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Abstract: In this paper, we study the problem of misrepresentation under heavy-tailed
regression models with the presence of both misrepresented and correctly-measured risk factors.
Misrepresentation is a type of fraud when a policy applicant gives a false statement on a risk factor
that determines the insurance premium. Under the regression context, we introduce heavy-tailed
misrepresentation models based on the lognormal, Weibull and Pareto distributions. The proposed
models allow insurance modelers to identify risk characteristics associated with the misrepresentation
risk, by imposing a latent logit model on the prevalence of misrepresentation. We prove the theoretical
identifiability and implement the models using Bayesian Markov chain Monte Carlo techniques.
The model performance is evaluated through both simulated data and real data from the Medical
Panel Expenditure Survey. The simulation study confirms the consistency of the Bayesian estimators
in large samples, whereas the case study demonstrates the necessity of the proposed models for real
applications when the losses exhibit heavy-tailed features.

Keywords: misrepresentation; rate making; predictive analytics; heavy-tailed regression models;
Bayesian inference; Markov chain Monte Carlo

1. Introduction

In both property and casualty and general insurance, regression models are widely used for rate
making purposes (see, e.g., Bermúdez and Karlis (2015); Hua (2015); Klein et al. (2014)). Among them,
generalized linear models (GLMs) have become popular choices (see, e.g., Brockman and Wright (1992);
David (2015); Haberman and Renshaw (1996)), probably owing to the well-developed theories and
algorithms for inference based on maximum likelihood estimation (MLE). For example, the Poisson
and negative binomial regression models are popular for loss frequency modeling, while the gamma
model is a popular loss severity model recognized by the insurance industry.

In real applications, however, loss data often exhibit heavy-tailed features that cannot be captured
by the exponential family of distributions under GLMs. As a result, statistical and probability theories
for the heavy-tail phenomena have become popular research topics in the past decade (see, e.g., Hao
and Tang (2012); Qi (2010); Yang et al. (2018)). For statistical inference purposes, earlier papers such
as Scollnik (2001 2002 2015) proposed to use Bayesian inference based on Markov chain Monte Carlo
(MCMC) simulations, whereas books and papers including Peng and Qi (2017); Qi (2010) promoted
the use of frequentist counter-parts. For loss severity outcomes, Scollnik (2001, 2002) illustrated the
use of Bayesian inference using Gibbs sampling (BUGS) for implementing MCMC algorithms for
heavy-tailed models from the lognormal, Pareto and and Weibull distributions.

For the problem of insurance misrepresentation, Xia and Gustafson (2016) is the first paper that
studied the model identification and implementation when concerning the association between a
response and a binary risk factor subject to misrepresentation. The paper used the term unidirectional
misclassification from Gustafson (2014) for the type of measurement such as misrepresentation where
the error occurs only in one direction that favors the respondent. Later papers including Sun et al.
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(2017); Xia and Gustafson (2018) inherited the terminology and extended the work to the two cases
where the variable of concern is an ordinal covariate and a binary response. Most of the earlier
papers concerned the model identifiability corresponding to the existence of a unique maximum in
the likelihood function with respect to the observed variables. For all the earlier papers except for
Gustafson (2014); Hahn et al. (2016), the models possessed the identifiability, which enables us to
perform statistical inference on all the model parameters without prior knowledge on the severity of
misrepresentation. In the most recent paper concerning the problem of misrepresentation (Xia et al.
2018), the model from Xia and Gustafson (2016) was expanded for the purpose of predictive analytics
on the misrepresentation risk, while including multiple risk factors with some of them subject to
misrepresentation.

In this paper, we extend the misrepresentation models from Xia et al. (2018) to the case where the
association between the claim severity and risk factors is modeled through heavy-tailed regression.
Based on the lognormal, Pareto and Weibull distributions, we establish the misrepresentation models
for heavy-tailed loss outcomes. The models encompass both misrepresented and correctly-measured
risk factors in the heavy-tailed regression, with the adjustment of misrepresentation undertaken
through latent logit regression on the prevalence of misrepresentation. The latent regression allows
insurance companies to assess the effect of other risk factors on the misrepresentation risk. From the
theoretical perspective, we prove the identifiability of the heavy-tailed misrepresentation models based
on the specific mixture regression structures obtained earlier for the conditional distribution of the
observed variables (Xia et al. 2018), confirming that consistent estimation is guaranteed for the model
parameters. We implement the models in BUGS (Scollnik 2001; Xia et al. 2018) and perform simulation
studies to evaluate the performance of models under finite samples. From the simulation studies,
ignoring the misrepresentation in the naive analysis gives rise to bias in the estimated risk effect(s),
whereas the proposed models correct for the bias based on learning from the mixture structures.
Furthermore, the simulation studies illustrate the convergence of the estimators toward their true
values at the rate of

√
1/n in large samples, for all the parameters in the proposed models including

those concerning the regression coefficients and the prevalence of misrepresentation. This confirms
the theoretical results on the model identifiability and the classical statistical theories on the speed
of convergence for Bayesian estimators. Using the 2013 Medical Expenditure Panel Survey (MEPS)
data, we perform a model comparison based on the deviance information criterion (DIC) and select
the Pareto misrepresentation model as the model with the optimal goodness of fit. The case study
demonstrates that the heavy-tailed models can be useful for real applications where the losses often
exhibit heavy-tailed features.

The rest of the paper is organized as follows. In Section 2, we review the misrepresentation
models from Xia et al. (2018) and extend them to the heavy-tailed regression context. In Section 3,
we prove the theoretical identifiability of the misrepresentation models for the Weibull, lognormal
and Pareto distribution families. Section 4 presents simulation studies for the lognormal, Pareto and
Weibull models. In Section 5, a model comparison is performed using the 2013 MEPS data. Section 6
concludes the paper.

2. Heavy-Tailed Loss Models under Misrepresentation

In this section, we will extend the predictive models from Xia et al. (2018) to the context of
heavy-tailed loss regression.

2.1. The Misrepresentation Problem

We first use notation from Xia and Gustafson (2016) to formulate the problem of misrepresentation
with a binary risk factor. Let V and V∗ denote the true binary risk status and the observed status,
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respectively. We assume that misrepresentation may occur with a positive probability, when the
individual has a positive risk status. In particular, we can write the conditional probabilities as:

P(V∗ = 0 |V = 0) = 1

P(V∗ = 0 |V = 1) = p, (1)

where the parameter p is referred to as the misrepresentation probability. Denoting by θ = P(V = 1)
the true probability of a positive risk status, Xia and Gustafson (2016) derived the observed probability
of a positive risk status as θ∗ = P(V∗ = 1) = θ(1− p). The work in Xia et al. (2018) used the term
the prevalence of misrepresentation for q = P(V = 1|V∗ = 0), the percentage of reported negatives
corresponding to a true positive risk status. Using Bayes’ theorem, the prevalence of misrepresentation
can be obtained as q = θp/[1− θ(1− p)]. Similarly, the misrepresentation probability can be written
as p = (1− θ)q/[θ(1− q)]. That is, we can derive one conditional probability from the other, along
with an estimate of the observed probability θ∗ estimable from the samples of V∗. Interested readers
may refer to Xia et al. (2018) for additional details.

When unadjusted, misrepresentation is expected to cause an attenuation effect in the estimated
risk effect, leading to an underestimation of the risk. The underestimation of the risk effect gives rise to
an increase in the premium for the low-risk applicants with a true negative status, resulting in the loss
of product competitiveness in such a preferred market segment. Hence, appropriate modeling of the
misrepresentation phenomena can help insurance companies better understand the severity and the
financial impact of the problem, as well as providing insights into the cost-effectiveness for managing
the misrepresentation risk.

2.2. Weibull Model with Additional Correctly-Measured Risk Factors

In loss regression, we are interested in modeling the mean of a response variable Y from a loss
distribution, conditioning on the true risk status V and some additional risk factors x. In Xia and
Gustafson (2016); Xia et al. (2018), the authors assumed that the misrepresentation is non-differential
on Y (i.e., Y ⊥ V∗ |V, x). This means that the outcome Y does not depend on whether the applicant
misrepresents the risk factor, given the true status V and other risk factors x. Under heavy-tailed
regression, we have the same structure for the conditional distribution of the observed variables as
that from Xia et al. (2018). In particular, (Y |V∗, x) has the following distributional form.

fY(y |V∗ = 1, x) = fY(y | α, ϕ, V = 1, x)

fY(y |V∗ = 0, x) = q fY(y | α, ϕ, V = 1, x) + (1− q) fY(y | α, ϕ, V = 0, x), (2)

where fY(y | α, ϕ, V = v, x) denotes the conditional distribution of Y given the true status and the
other risk factors, the parameter vector α contains the regression coefficients and ϕ contains any
additional parameter(s) such as a shape parameter in the case of heavy-tailed models.

Given x, the conditional distribution of (Y |V∗, x) contains two component distributions when
V∗ = 0, and it is a single distribution when V∗ = 1. The mixture model in the second line of Equation
(2) is called a mixture regression model when there are some additional covariates x. Note that
the parameters concerning the component fY(y |V∗ = 1, x) can be identified using the samples
with V∗ = 1. These parameters include the regression coefficients shared by both components.
In heavy-tailed regression, we usually assume a common shape parameter in the two components,
which also facilitates the learning of the parameters. Thus, the difference of the intercepts (i.e., the
V effect) and the prevalence of misrepresentation (i.e., the mixture weight) are the only parameters
that require the samples with both V∗ = 0 and V∗ = 1. The theoretical identifiability of the proposed
models will be proven later in Section 3.

Under heavy-tailed regression, we first give an example Weibull misrepresentation model for the
case with one risk factor V subject to misrepresentation and a correctly-measured risk factor X.
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Example 1 (Weibull model). Based on Weibull regression, we present a loss severity model for illustration
purposes. Using the parametrization in BUGS for the general Weibull distribution (see, e.g., Scollnik (2002)),
we can specify the loss severity model as:

(Y |V, X) ∼Weibull(τ, λV,X)

1/λV,X = exp(α0 + α1V + α2X)

(V∗ |V, X) ∼ Bernoulli((1− p)V), (3)

where τ > 0 is the shape parameter and 1/λV,X is proportional to the conditional mean of Y given V and X. For
this example, the conditional distribution fY(y | α, ϕ, V, x) in Equation (2) takes the form of the above Weibull
distribution, with α = (α0, α1, α2) and ϕ = τ.

2.3. Lognormal Model with Multiple Risk Factors Subject to Misrepresentation

In Xia et al. (2018), the authors studied another situation where there are multiple risk factors
subject to misrepresentation. Let v =(V1, V2, · · · , VJ) denote the true status of J rating factors that are
subject to misrepresentation and v∗ =(V∗1 , V∗2 , · · · , V∗J ) denote the corresponding observed status for
these rating factors. Here, we add additional risk factors of x for deriving a more general structure.
Similar to Xia et al. (2018), we assume that the loss outcome Y depends on the rating factors in v
and x through some regression coefficients α. For the current paper, the conditional distribution
of (Y | v, x) can be written as fY(y | α, ϕ, v, x). Based on the non-differential misrepresentation
assumption, the conditional distribution of (Y | v∗, x) will either be a single regression model when
v∗ = (1, 1, · · · , 1) or a mixture regression model with the number of components and the mean of each
component determined by the observed values of the variables in v∗. For example, when there are two
rating factors with misrepresentation (i.e., v =(V1, V2)) and an additional risk factor X, we can derive
the conditional distribution of observed variables, (Y | v∗, X), as:

fY(y |V∗1 = 1, V∗2 = 1, X) = fY(y | α, ϕ, V1 = 1, V2 = 1, X)

fY(y |V∗1 = 0, V∗2 = 1, X) =q1 fY(y | α, ϕ, V1 = 1, V2 = 1, X) + (1− q1) fY(y | α, ϕ, V1 = 0, V2 = 1, X)

fY(y |V∗1 = 1, V∗2 = 0, X) =q2 fY(y | α, ϕ, V1 = 1, V2 = 1, X) + (1− q2) fY(y | α, ϕ, V1 = 1, V2 = 0, X)

fY(y |V∗1 = 0, V∗2 = 0, X) =q3 fY(y | α, ϕ, V1 = 1, V2 = 1, X) + q4 fY(y | α, ϕ, V1 = 0, V2 = 1, X)

+ q5 fY(y | α, ϕ, V1 = 1, V2 = 0, X)

+ (1− q3 − q4 − q5) fY(y | α, ϕ, V1 = 0, V2 = 0, X), (4)

where the prevalence of misrepresentation can be defined for different scenarios: q1 = P(V1 = 1, V2 =

1 |V∗1 = 0, V∗2 = 1), q2 = P(V1 = 1, V2 = 1 |V∗1 = 1, V∗2 = 0), q3 = P(V1 = 1, V2 = 1 |V∗1 =

0, V∗2 = 0), q4 = P(V1 = 0, V2 = 1 |V∗1 = 0, V∗2 = 0) and q5 = P(V1 = 1, V2 = 0 |V∗1 = 0, V∗2 = 0).
Dependence assumptions regarding the true and observed risk factors are discussed in Xia et al. (2018).

Note that Equation (4) differs from the mixture structure in Xia et al. (2018), as the inclusion of an
additional risk factor X gives rise to a mixture regression structure. Based on the mixture regression
structure, we can use the lognormal distribution (see, e.g., Scollnik (2002)) to give a simplified example
for the case where there are two risk factors subject to misrepresentation and an additional risk factor
that is correctly measured.

Example 2 (Lognormal model). Let Y denote the loss amount for a given policy year, (V1, V2) and (V∗1 , V∗2 )
denote the vectors containing the true and observed risk statuses, respectively, and X denote an additional risk
factor that is correctly measured. We can write the lognormal model as:

(Y |V1, V2, X) ∼ lognormal(µV1,V2,X , σ2)

µV1, V2, X = α0 + α1V1 + α2V2 + α3X

(V∗1 |V1, V2, X) ∼ Bernoulli((1− p1)V1)

(V∗2 |V1, V2, X) ∼ Bernoulli((1− p2)V2), (5)
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where exp
(
µV1, V2, X

)
is proportional to the conditional mean of Y given the true statuses (V1, V2, X)

and the last two lines indicate that the occurrence of misrepresentation in one risk factor is independent of that
in the other. Here, the conditional distribution of (Y|V∗1 , V∗2 , X) possesses the mixture regression structure in
Equation (4), and the prevalence of misrepresentation qj is a mixture weight that can be estimated using data
on (Y, V∗1 , V∗2 , X). For this example, the conditional distribution fY(y | α, ϕ, V1, V2, X) takes the form of the
above lognormal distribution, with α = (α0, α1, α2) and ϕ = σ2.

2.4. Pareto Model for Predictive Analytics on Misrepresentation Risk

The last model proposed by Xia et al. (2018) allows predictive analytics on the characteristics of
the insured individuals or applicants who are more likely to misrepresent certain self-reported rating
factors. For this purpose, the authors assume that the misrepresentation probability p or the prevalence
of misrepresentation q depends on certain risk factors. Assuming there is one variable V subject to
misrepresentation, the model imposes a latent binary regression structure on the relationship between
the prevalence of misrepresentation and the rating factors. That is,

g(q) = β0 + zβ, (6)

where the link function g(·) can take the logit or probit form, β0 is an intercept and the parameters in
β quantify the effects of the rating factors on the prevalence of misrepresentation.

For heavy-tailed outcomes, we use the Pareto distribution to specify a misrepresentation model
for predictive analytics on the misrepresentation risk, for the case where there is a risk factor V subject
to misrepresentation and an additional risk factor X that affects the prevalence of misrepresentation.

Example 3 (Pareto model). Based on the two-parameter Pareto distribution (see, e.g., Scollnik (2002)), we can
write the model as:

(Y |V, X) ∼ Pareto(δ, λV,X)

λV,X = exp(α0 + α1V + α2X)

logit(q) = log
(

q
1− q

)
= β0 + β1X, (7)

where δ is the shape parameter and the scale parameter λV,X is proportional to the conditional mean of the Pareto
distribution given the true status (V, X). Here, the logit model on q is a latent model that uses the observed
data on (Y, V∗, X). For the Pareto model, the conditional distribution fY(y | α, ϕ, V, x) takes the form of the
above Pareto distribution, with α = (α0, α1, α2) and ϕ = δ. For the Pareto model, we need to assume δ > 1 in
order for the mean to exist for the regression analysis.

3. Identifiability

Note that the models in Equations (2)–(7) feature a single distribution/regression when V∗ = 1
(or V∗1 = · · · = V∗J = 1), and a finite mixture of distributions/regression otherwise. In order to verify
the statistical consistency of parameter estimation, we need to prove the theoretical identifiability of
the aforementioned models for the general Weibull, lognormal and two-parameter Pareto distribution
families. For heavy-tailed distributions, the identifiability of finite mixtures of the Weibull, lognormal
and Pareto distributions was proven in Ahmad (1988). Here, we apply the results from Ahmad (1988)
and Jiang and Tanner (1999) and obtain the conditions required for the identifiability of the models
from the previous section.

Let the domain Y of Y contain an open set in R. Let θ denote a point in a Borel subset Rm
1 from

the Euclidean m-space Rm such that F(y; θ) is measurable in R1 ×Rm
1 and f = {F(y; θ), θ ∈ Rm

1 } be a
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family of one-dimensional cumulative distribution functions (CDFs) indexed by θ. Then, the set H of
all finite mixtures of f is defined as the convex hull of f given by:

H =

{
HY(y) : HY(y) =

K

∑
k=1

CkF(y; θk), Ck > 0,
K

∑
k=1

Ck = 1, F(y; θk) ∈ f , K = 1, 2, · · ·
}

,

where F is referred to as the component (kernel) and the Ck’s as the mixing weights.

Definition 1. The finite mixture is identifiable if and only if the convex hull of f possesses the uniqueness
of representation property such that ∑K

k=1 CkF(y; θk) = ∑L
l=1 C′l F

′(x; θl) implies that K = L, and for each
k ∈ {1, 2, · · · , K}, there exists l ∈ {1, 2, · · · , K} such that Ck = C′l and F(y; θk) = F′(x; θl).

Theorem (2.4) of Chandra (1977) can be used to prove the identifiability of the finite mixtures of
distributions.

Theorem 1. Chandra (1977) Let there be a transform φj having a domain of definition Dφj associated with each
Qj ∈ Φ. Suppose that the mapping M : Qj → φj is linear, and suppose that there exists a total ordering (≤) of
Φ such that:

(i) Q1 ≤ Q2 implies Dφ1 ⊆ Dφ2 ,
(ii) for any Q1 ∈ Φ, there exists some t1 in the closure of T1 = {t : φ1(t) 6= 0} such that

limt→t1(φ2(t)/φ1(t)) = 0 for each Q1 < Q2.

Then, the class Λ of all finite mixtures of distributions is identifiable relative to Φ.

Using the moment generating function (MGF) of log(X), Ahmad (1988) proved the identifiability
of the finite mixtures of the Weibull, lognormal and one-parameter Pareto families of distributions.
Here, we adopt the proof from Ahmad (1988) for the lognormal mixtures and slightly modify the proof
to accommodate for the differences in the parametrization of our Weibull and Pareto models.

Proposition 1. (Based on Ahmad, 1988) The classes of all finite mixtures of distributions of the following
families are identifiable.

(i) General Weibull,
(ii) Lognormal,
(iii) Two-parameter Pareto.

Proof of Proposition 1. The proof from Ahmad (1988) directly applies Theorem 1 using the probability
density function (PDF) of each distribution family and chooses the MGF of log(X) as the corresponding
transform. We slightly modify the PDF of the Weibull and Pareto distributions and choose a different
transform for the two-parameter Pareto distribution to accommodate the differences in our model
parametrization.

(i) For our model, the PDF of the general Weibull is given by:

f (x | τ, λ) = τλxτ−1 exp(−λxτ), x > 0, τ > 0, λ > 0,

with the transform being the MGF of log(X) given by:

φ(t) = λt/τΓ
(

t
τ
+ 1
)

.

(ii) The PDF of the lognormal distribution is given by:

f (x | µ, σ) =
1

σx
√

2π
exp

[
− 1

2σ2 (log x− µ)2
]

, x > 0, σ > 0,
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with the transform being the MGF of log(X) given by:

φ(t) = exp
[
tµ + t2σ2/2

]
.

(iii) For the two-parameter Pareto distribution used in our model, the PDF is given by:

f (x | δ, λ) =
δλδ

(x + λ)δ+1 , x > 0, δ > 0, λ > 0,

with the transform being the MGF of log(X− λ) given by:

φ(t) =
δλt

δ− t
, t < δ.

Based on the results from Ahmad (1988), we list the ordering, domains of φ1 and φ2 and the values
of t in Table 1 that satisfy the conditions required by Theorem 1. Note that Models (2)–(7) assume the
same conditions as those required for the ordering of the transform.

Table 1. Ordering of general Weibull, lognormal and two-parameter Pareto families for Theorem 1.

PDF Q1 < Q2 Implies Dφ1 Dφ1 t

Weibull λ1 > λ2 and τ1 = τ2 (−τ1, ∞) (−τ2, ∞) ∞
Lognormal µ1 < µ2 and σ1 = σ2 (−∞, ∞) (−∞, ∞) ∞
Pareto λ1 < λ2 and δ1 = δ2 (−∞, δ1) (−∞, δ2) ∞

Now that we have verified the identifiability of the finite mixture models for the general Weibull,
lognormal and two-parameter Pareto families, it remains to verify the identifiability conditions required
for the mixtures of experts where there are regression structures in our misrepresentation models in
Equations (2)–(7).

Theorem 2. Models (2)–(7) are identifiable if the following conditions are satisfied.

(i) Y follows a distribution from the families of Weibull, lognormal and Pareto,
(ii) αj corresponding to V (or any element in v) is non-zero,

(iii) 0 < P[V∗ = 1] < 1 or 0 < P[V∗j = 1] < 1 for any j ∈ {1, 2, · · · , J}.

Proof of Theorem 2. We use the results from Jiang and Tanner (1999) to prove the identifiability of
the mixture of experts/regression models in (2)–(7). Conditions (ii) and (iii) imply that the mixture
models are irreducible, meaning that the mixture components in Models (2)–(7) are distinct and
the mixture weights are positive. The mixture weights in Models (2)–(7) sum to one, implying
that the gating functions are initialized. Condition (ii) implies that the mixture components can be
ordered based on the intercept (e.g., α0 and α0 + α1 in Model (2)). The order of the intercepts is
identifiable, given Condition (iii) and that the model given V∗ = 1 (or V∗1 = · · · = V∗J = 1) (a single
distribution/regression) is identifiable. The complete order of the intercepts also implies that Models
(2)–(7) do not require the non-null interior condition in Jiang and Tanner (1999) for the elements in z.
According to Jiang and Tanner (1999) and Proposition 1, Models (2)–(7) are identifiable.

4. Simulation Studies

In order to verify the practical identifiability of the general Weibull, lognormal and two-parameter
Pareto models from Section 2, we perform simulation studies to evaluate the learning of the model
parameters under finite samples. We fit all the models in WinBUGS called from the R function
R2WinBUGS. Details on the BUGS implementation of the heavy-tailed distributions can be found in
Scollnik (2001 2002), while those of the misrepresentation model structures are given in Xia et al. (2018).
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4.1. Weibull Model

For the Weibull severity model in Example 1, we generate random samples of (V, X, Y) from the
true distributional structure and obtain the observed samples of V∗ from those of V using a specific
value of p. Based on the conditional distributions of the observed variables, the proposed heavy-tailed
model uses the samples of (Y, V∗, X) to estimate the model parameters.

In particular, we generate a single sample of size n for the true risk factor V, using a Bernoulli trial
with the probability θ = 0.5. Two different values, 0.25 and 0.5, are chosen for the misrepresentation
probability p for obtaining the corresponding samples of V∗. The samples of X are generated from a
gamma distribution with the shape and scale parameters being (2, 0.5). The corresponding samples of
Y are then generated, with the regression coefficients being (α0, α1, α2) = (1.2, 1, 0.5) and the Weibull
shape parameter being τ = 1 or 2.

We consider the five sample sizes of 100, 400, 1600, 5400 and 25,600. We compare the results
from the proposed model in (2) with naive (unadjusted) estimates from Weibull regression using the
observed values of V∗ pretending there to be no misrepresentation. We denote the true model as
Weibull regression using the “unobserved” values of V generated before obtaining V∗. Independent
normal priors with mean zero and variance 10 are used for all the regression coefficients. For the
probability parameters p and θ, we use uniform priors on (0, 1). A vague gamma prior with parameters
(0.001, 0.001) is specified for τ. We run three chains with randomly-generated initial values and choose
a burn-in period of 15,000 and a thinning rate of ×10. Parameter inference is based on 5000 posterior
samples that provide an effective sample size over 4500. Figure 1 presents the 95% equal-tailed credible
intervals for the regression coefficients α1 and α2, with the increase of the sample size.
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Figure 1. Credible intervals for the risk effects of V (top) and X (bottom) for the Weibull loss severity
model. The dashed line marks the true value.

As expected, the naive (unadjusted) estimates are biased downward when compared with those
from the true models. That is due to the attenuation effect commonly observed in regression models
with mismeasured covariates. For the proposed model, the center of the posterior distribution of α1
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is very close to that from the true model in most scenarios. The proposed model often gives wider
credible intervals, revealing that the existence of the misrepresentation leads to larger uncertainty in
the estimation. Since in reality the insurance companies do not observe the true risk status, a large
difference in the estimated effects from the naive (unadjusted) model and the proposed model indicates
a sustainable underestimation of the risk effect in the unadjusted analysis. This means that the low-risk
applicants with a true negative risk status have to overpay their insurance premium for subsiding the
underpayment of the applicants who have misrepresented the status.

Figure 2 presents the credible intervals of the prevalence of misrepresentation q from the proposed
model. We observe that the credible interval becomes narrower as the sample size increases, with
all the intervals covering the true value. When comparing the three panels horizontally, there is
larger variability in the estimation for the case with a smaller shape parameter τ (a) or a larger
misclassification probability p (c). Based on the estimate of the prevalence of misrepresentation and
the underestimation of the risk effect from the naive (unadjusted) analysis, the insurance companies
may be able to estimate the total amount they will be able to recover, by identifying the percentage of
applicants who have misrepresented the status.
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Figure 2. Credible intervals for the prevalence of misrepresentation q for the Weibull loss
severity model.

All in all, the proposed Bayesian model corrects for the attenuation bias from the naive
(unadjusted) analysis, while acknowledging the additional variability caused by misrepresentation
with wider credible intervals. We observe that the model is able to estimate all the parameters including
the true risk effects and the prevalence of misrepresentation, with the width of intervals decreasing
at the rate of

√
1/n in large samples. This confirms the theoretical identifiability we have proven

earlier for the models, as well as the classical statistical theories on the speed of convergence for
Bayesian estimators.

4.2. Lognormal Model

For the lognormal loss severity model in Example 2, we generate the samples of the true risk
statuses (V1, V2) with the binomial probabilities being θ1 = 0.5 and θ2 = 0.4, respectively. For
the misrepresentation probabilities (p1, p2), we use two sets of values, (0.25, 0.15) and (0.35, 0.25).
The additional risk factor X is generated from the same distribution as that in the previous subsection.
The samples of Y are then generated from the conditional distribution (Y |V1, V2, X), with σ2 = 1 and
(α0, α1, α2, α3)= (−1, 1, 0.5, 1) or (−1, 2, 0.5, 1).

The naive (unadjusted) estimates are obtained from lognormal regression using the observed
values of (V∗1 , V∗2 ), pretending there to be no misrepresentation. We denote the true model as
lognormal regression using the corresponding values of (V1, V2). The proposed model makes use of
the conditional distributions in Equation (5), and treats the true statuses as latent variables. A vague
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gamma prior is specified for τ with parameters (0.001, 0.001). Other MCMC details are the same as
those for the Weibull model.

Figure 3 presents the 95% equal-tailed credible intervals for the regression coefficients α1 and α2,
with an increasing sample size. For the naive model, we observe a similar attenuation effect in the
regression coefficients of V1 and V2, owing to the misrepresentation. The values of the posterior mean
of α1 and α2 from the proposed model are very close to those from the true model in most cases. For
the lognormal model, the proposed method gives much wider credible intervals (probably owing to
the impact from tail events), when compared with those from a Pareto model with the same structure.
Nevertheless, the results for the Pareto model have similar patterns as those in Figures 1 and 2 and, thus,
are not presented here. We further observe that the proposed model works better for larger samples,
as in the case of large insurance claim data. Since the insurance companies usually do not observe the
true risk status, the difference in the estimated effects from the naive (unadjusted) analysis and the
proposed model indicates an underestimation of the risk, with the low-risk group being surcharged
for subsidizing the misrepresentation group. For the lognormal model, such underestimation occurs
in both risk factors subject to misrepresentation.
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Figure 3. Credible intervals for the risk effects of V1 (top) and V2 (bottom) for the lognormal loss
severity model. The dashed line marks the true value.

Figure 4 presents the 95% equal-tailed credible intervals of the misrepresentation probability p1.
The results of p2 and the qj’s are similar, and are not presented here. The credible interval becomes
narrower as the sample size increases, with all the intervals covering the true value of the probability.
In both figures, we observe smaller variability in the estimation for the larger effect case with α1 = 2
and larger variability for the more severe misrepresentation case with (p1, p2) = (0.35, 0.25). Here,
the estimated prevalence of misrepresentation can be used to assess the overall amount the insurance
company may be able to recover by identifying the policies with misrepresentation on either of the
risk factors.
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Figure 4. Credible intervals for the misrepresentation probability p1 for the lognormal loss severity
model.

Similar to the case of the Weibull model, the proposed lognormal model corrects for the attenuation
bias from the naive (unadjusted) analysis, confirming the identifiability. The model is able to estimate
all the parameters including the true risk effects and misrepresentation probabilities, in the case where
there are two risk factors subject to misrepresentation. The width of the interval seems to decrease
at the rate of

√
1/n in large samples, confirming the classical statistical theories on the speed of

convergence for Bayesian estimators.

4.3. Pareto Model

For the Pareto model in Example 3, we adopt a different data generation process, as the value
of q differs for each observation of X. In particular, we first simulate samples of V∗ from a Bernoulli
trial with a probability θ∗ and use them to obtain those of V based on the calculated values of q.
The samples of V and X are then used to obtain those for the loss outcome Y.

For the Bernoulli trial, we assume the probability θ∗ = 0.5 for generating the samples of V∗.
The samples of X are generated from the same gamma distribution as that for the Weibull model.
For the latent logit model, we assume that the parameters (β0, β1) take two sets of values (0,−1)
and (0,−2). For each sample of X, we calculate the prevalence of misrepresentation based on the
logit model in Example 3 and obtain the corresponding true samples of V by modifying those of
V∗. The corresponding samples of Y are then generated from the conditional distribution (Y |V, X),
assuming δ = 4 or 8, the regression coefficients being (α0, α1, α2)=(1.2, 1, 0.5). A vague gamma prior
with parameters (0.001, 0.001) is specified for δ. Other MCMC details are the same as those adopted
for the Weibull and lognormal models.

Figure 5 presents the 95% credible intervals for the regression coefficients α1 and α2, with the
increase of the sample size. For both regression coefficients, we observe that misrepresentation in one
risk factor may cause bias in the estimated effects of both the risk factor itself (i.e., the attenuation
effect) and the other risk factor. The values of the posterior mean of α1 and α2 from the proposed model
are very close to those from the true model, with slightly longer credible intervals acknowledging the
uncertainty due to the existence of misrepresentation. Since the insurance companies do not observe
the true risk status, the difference in the estimates from the naive (unadjusted) and adjusted models
enables them to assess the bias the misrepresentation has caused in the estimation of the risk effect.
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Figure 5. Credible intervals for the risk effects of V (top) and X (bottom) for the Pareto loss severity
model. The dashed line marks the true value.

Figure 6 presents the credible intervals of the risk effect β1 on the prevalence of misrepresentation
from the proposed model. The credible interval becomes narrower as the sample size increases, with all
the intervals covering the true value. Similar to the findings from Xia et al. (2018), latent models may
require a larger sample size to learn the parameters (e.g., β1) with the same precision, when compared
with those from non-latent regression (e.g., α1). For heavy-tailed models, the length of the credible
intervals may decrease with the sample size in a more erratic manner, due to the impact from tail
events. For the latent logit model, the exponential of β1 quantifies the relative effect on the odds of
misrepresentation. When the model includes multiple risk factors, the estimated effects can be used to
predict the prevalence of misrepresentation at the policy level, based on various policy characteristics.
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Figure 6. Credible intervals for the risk effect β1 on the prevalence of misrepresentation for the Pareto
loss severity model.

Similar to the Weibull and lognormal models, the proposed model corrects for the bias from the
naive (unadjusted) analysis that can occur in both risk factors. The model is able to estimate all the
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parameters including the true risk effects and the risk effect on the prevalence of misrepresentation,
in the case where the prevalence of misrepresentation changes with an additional risk factor. The width
of the intervals seems to decrease at a rate of

√
1/n for all the parameters, confirming the classical

statistical theories on the speed of convergence for Bayesian estimators.

5. Loss Severity Analysis Using Medical Expenditure Data

The Individual Mandate of the Patient Protection and Affordable Care Act (PPACA) implemented
a tax penalty for American taxpayers who did not have health insurance, resulting in a motivation
to misrepresent the self-reported insurance status. In Sun et al. (2017); Xia and Gustafson (2018),
case studies were performed on the potential misrepresentation in the MEPS data concerning the
insurance status. The work in Xia and Gustafson (2018) considered the insurance status as the response
variable, while Sun et al. (2017) treated the insurance status as the only risk factor in a gamma severity
model. Both studies revealed little evidence of the presence of misrepresentation. In the current paper,
we use the total medical expenditure variable as our loss severity outcome and include the age and
smoking status studied in Xia et al. (2018), which are legitimate rating factors allowed by the PPACA.
Most importantly, it will be interesting to perform a model comparison between the gamma model
and the heavy-tailed models proposed in this paper.

For the analysis, we include white individuals aged 18–60 who were the reference person in their
households. We only include smokers who were more likely to have health expenditures that are
heavy-tailed. The sample includes 820 individuals, with 20% identifying themselves as uninsured.
We consider the gamma, lognormal, two-parameter Pareto and general Weibull distributions for
the medical expenditure variable. We first perform an unadjusted analysis using regular regression
based on the four loss distributions. For the adjusted analysis, we adopt the regression structures
and misrepresentation setup from Example 3 for each distribution of concern. For the probability θ,
we assume a beta prior with both parameters being two (corresponding to a prior mean of 0.5 and the
prior standard deviation of 0.224). Other MCMC settings are similar to those in the previous section.
For the model comparison, Table 2 presents the values of the DIC, a goodness of fit criteria similar to
AIC and BIC that is appropriate for Bayesian hierarchical models.

Table 2. Model selection based on deviance information criterion (DIC) criteria for Bayesian hierarchical
models.

DIC Gamma Lognormal Pareto Weibull

Unadjusted 16,007 15,860 15,865 15,934
Adjusted 16,231 16,357 15,757 16,008

Based on the DIC, the Pareto misrepresentation (adjusted) model provides the optimal goodness
of fit. For the unadjusted analysis, we observe that the gamma distribution seems to fit the data the
worst, consistent with the symmetric densities we obtain on the logarithm of the total expenditures.
In addition, the gamma-adjusted model gives extremely large estimates of the misrepresentation
probability (over 0.70 with a very narrow credible interval). Due to such contradictory results and the
low DIC values associated with the gamma models, we will present only the estimates from the three
heavy-tailed models. In Figure 7, we present the 95% equal-tailed credible intervals for the relativity
exp(α1) and exp(α2) concerning the effects that the uninsured status and the age have on the average
total medical expenditures.
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Figure 7. Credible intervals for the relativity of uninsured status and age, exp(α1) and exp(α2), for the
heavy-tailed models on the total medical expenditures. The age effect corresponds to the increase of
age by one standard deviation (i.e., SD = 12 years).

From Figure 7, we observe that the adjusted models give similar estimates of the relative effects,
when compared with the unadjusted models. This indicates that the impact from misrepresentation is
relatively small. The estimates from the Weibull model seem to differ from those from the other two
distributions. For all six models, the uninsured status results in an about 50%–70% decrease in the
estimated total medical expenditures. Regarding the age effect, every 12-year increase is expected to
result in a 50%–75% increase in the estimated total medical expenditures.

In Figure 8, we present the 95% equal-tailed credible intervals for the relative age effect on the
odds of misrepresentation (i.e., q/(1− q)), the predicted misrepresentation probability p(x̄) and the
predicted prevalence of misrepresentation q(x̄) for individuals at the average age of x̄ = 42.
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Figure 8. Credible intervals for the age effect exp(β1) on the odds of misrepresentation, the predicted
misrepresentation probability p(x̄) and the prevalence of misrepresentation q(x̄) for individuals at the
average age of 42.

We observe that the age effect is insignificant in predicting the prevalence of misrepresentation q.
From the posterior mean of exp(β1) from the Pareto model, the odds of misrepresentation decrease
by about 50% multiplicatively, when we increase the age by 12 years (one SD). For individuals at the
average age, the predicted misrepresentation probability ranges from 3.5%–9.1%, while the predicted
prevalence of misrepresentation ranges from 1.3%–3.5% for the three models. Among individuals
with an average age who identified themselves as insured, about 1.3%–3.5% of them are estimated
to have misrepresented their insurance status. The estimated prevalence is lower than the estimated
misrepresentation probability, as the majority of the individuals were insured.
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While the impact of misrepresentation and the estimated prevalence of misrepresentation seems
to be small, the Pareto misrepresentation model seems to give the best goodness of fit, when compared
with the rest of the seven models considered in this section. Due to the small estimates of the prevalence
of misrepresentation, the adjustment for misrepresentation seems to result in a very minor impact
on the estimated risk effects. This is understandable, as the survey respondents were protected by
the Health Insurance Portability and Accountability Act of 1996 and thus had little motivation to
misrepresent the insurance status.

6. Conclusions

In the paper, we extend the predictive models of misrepresentation (Xia et al. 2018) to the
heavy-tailed regression context. We proved the identifiability of the Weibull, lognormal and Pareto
models, confirming that consistent estimation is guaranteed for all the model parameters. Despite the
heavy-tailed feature that may cause increased variability in the estimation, the models have anticipated
performance under finite samples. With the increase of the sample size, the estimates of all model
parameters seemed to converge to their true values, with their standard errors converging to zero.
The case study identified the Pareto misrepresentation model as the optimal model in terms of the
DIC, revealing the usefulness of modeling the heavy-tailed feature in health expenditure data. From
a practical perspective, the proposed models provide important tools for the insurance industry to
quantify the impact of misrepresentation, while enabling predictive analytics on the misrepresentation
risk at the policy level.
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