, the futures values (47) are obtained by:

FI
t0
(τ1, τ2) = h

τ2

∑
t=τ1

Λ3
W(t) exp

(
3µX,W(t) +

9
2

σ2
X,W(t)

)
−

τ2

∑
t=τ1

ΛP(t) exp
(

µX,P(t) +
1
2

σ2
X,P(t)

)
, (52)

while for t0 = T, τ1 ≤ T ≤ τ2, we get:

FI
T(τ1, τ2) = h

(
∑T

t=τ1
W3(t) + ∑τ2

t=T+1 Λ3
W(t) exp

(
3µX,W(t) + 9

2 σ2
X,W(t)

))
+

−
(

∑T
t=τ1

P(t) + ∑τ2
t=T+1 ΛP(t) exp

(
µX,P(t) + 1

2 σ2
X,P(t)

))
,

(53)

for µX,W and σ2
X,W , µX,P and σ2

X,P given in Equation (13), respectively Equation (14).

Proof. We refer to Lemma 2.

Let us define now the contract details, namely we fix the drafting date, t0, the measurement
period, [τ1, τ2] (see Table 4), and the yearly free-risk interest rate, r = 1%. In particular, we decided to
consider t0 < τ1; the case τ1 < t0 < τ2 can be similarly obtained. Let us notice that, usually, such a type
of contract is characterized by more than one strike price. Indeed, the time of measurement [τ1, τ2] is
usually divided into sub-intervals, typically of one month length, and for each sub-interval, different
values for HI and HE are defined. This structure is tailor made in order to take into account the seasonal
behavior of the variables involved. Indeed, e.g., in the case of a quanto option written on the heating
degree days (HDD) index, we can think that the strike price for November will be different from the one
for January; see, for example, (Benth and Benth 2004, Table 1). Here, we do not split the measurement
period [τ1, τ2] into sub-intervals, but we consider the option to be at-the-money instead, which means
the strikes HI and HE are set to be equal, respectively, to FI

t0
(τ1, τ2) and FE

t0
(τ1, τ2). Furthermore,
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for each of these calibrations, we use five different values for the correlation ρ ∈ {−0.9,−0.5, 0, 0.5, 0.9},
in order to see whether this parameter affects the price of the option. Finally, we perform three different
calibrations: the first one exploiting the datasets from 1 January 2012–31 December 2014, the second
one from 1 January 2013–31 December 2014 and the third one from 1 January 2014–31 December 2014,
being 31 December 2014 the drafting day. By this, we want to observe whether there are any differences
in the price values with respect to different lengths of the historical sets used.

Table 4. Quanto option measurement period.

t0: 31/12/2014
τ1: 01/01/2015
τ2: 31/12/2015

Exploiting the calibration procedures performed in Section 4, we can estimate FE
t0
(τ1, τ2)

in Equation (50), and for T varying in the interval [τ1, τ2], we obtain the vector F̂E(τ1, τ2) =[
F̂E

τ1
(τ1, τ2), . . . , F̂E

τ2
(τ1, τ2)

]
of realizations for FE

T (τ1, τ2). In particular, for the first sum in Equation (51),
we use the values referring to the year 2014: indeed, since our contract is stipulated on 31 December
2014, we do not have at our disposal the 2015 time series; therefore, we exploit the data belonging
to the preceding year. Similarly, we estimate FI

t0
(τ1, τ2) in Equation (52), and we obtain the vector

F̂I(τ1, τ2) of realizations of FI
T(τ1, τ2), for T ∈ [τ1, τ2].

Let us focus now on the dynamics for the two futures contracts FE
T (τ1, τ2) and FI

T(τ1, τ2) for
T ∈ [τ1, τ2]. We can notice that in Equation (51), the second term is a sum of exponential functions,
where the exponent has the form µY(t) + 1

2 σ2
Y(t) +

∫ t
t0

Ψ(s)ds, for t ∈ [T + 1, τ2]. Being µY(t) dependent
on Y(t0), which is normally distributed, its exponential has a log-normal distribution. In particular,
we know that the sums of log-normal distributed random variables are not log-normally distributed.
The same holds for Equation (52). Nevertheless, in order to simplify the calibration and the pricing
of the quanto option, we decide to model FE

T (τ1, τ2) and FI
T(τ1, τ2) with two log-normal distributed

processes. Let us introduce for t0 ≤ T ≤ τ2 the following dynamics for the futures prices:

FE
T (τ1, τ2) = FE

t0
(τ1, τ2) exp(µE + ZE), (54)

FI
T(τ1, τ2) = FI

t0
(τ1, τ2) exp(µI + ZI), (55)

where ZE and ZI are two Ft0-independent Gaussian random variables with correlation
ρ := Corr(ZE, ZI). Moreover, we let ZE and ZI have zero mean and variance defined by σ2

E := Var(ZE)

and σ2
I := Var(ZI). In particular, since the futures price is a martingale under the measure Q, it can be

proven that µE = − σ2
E
2 and µI = −

σ2
I

2 .

5.3. Option Price

By means of Equations (54) and (55), we derive the following result:

Theorem 1. The market price at time t0 of a European energy quanto option written on assets following the
dynamics given in Equations (54) and (55), with payoff defined as in Equation (49) and exercised at time
τ2, given by:

Π0 = e−r(τ2−t0)
(

HEHIΦ(x1, y1; ρ)− HI FE
t0
(τ1, τ2)Φ(x2, y2; ρ)+

−HEFI
t0
(τ1, τ2)Φ(x3, y3; ρ) + FE

t0
(τ1, τ2)FI

t0
(τ1, τ2)eρσEσI Φ(x4, y4; ρ)

)
,

(56)
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with:

x1 :=
log
(

HI
FI

t0
(τ2,τ1)

)
+

σ2
I

2

σI
, y1 :=

log
(

HE
FE

t0
(τ2,τ1)

)
+

σ2
E
2

σE
,

x2 := x1 − ρσI , x3 := x1 − σE, x4 := x1 − σE − ρσI ,

y2 := y1 − σI , y3 := y1 − ρσE, y4 := y1 − σI − ρσE.

Here, Φ(x, y; ρ) denotes the standard bivariate Gaussian cumulative distribution function with correlation ρ.

Proof. The proof in (Benth et al. 2013, Proposition 3.1) for the call-call payoff function can be easily
adapted to our put-put case.

Starting from F̂E
t0
(τ1, τ2) and F̂E(τ1, τ2), by Equation (54), we then estimate σ2

E by

σ̂2
E = Var

(
log
(

F̂E(τ1, τ2)

F̂E
t0
(τ1, τ2)

))
, and we get the vector of realizations for ZE as ẐE = log

(
F̂E(τ1, τ2)

F̂E
t0
(τ1, τ2)

)
+

σ̂2
E
2 .

Similarly, starting from F̂I
t0
(τ1, τ2) and F̂I(τ1, τ2), by Equation (55), we estimate σ2

I , and we get the
vector of realizations for ZI . The value used for ĥ is in Table 2. Let us notice that all the steps
performed in this section have been applied three times, with respect to the three different calibration
periods. Moreover, considering the option at-the-money, that is HE = FE

t0
(τ1, τ2) and HI = FI

t0
(τ1, τ2),

Equation (56) becomes:

Π0 = e−r(τ2−t0)FI
t0
(τ1, τ2)FE

t0
(τ1, τ2)·(

Φ(x1, y1; ρ)−Φ(x2, y2; ρ)−Φ(x3, y3; ρ) + eρσEσI Φ(x4, y4; ρ)
)

.

In Table 5, we report our results. In particular, in the columns, we have the three different
calibrations, which are: three-year calibration, from 1 January 2012–31 December 2014; two-year
calibration, from 1 January 2013–31 December 2014; one-year calibration, from 1 January 2014–31
December 2014; while in the rows, we used different values for the correlation ρ. In parenthesis, we
report the percentage change in the price considering the corresponding value for ρ = 0 as an indicator.
Finally, in Table 6, we report the actual correlation values obtained from the calibrations.

Table 5. Quanto option prices.

ρ Three-Year Calibration Two-Year Calibration One-Year Calibration
−0.9 15.25 (−96.73%) 270.76 (−95.94%) 419.21 (−95.56%)
−0.5 163.15 (−65.02%) 2459.24 (−63.11%) 3559.76 (−62.28%)

0 466.43 (0%) 6666.03 (0%) 9437.49 (0%)
0.5 882.27 (89.15%) 12, 253.93 (83.83%) 17, 143.00 (81.65%)
0.9 1309.76 (180.80%) 17, 920.39 (168.83%) 24, 911.99 (163.967%)

Looking at the numerical results listed in Table 5, we can notice that in the three-year calibration,
the prices are significantly lower with respect to the other two columns. Moreover, we can see how the
price is affected from the value of the correlation. Indeed, for each of the three calibrations, the prices
increase as the correlation increases, being lowest when the correlation is close to −1 and highest
when the correlation is close to +1. Looking at the percentage changes in parenthesis, we can also
notice that the biggest changes with respect to the case ρ = 0 are for a highly positive correlation
and that these percentage changes are similar in the three different calibration settings, that is reading
the table by rows. From the definition of the payoff function for the quanto option in Equation (49),
we can argue that the changes in the prices in Table 5 agree with such a definition. In fact, the payoff
function pays more when both FE

τ2
(τ1, τ2) << HE and FI

τ2
(τ1, τ2) << HI , that is when the futures

prices are far lower than the respective strike values, while it pays less if only one of these conditions
is satisfied. If the correlation ρ is negative, this means that when one of the futures contract value
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is decreasing, the other one is going in the opposite direction instead, leading to low values for the
quanto option. On the contrary, when ρ is positive and the futures price dynamics decreases, the other
one is decreasing, as well, leading to high values for the option. The dependency of the option price
from the correlation parameter confirms that it is important to model the correlation between the two
futures dynamics, FE

T (τ1, τ2) and FI
T(τ1, τ2). In our model, such a correlation has be considered to be

constant; nevertheless, a more sophisticated model can be considered instead.
In Table 6, we report the correlation values obtained from the three different calibrations

performed. As we can see, the value obtained in the three-year calibration is quite different in
the module from the other two. We cannot give a formal interpretation of such a result, but a possible
explanation could be in the spot price time series itself. Indeed, from Figure 6, we can notice this
big jumps behavior at the beginning of 2012, which may affect the correlation with the wind power
production process. We think that this can be also a possible explanation for the different price values
obtained in the three-year calibration (Table 5, first column); nevertheless, a deeper study should be
performed in order to better understand the nature of this different correlation value. Let us notice also
that the estimated ρ has positive value, which means the two futures contracts are positively correlated.
Looking at Equations (43) and (44), we can argue that this is in line with the definition of the two
indices E and I. Indeed, when the difference hW3(t)− P(t) is small, it means that the power plant has
captured a big portion of the energy transported by the wind stream, as the difference between the
Betz law for the maximum production and the actual production is small. At the same time, more
production may lead to lower electricity prices. Hence, low values for I may be related to low values
for E. Similarly, high values for I may be related to high values for E. Nevertheless, a deeper study in
this sense should be also performed.

Table 6. Correlations estimated in the three different settings.

Three-Year Calibration Two-Year Calibration One-Year Calibration
ρ̂ = 4.53× 10−1 ρ̂ = 8.58× 10−1 ρ̂ = 8.32× 10−1
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Figure 6. Spot price time series.

6. Conclusions

We first modeled the residuals of the log-spot price by an NIG Lévy process, while the wind speed
and wind power production have been modeled by two OU processes. With the intent of modeling
the correlation between the electricity spot price and the wind power production, we considered
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an approximation of the NIG process given by a scaled Brownian motion and a compound Poisson
process, following Asmussen and Rosiński (2011). This has allowed us to correlate the NIG process
with the OU process, which in principle cannot be, being the first one a pure-jump process, while
the second a process with continuous paths. In particular, considering the Betz law, which links
wind power production and wind speed by a cubic law, two possible approaches have been possible:
modeling the power production directly, or the wind speed first. We then applied our bivariate
models to price the income from a wind power plant. As shown in Figure 5, we obtained higher
income if considering the wind speed as the wind variable, instead of the wind power production
directly. We infer that a possible reason for such a difference is related to the particular datasets used
in this paper, as the geographical area to which the wind speed is related is not the same as for the
production; see Section 3 for the discussion about that. We then constructed a European put-type
quanto option that allows a wind energy producer to hedge against the loss of income due to the
volume risk in terms of reduced production, as well as against the price risk. Following the approach
used in Benth and Benth (2004), we have priced the quanto option, whose value has been linked to
futures contracts on the energy and wind production indices. This is advantageous since futures
are traded financial assets. Finally, we found numerical values for the price of our contract, with
respect to different settings, highlighting that the correlation is influential when pricing quanto options.
The correlation between the two futures contracts is indeed important, since the payoff function is
depending on the two contracts in a nonlinear way.

More sophisticated models for the futures dynamics can be introduced, as we considered two
log-normal distributed processes with constant mean and variance, while the mean and variance can be
seen as stochastic processes themselves. Moreover, as we included a Lèvy component in the dynamics
of the spot price, the same can be in principle done for the wind processes, as also these processes may
present some non-Gaussianity. We would like to underline that model improvements can be achieved,
e.g., considering a wind density function as suggested in Villanueva and Andrés (2010), as well as
deeply analyzing the correlation factor and its stochastic description. Finally, a more rigorous analysis
can be performed having more precise datasets, as well as more detailed information about the power
plants involved.
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Appendix A. Proof of fZ

In this section, we provide the proof for Proposition 3, that is:

fZ(t) = exp
{∫ t

t0

Ψ(s)ds
}

,

with:
Ψ(s) :=

∫ ∞

−∞

(
ee−θS(t−s)x − 1

)
νε(dx),

where νε(dx) is the Lévy measure for the compound Poisson process CL, Equation (23).
Let us consider the compound Poisson process CL with characteristic function:

E
[
eizCL(t)

]
= etψ(z), (A1)



Risks 2018, 6, 56 20 of 21

for ψ given by

ψ(z) =
∫ ∞

−∞

(
eizx − 1

)
νε(dx), (A2)

and let us introduce the following notation: g(t) := eθS(t−t0) and Z̃(t) :=
∫ t

t0
g(s)dCL(s). We want to

find the explicit form for E
[
eizZ̃(t)

]
= E

[
exp

{
iz
∫ t

t0
g(s)dCL(s)

}]
. In particular, using the definition

of Itô’s integral, for n ∈ N, considering the partition {s(n)j , 0 ≤ j ≤ n} such that s(n)0 = t0 and s(n)n = t,

for CL(s
(n)
j ) = CL(s

(n)
j )− CL(s

(n)
j−1), we can write as follows:

E
[
eizZ̃(t)

]
= E

[
exp

{
iz limn→+∞ ∑n

j=1 g(s(n)j−1)∆CL(s
(n)
j )
}]

= limn→+∞ E
[
exp

{
iz ∑n

j=1 g(s(n)j−1)∆CL(s
(n)
j )
}]

= limn→+∞ ∏n
j=1 E

[
exp

{
izg(s(n)j−1)∆CL(s

(n)
j )
}]

,
(A3)

where the second equality is true because of the dominated convergence Theorem (see Folland 2007)
and of g ∈ L2([t0, T] ×Ω), while the third one comes from the independence of increments for a
Lévy process. Moreover, we know that increments of Lévy processes by definition are stationary.
For wj := zg(s(n)j−1), the j-th term in the product becomes:

E
[
exp

{
iwjCL(∆s(n)j )

}]
= exp

{
∆s(n)j ψ(wj)

}
by means of Equation (A1) for t = ∆s(n)j and z = wj. Then, Equation (A3) becomes:

limn→+∞ ∏n
j=1 exp

{
∆s(n)j ψ(wj)

}
= limn→+∞ exp

{
∑n

j=1 ∆s(n)j ψ(wj)
}

= exp
{

limn→+∞ ∑n
j=1 ∆s(n)j ψ(wj)

}
= exp

{∫ t
t0

ψ(zg(s))ds
}

.
(A4)

For z = (−i)e−θS(t−t0), the process Z in Equation (27) can be rewritten by Z(t) = izZ̃(t). Then, by
Equation (A4), we get that:

fZ(t) = E
[

eZ(t)
∣∣∣Ft0

]
= E

[
eizZ̃(t)

∣∣∣Ft0

]
= exp

{∫ t

t0

ψ((−i)e−θS(t−s))ds
}

,

where Equation (A2) for z = (−i)eθS(s−t) becomes:

ψ(z) =
∫ ∞

−∞

(
ee−θS(t−s)x − 1

)
νε(dx) =: Ψ(s).

This proves the claim of Proposition 3.
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