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Abstract: A mean-reverting model is often used to capture asset price movements fluctuating around
its equilibrium. A common strategy trading such mean-reverting asset is to buy low and sell high.
However, determining these key levels in practice is extremely challenging. In this paper, we
study the optimal trading of such mean-reverting asset with a fixed transaction (commission and
slippage) cost. In particular, we focus on a threshold type policy and develop a method that is easy to
implement in practice. We formulate the optimal trading problem in terms of a sequence of optimal
stopping times. We follow a dynamic programming approach and obtain the value functions by
solving the associated HJB equations. The optimal threshold levels can be found by solving a set of
quasi-algebraic equations. In addition, a verification theorem is provided together with sufficient
conditions. Finally, a numerical example is given to illustrate our results. We note that a complete
treatment of this problem was done recently by Leung and associates. Nevertheless, our work was
done independently and focuses more on developing necessary optimality conditions.

Keywords: mean reversion; HJB equation; quasi-variational inequalities; smooth-fit method

1. Introduction

This paper is about trading a mean-reverting asset. A common strategy in mean reversion trading
is to buy low and sell high. In practice, searching for these key levels is difficult and challenging.
In this paper, we focus on mathematical analysis of characterizing these threshold levels.

It is common in financial markets to use a mean-reversion model to capture price movements
having the tendency to move towards an “equilibrium”. For example, empirical studies on
mean reversion stock returns can be found in (Cowles and Jones 1937), (Fama and French 1988),
and (Gallagher and Taylor 2002) among others. Besides stock markets, mean-reversion models are also
used for stochastic interest rates (Vasicek 1977; Hull 2003); energy markets (Blanco and Soronow 2001),
and stochastic volatility (Hafner and Herwartz 2001).

Mathematical analysis has been used to study trading rules for many years. For instance,
(Zhang 2001) studied an optimal selling rule determined by a target price and a stop-loss limit.
In (Zhang 2001), these threshold levels are determined by a set of two-point boundary value problems.
(Guo and Zhang 2005) considered an optimal selling rule under a regime switching model. They used
a smooth-fit technique and obtained the optimal threshold levels. Recent studies combining both
the buying and selling decision making can be found in (Dai et al. 2010). In particular, they have
established a trend following policy in terms of a conditional probability indicator. They demonstrated
that the optimal trading rule can be determined by threshold curves. These curves can be found by
solving a set of Hamilton-Jacobi-Bellman (HJB) equations. Similar idea was developed in terms of
confidence intervals in (Iwarere and Barmish 2010). Furthermore, (Merhi and Zervos 2007) considered
an investment capacity expansion/reduction problem under a geometric Brownian motion market
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model and followed a dynamic programming approach. A similar problem was treated by (Løkka and
Zervos 2013) under a more general market model.

Trading in connection with portfolio management with transaction costs is a class of challenging
problems. Research on related optimal consumption and portfolio control can be found in (Øksendal
and Sulem 2002) in which they formulated the problem as a combined stochastic control and impulse
control problem. They showed that the value function is the unique viscosity solution of the associate
QVHJBI. A related problem was considered by (Baccarin and Marazzina 2014) focusing purely on
portfolio control. They demonstrated how to best adjust the portfolio so as to maximize an terminal
utility function. Further studies along this line can be found in (Baccarin and Marazzina 2016) in which
they considered a related problem with solvency constraints. They were able to establish the existence
of an impulse policy and provided a numerical method.

Trading under mean reversion models was considered by (Zhang and Zhang 2008). They obtained
a threshold type strategy and were able to characterize these two key (low and high) levels in terms of
the mean reversion parameters. One key assumption in (Zhang and Zhang 2008) is that the transaction
cost associated with each trade is proportional to the current share price. Such proportional cost
structure clearly does not work when trading penny stocks. In practice, often a fixed transaction fee
is required for trading. This is especially the case when managing not-so-large positions. This issue
was successfully addressed in a recent work (Leung et al. 2015). In particular, they studied an optimal
multiple trading under a mean reversion model with fixed transaction costs. First, they solved a
double stopping problem following a probabilistic approach. They were able to construct the value
function directly. Using these results, they infer a similar solution structure for an optimal switching
problem in combination with a variational inequality approach. In addition, they have identified the
conditions under which the double stopping and switching problem admits the same optimal buying
and selling strategies.

In this paper, we study the same problem treated in (Leung et al. 2015). Our main focus was on the
variational inequality approach. The main advantage of the variational inequality approach is it mainly
involves necessary conditions which is more desirable in applications. In this paper, the objective is
to buy and sell the underlying asset sequentially to maximize a discounted reward function. A fixed
transaction cost (commission/slippage) is associated with each transaction. We formulate the trading
problem in terms of a sequence of stopping times. We follow a dynamic programming approach and
obtain the associated HJB equations (quasi-variational inequalities) for the value functions. Using a
smooth-fit method, we derive a closed-form solution. The sequence of optimal stopping times can
be determined by three threshold levels x0, x1, and x2. Only algebraic equations are needed for these
threshold levels. The optimal trading rule can be given in terms of x0, x1, and x2: One should buy
when the stock price enters the interval [ex0 , ex1 ] and sell whenever the price exceeds ex2 . In addition,
we provide a verification theorem under suitable conditions. We also present a numerical example and
demonstrate the dependence of these key levels on various parameters.

This paper is organized as follows. In Section 2, we develop the related mathematical analysis.
In particular, in this section, the problem is formulated based on a mean reversion model, relevant
properties of the value functions are established, the associated HJB equations and their solutions are
obtained, and a verification theorem is provided that guarantees the optimality of our trading policy.
In Section 3, we consider a numerical example and study how the threshold levels depend on system
parameters. Finally, in Section 4, we conclude the paper by making some remarks.

2. Problem Description and Method

2.1. Formulation of the Optimal Trading Problem

Let Xt ∈ IR, t ≥ 0, denote a mean-reversion process governed by

dXt = a(b− Xt)dt + σdWt, X0 = x, (1)
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where Wt is a standard Brownian motion, a > 0 is the rate of reversion, b the equilibrium level,
and σ > 0 the volatility. The asset price at time t is given by St = exp(Xt).

Let
0 ≤ τ1 ≤ ν1 ≤ τ2 ≤ ν2 ≤ · · · (2)

denote a sequence of stopping times where buying is at τn and selling is at νn, n = 1, 2, . . .
We restrict to the case where the net position at any time is either flat (with no share of stock

holding) or long (with one share of stock holding). If initially, the net position is long (i = 1) then one
must sell the stock before buying any shares. In this case, the sequence of stopping times is denoted
by Λ1 = (ν1, τ2, ν2, τ3, . . .). Similarly, if the initial net position is flat (i = 0) then one must first buy
a stock before selling any shares. Let Λ0 = (τ1, ν1, τ2, ν2, . . .) denote the corresponding sequence of
stopping times.

Given the initial state X0 = x and initial net position i = 0, 1, let Ji be the reward functions of the
decision sequences, Λ0 and Λ1:

Ji(x, Λi) =


E

{
∞

∑
n=1

[
e−ρνn(Sνn − K)− e−ρτn(Sτn + K)

]}
, if i = 0,

E

{
e−ρν1(Sν1 − K) +

∞

∑
n=2

[
e−ρνn(Sνn − K)− e−ρτn(Sτn + K)

]}
, if i = 1,

(3)

where K > 0 denote the transaction cost per trade, and ρ > 0 the discount factor.
For simplicity, the term E ∑∞

n=1 ξn for random variables ξn is interpreted as lim supN→∞ E ∑N
n=1 ξn.

Given the initial net positions i = 0, 1 and initial state X0 = x, the corresponding value function

Vi(x) = sup
Λi

Ji(x, Λi). (4)

Remark 1. The equalities in (2) allow buying and selling simultaneously. However, due to the existence of
positive transaction cost K, these actions cause negative returns and therefore are automatically eliminated by
optimality conditions.

Remark 2. Using the Monte-Carlo, we generate sample paths for Xt and St using a = 0.8, b = 2, σ = 0.5,
and X0 = 0.5. It can be seen in Figure 1 that Xt, and St fluctuate around the equilibrium level b = 2, and
eb = 7.388 respectively.

Figure 1. Sample paths of Xt and St.
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2.2. Bounds of the Value Functions

Next we establish basic properties of the value functions. We observe that the sequence Λ0 =

(τ1, ν1, τ2, ν2, . . .) can be regarded as a combination of a buy at τ1 and then followed by the sequence of
stopping times Λ1 = (ν1, τ2, ν2, τ3, . . .). Therefore,

V0(x) ≥ J0(x, Λ0)

= J1(Xτ1 , Λ1)− Ee−ρτ1(Sτ1 + K).

Setting τ1 = 0 (recall that St = exp(Xt)), and taking supremum over all Λ1, we get

V0(x) ≥ V1(x)− ex − K. (5)

Similarly,
V1(x) ≥ J1(x, Λ1)

= J0(Xν1 , Λ0) + Ee−ρν1(Sν1 − K).

By setting ν1 = 0, and taking supremum over all Λ0, we get

V1(x) ≥ V0(x) + ex − K. (6)

In addition, we can establish upper and lower bounds for Vi(x).

Lemma 1. There exist constants K0 and K1 such that

0 ≤ V0(x) ≤ K0 and
V1(x) ≤ ex + K1.

Proof of Lemma 1. The lower bound of V0 is clear from the definition. For the upper bound,

d(e−ρtSt) = −ρe−ρtStdt + e−ρt(eXt dXt +
1
2

eXt σ2dt)

= e−ρtSt(A− aXt)dt + ρe−ρtStdWt,
(7)

where A = σ2

2 + ab − ρ. Integrate both sides of the equality in (7) from νn to τn, and then take
expectation to get

Ee−ρνn Sνn − Ee−ρτn Sτn = E
∫ νn

τn
e−ρteXt(A− aXt)dt.

Note that the function ex(A− ax) is bounded above on IR. Let C be an upper bound. It follows that

Ee−ρνn Sνn − Ee−ρτn Sτn ≤ CE
∫ νn

τn
e−ρtdt. (8)

Using the definition of J0(x, Λ0), we have

J0(x, Λ0) ≤
∞

∑
n=1

(
Ee−ρνn Sνn − Ee−ρτn Sτn

)
≤

∞

∑
n=1

CE
∫ νn

τn
e−ρtdt

≤ CE
∫ ∞

0
e−ρtdt =

C
ρ

:= K0.

Taking supremum of the inequality over all Λ0, we obtain V0(x) ≤ K0.
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For the bound of V1(x), using the definition of J1(x, Λ1), we have

J1(x, Λ1) ≤ J0(x, Λ0) + Ee−σρ1(Sν1 − K) ≤ K0 + Ee−σρ1 Sν1 .

Similarly, integrate both sides of the equality in (7) from 0 to ν1, and then take expectation to get

Ee−ρν1 Sν1 − ex ≤ C
ρ

.

It follows that J1(x, Λ1) ≤ 2K0 + ex. Taking supremum of the inequality over all Λ1, we obtain
V1(x) ≤ ex + K1, where K1 := 2K0.

2.3. The HJB Equations

In this section, we derive the HJB equations. Formally, the associated HJB equations have the form:

min
{

ρv0(x)−Av0(x), v0(x)− v1(x) + ex + K
}
= 0,

min
{

ρv1(x)−Av1(x), v1(x)− v0(x)− ex + K
}
= 0,

(9)

where A is the generator of Xt given by A = a(b− x) d
dx + σ2

2
d2

dx2 .
In this paper, we focus on threshold type control policies. Intuitively, if the net position is flat

(i = 0) then one should only buy when the price is low but not much smaller than K (say Xt between
x0 and x1). Note that when starting at x in [x0, x1], one should buy immediately (t = 0). In this case,
V0(x) = V1(x)− ex − K. The corresponding continuation region should include (−∞, x0) ∪ (x1, ∞).

On the other hand, if the net position is long (i = 1) then one should only sell when the price is
high (greater than or equal to x2). In this case, V1(x) = V0(x) + ex − K and the continuation region
should include (−∞, x2). These continuation regions are darkened in Figure 2.

-
x0

ρv0(x)−Av0(x) = 0

x1

v0(x) = v1(x)− ex − K ρv0(x)−Av0(x) = 0

-
x2ρv1(x)−Av1(x) = 0 v1(x) = v0(x) + ex − K

Figure 2. Continuation regions (darkened intervals).

Moreover, one should not establish any new position in continuation regions ((ρ−A)Vi(Xt) = 0, i = 0, 1).
In view of these, we can write the HJB equations in terms of these levels:

v0(x) ≥ v1(x)− ex − K on (−∞, x0) ∪ (x1, ∞),
v1(x) ≥ v0(x) + ex − K on (−∞, x2),
(ρ−A)(v1(x)− ex − K) ≥ 0 on (x0, x1),
(ρ−A)(v0(x) + ex − K) ≥ 0 on (x2, ∞),

(10)

and 
v0(x) = v1(x)− ex − K on [x0, x1],
v1(x) = v0(x) + ex − K on [x2, ∞),
(ρ−A)v0(x) = 0 on (−∞, x0] ∪ [x1, ∞),
(ρ−A)v1(x) = 0 on (−∞, x2].

(11)

We next examine the conditions in (10) and (11) on intervals (−∞, x0), (x0, x1), (x1, x2),
and (x2, ∞).
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On (−∞, x0) and (x1, x2), it requires the first two inequalities of (10), i.e., |v1(x)− v0(x)− ex| ≤ K.
On (x0, x1), it requires the second and third inequalities of (10). Note that on this interval,

the second inequality is automatically satisfied. Using (ρ−A)v1(x) = 0, the third inequality can be
simplified to f (x) : = ex(−ax + ab− ρ + σ2/2)− ρK ≥ 0. Then f ′(x) = ex(−ax + ab− a + σ2/2− ρ).
This implies f (x) has the only local and absolute maximum at xmax = (ab− a+ σ2/2− ρ)/a. Therefore,
it is necessary f (x0) ≥ 0 and f (x1) ≥ 0.

On (x2, ∞), it requires the first and last inequality of (10). Note that on this interval, the first
inequality is automatically satisfied. Using (ρ−A)v0(x) = 0, the last inequality can be simplified to
ex(ax− ab+ ρ− σ2/2)− ρK ≥ 0. Equivalently, g(x) := ax− ab+ ρ− σ2/2− ρKe−x ≥ 0. Then g′(x) =
a + ρKe−x ≥ 0. Therefore, it is necessary g(x2) ≥ 0.

2.4. Solutions of the HJB Equations

We will obtain the threshold levels (x0, x1, x2) by solving the HJB equations in (9). We first solve
the equations ρvi(x)−Avi(x) = 0 with i = 0, 1.

Let 
φ1(x) =

∫ ∞

0
η(t)e−κ(b−x)tdt,

φ2(x) =
∫ ∞

0
η(t)eκ(b−x)tdt,

where κ =
√

2a/σ, λ = ρ/a, and η(t) = tλ−1 exp
(
−t2/2

)
. Then the general solution of ρvi(x) −

Avi(x) = 0 is given by a linear combination of these functions (details can be found in (Eloe et al. 2008)).
Note that φ1(∞) = ∞ and φ2(−∞) = ∞. We will derive vi(x), i = 1, 2, on each continuation region.
First, consider the interval (x1, ∞). Suppose v0(x) = A1φ1(x) + A2φ2(x), for some A1 and A2.

By Lemma 1, v0(∞) should be bounded above. This implies A1 = 0 and so v0(x) = A2φ2(x).
On the interval (−∞, x0), suppose v0(x) = B1φ1(x) + B2φ2(x), for some B1 and B2. By Lemma 1,

v0(−∞) should be bounded above. This implies B2 = 0 and hence v0(x) = B1φ1(x).
On the interval (−∞, x2), suppose v1(x) = C1φ1(x) + C2φ2(x), for some C1 and C2. By Lemma 1,

v0(−∞) should be bounded above. This implies C2 = 0 and therefore v1(x) = C1φ1(x).
Since vi(x), i = 1, 2, are twice continuously differentiable on their continuation region, we can

follow the smooth-fit method. In particular, it requires v0(x) to be continuously differentiable at x0

and x1, and v1(x) to be continuously differentiable at x2. Therefore,{
B1φ1(x0) = C1φ1(x0)− ex0 − K,

B1φ′1(x0) = C1φ′1(x0)− ex0 ,

{
A2φ2(x1) = C1φ1(x1)− ex1 − K,

A2φ′2(x1) = C1φ′1(x1)− ex1 ,

and {
C1φ1(x2) = A2φ2(x2) + ex2 − K,

C1φ′1(x2) = A2φ′2(x2) + ex2 .

Let

Φ(x) =

(
φ1(x) φ2(x)
φ′1(x) φ′2(x)

)
.

Note that the matrix Φ(x) is invertible for all x because its determinant is less than zero by
direct computation.

The systems above are equivalent to{
(B1 − C1)φ1(x0) = −ex0 − K

(B1 − C1)φ′1(x0) = −ex0 ,
(12)
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Φ(x1)

(
C1

−A2

)
=

(
ex1 + K

ex1

)
, (13)

Φ(x2)

(
C1

−A2

)
=

(
ex2 − K

ex2

)
. (14)

It follows from (13) and (14) that(
C1

−A2

)
= Φ−1(x1)

(
ex1 + K

ex1

)
= Φ−1(x2)

(
ex2 − K

ex2

)
. (15)

In (12), divide the first equation by the second to get
φ1(x0)

φ′1(x0)
=

ex0 + K
ex0

. This implies

φ1(x0)ex0 = φ′1(x0)(ex0 + K). (16)

Solve (15) to get x1 and x2, and then obtain A2 and C1. Also, solve (16) to get x0, and then obtain
B1 from (12). Hence, the values function are determined by

v0(x) =


B1φ1(x) on (−∞, x0),
C1φ1(x)− ex − K on [x0, x1),
A2φ2(x) on [x1, ∞).

(17)

v1(x) =

{
C1φ1(x) on (−∞, x2),
A2φ2(x) + ex − K on [x2, ∞).

(18)

Additionally, due to the existence of the transaction cost, if the stock was bought at S1 = ex1 and
sold at S2 = ex2 then it requires that ex2 − K > ex1 + K. Equivalently,

ex2 − ex1 > 2K. (19)

2.5. A Verification Theorem

We will summarize the analysis in Section 2.3 in a Verification Theorem, and show that the
solution vi(x), i = 0, 1, of Equation (9) is equal to the value functions Vi(x), i = 0, 1, respectively, and
sequences of optimal stopping times can be characterized by the triple (x0, x1, x2).

Theorem 1. Recall f (x) = ex(−ax + ab − ρ + σ2/2) − ρK and g(x) = ax − ab + ρ − σ2/2− ρKe−x.
Let (x0, x1, x2) be a solution to (15) and (16) satisfying ex2 − ex1 > 2K, and f (x0), f (x1), and g(x2) are all
non-negative. Let A2, B1, C1 be constants given by (15) and (12). Let

v0(x) =


B1φ1(x) on (−∞, x0),
C1φ1(x)− ex − K on [x0, x1),
A2φ2(x) on [x1, ∞).

v1(x) =

{
C1φ1(x) on (−∞, x2),
A2φ2(x) + ex − K on [x2, ∞).

Assume v0(x2) ≥ 0, and |v1(x)− v0(x)− ex| ≤ K on (−∞, x0) ∪ (x1, x2). Then

vi(x) = Vi(x), i = 0, 1.

Moreover, if initially i = 0, let Λ∗0 = (τ∗1 , ν∗1 , τ∗2 , ν∗2 , . . .), where the stopping times τ∗1 = inf{t ≥ 0 :
Xt ∈ [x0, x1]}, ν∗n = inf{t ≥ τ∗n : Xt = x2}, and τ∗n+1 = inf{t > ν∗n : Xt ∈ [x0, x1]} for n ≥ 1. Similarly,
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if initially i = 1, let Λ∗1 = (ν∗1 , τ∗2 , ν∗2 , τ∗3 , . . .), where the stopping times ν∗1 = inf{t ≥ 0 : Xt ≥ x2},
τ∗n = inf{t > ν∗n−1 : Xt ∈ [x0, x1]}, and ν∗n = inf{t ≥ τ∗n : Xt = x2} for n ≥ 2.

Then Λ∗0 and Λ∗1 are optimal.

The following lemmas will be used in the proof of Theorem 1.

Lemma 2. For any stopping times θ1 and θ2, if 0 ≤ θ1 ≤ θ2, a.s., and ρvi(Xt) − Avi(Xt) ≥ 0, for all
t ∈ [θ1, θ2], for i = 0, 1, then

Ee−ρθ1 vi(Xθ1) ≥ Ee−ρθ2 vi(Xθ2).

In particular, if θ1 = 0, θ2 = τ ≥ 0, and X0 = x then vi(x) ≥ Ee−ρτvi(Xτ).
The equalities happen when ρvi(Xt)−Avi(Xt) = 0 for all t ∈ [θ1, θ2].

Proof of Lemma 2. For i = 0, 1,

d(e−ρtvi(Xt)) = −ρe−ρtvi(Xt)dt + e−ρt
{[

a(b− Xt)v′i(Xt) +
1
2

σ2v′′i (Xt)

]
dt + σv′(Xt)dWt

}
= e−ρt(−ρ +A)vi(Xt)dt + σe−ρtv′i(Xt)dWt.

Integrate both sides of this equation from θ1 to θ2, and then take expectation to obtain

Ee−ρθ2 vi(Xθ2)− Ee−ρθ1 vi(Xθ1) = E
[∫ θ2

θ1

−e−ρt(ρ−A)vi(Xt)dt
]

. (20)

(20) and the hypothesis ρvi(Xt)−Avi(Xt) ≥ 0 for all t ∈ [θ1, θ2] give

Ee−ρθ1 vi(Xθ1) ≥ Ee−ρθ2 vi(Xθ2).

Set θ1 = 0, θ2 = τ to obtain
vi(x) ≥ Ee−ρτvi(Xτ).

Moreover, if ρvi(Xt)−Avi(Xt) = 0 for all t ∈ [θ1, θ2] then (20) gives the equalities.

Lemma 3. If the position is i = 0 and Λ0 = (τ1, ν1, τ2, ν2, . . .) then for all N ≥ 1,

Ee−ρτ1 v0(Xτ1) ≥ Ee−ρνN v0(XνN ) + E
N

∑
n=1

[
e−ρνn(Sνn − K)− e−ρτn(Sτn + K)

]
.

Similarly, if the position is i = 1 and Λ1 = (ν1, τ2, ν2, τ3, . . .) then for all N ≥ 2,

Ee−ρν1 v1(Xν1) ≥ Ee−ρνN v0(XνN ) + Ee−ρν1(Sν1 − K) + E
N

∑
n=2

[
e−ρνn(Sνn − K)− e−ρτn(Sτn + K)

]
.

Proof of Lemma 3. Since vi, i = 1, 2 are solutions of the HJB equations in (9), we have for all t ≥ 0,

v0(Xt) ≥ v1(Xt)− eXt − K,
v1(Xt) ≥ v0(Xt) + eXt − K.

(21)

It follows, for the position i = 0, that

Ee−ρτ1 v0(Xτ1) ≥ Ee−ρτ1 (v1(Xτ1)− Sτ1 − K)
≥ Ee−ρν1 v1(Xν1)− Ee−ρτ1(Sτ1 + K)
≥ Ee−ρν1(v0(Xν1) + Sν1 − K)− Ee−ρτ1(Sτ1 + K)

≥ Ee−ρτ2 v0(Xτ2) + E
[
e−ρν1(Sν1 − K)− e−ρτ1(Sτ1 + K)

]
.
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In the expressions above, the second line uses Lemma 2 for τ1 ≤ ν1. The third line uses (21).
The last line uses Lemma 2 for ν1 ≤ τ2.

Similarly,

Ee−ρτ2 v0(Xτ2) ≥ Ee−ρν2 v0(Xν2) + E
[
e−ρν2(Sν2 − K)− e−ρτ2(Sτ2 + K)

]
. (22)

Continue this way to obtain the first inequality of Lemma 3:

Ee−ρτ1 v0(Xτ1) ≥ Ee−ρνN v0(XνN ) + E
N

∑
n=1

[
e−ρνn(Sνn − K)− e−ρτn(Sτn + K)

]
for all N ≥ 1.

For the second inequality, we use similar computations for the position i = 1.

Ee−ρν1 v1(Xν1) ≥ Ee−ρν1 (v0(Xν1) + Sν1 − K)
≥ Ee−ρτ2(v0(Xτ2) + Ee−ρν1(Sν1 − K)

≥ Ee−ρν2 v0(Xν2) + E
[
e−ρν2(Sν2 − K)− e−ρτ2(Sτ2 + K)

]
+ Ee−ρν1(Sν1 − K).

Continue this way to obtain the second inequality of Lemma 3.

Lemma 4. If the position is i = 0 and Λ∗0 = (τ∗1 , ν∗1 , τ∗2 , ν∗2 , . . .) is defined as in Theorem 1, then for all N ≥ 1,

Ee−ρτ∗1 v0(Xτ∗1
) = Ee−ρν∗N v0(Xν∗N

) + E
N

∑
n=1

[
e−ρν∗n (Sν∗n − K)− e−ρτ∗n (Sτ∗n + K)

]
.

Similarly, if the position is i = 1 and Λ∗1 = (ν∗1 , τ∗2 , ν∗2 , τ∗3 , . . .) is defined as in Theorem 1, then for all
N ≥ 2,

Ee−ρν∗1 v1(Xν∗1
) = Ee−ρν∗N v0(Xν∗N

) + Ee−ρν∗1 (Sν∗1
− K) + E

N

∑
n=2

[
e−ρν∗n (Sν∗n − K)− e−ρτ∗n (Sτ∗n + K)

]
.

Proof of Lemma 4. Since vi, i = 1, 2 are solutions of the HJB equations in (9), they have to
satisfy (11), i.e., 

v0(x) = v1(x)− ex − K on [x0, x1],
v1(x) = v0(x) + ex − K on [x2, ∞),
(ρ−A)v0(x) = 0 on (−∞, x0] ∪ [x1, ∞),
(ρ−A)v1(x) = 0 on (−∞, x2].

It has been shown by (Zhang and Zhang 2008) that τ∗n < ∞, and ν∗n < ∞ a.s. for n ≥ 1.
Now consider the position i = 0. Note that Xτ∗1

∈ [x0, x1]. Hence,

Ee−ρτ∗1 v0(Xτ∗1
) = Ee−ρτ∗1 v1(Xτ∗1

)− Ee−ρτ∗1 (Sτ∗1
+ K).

Note that Xt ∈ (−∞, x2] for all t ∈ [τ∗1 , ν∗1 ] and Xν∗1
= x2. This implies (ρ−A)v1(Xt) = 0 for all

t ∈ [τ∗1 , ν∗1 ] and v1(Xν∗1
) = v0(Xν∗1

) + e
Xν∗1 − K. Lemma 2 implies

Ee−ρτ∗1 v1(Xτ∗1
) = Ee−ρν∗1 v1(Xν∗1

)

= Ee−ρν∗1 v0(Xν∗1
) + Ee−ρν∗1 (Sν∗1

− K).

Therefore,

Ee−ρτ∗1 v1(Xτ∗1
) = Ee−ρν∗1 v0(Xν∗1

) + E
[
e−ρν∗1 (Sν∗1

− K)− e−ρτ∗1 (Sτ∗1
+ K)

]
.
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Note that Xt ∈ [x1, ∞) for all t ∈ [ν∗1 , τ∗2 ]. This implies (ρ −A)v0(Xt) = 0 for all t ∈ [ν∗1 , τ∗2 ].
Lemma 2 implies Ee−ρν∗1 v0(Xν∗1

) = Ee−ρτ∗2 v0(Xτ∗2
).

Similarly,

Ee−ρτ∗2 v0(Xτ∗2
) = Ee−ρν∗2 v0(Xν∗2

) + E
[
e−ρν∗2 (Sν∗2

− K)− e−ρτ∗2 (Sτ∗2
+ K)

]
. (23)

Continue the procedure to obtain

Ee−ρτ∗1 v1(Xτ∗1
) = Ee−ρν∗N v0(Xν∗N

) + E
N

∑
n=1

[
e−ρν∗n (Sν∗n − K)− e−ρτ∗n (Sτ∗n + K)

]
for all N ≥ 1.

For the second equality, we use similar computations for the position i = 1 as follows.
Note that Xν∗1

∈ [x2, ∞). Hence,

Ee−ρν∗1 v1(Xν∗1
) = Ee−ρν∗1 v0(Xν∗1

) + Ee−ρν∗1 (Sν∗1
− K).

Note also that Xt ∈ [x1, ∞) for all t ∈ [ν∗1 , τ∗2 ]. This implies (ρ−A)v0(Xt) = 0 for all t ∈ [ν∗1 , τ∗2 ].
Lemma 2 implies Ee−ρν∗1 v0(Xν∗1

) = Ee−ρτ∗2 v0(Xτ∗2
). Use (23) to obtain

Ee−ρν∗1 v0(Xν∗1
) = Ee−ρν∗2 v0(Xν∗2

) + E
[
e−ρν∗2 (Sν∗2

− K)− e−ρτ∗2 (Sτ∗2
+ K)

]
.

Similarly, Ee−ρν∗2 v0(Xν∗2
) = Ee−ρν∗3 v0(Xν∗3

) + E
[
e−ρν∗3 (Sν∗3

− K)− e−ρτ∗3 (Sτ∗3
+ K)

]
.

Continue the procedure to obtain the second equality.

Proof of Theorem 1. The proof consists of two steps. In the first step, we show that vi(x) ≥ Ji(x, Λi)

for all Λi. Then in the second step, we show that vi(x) = Ji(x, Λ∗i ). Therefore, vi(x) = Vi(x), and Λ∗i
is optimal.

For the first step, first note that

v0(XνN ) = v0(x2) for νN ∈ Λ0, N ≥ 1,

and
v0(XνN ) = v0(x2) for νN ∈ Λ1, N ≥ 2.

In view of Lemma 3 and the assumption v0(x2) ≥ 0, we have

Ee−ρτ1 v0(Xτ1) ≥ E
N

∑
n=1

[
e−ρνn(Sνn − K)− e−ρτn(Sτn + K)

]
for N ≥ 1, and

Ee−ρν1 v1(Xν1) ≥ Ee−ρν1(Sν1 − K) + E
N

∑
n=2

[
e−ρνn(Sνn − K)− e−ρτn(Sτn + K)

]
for N ≥ 2.

Moreover, since vi, i = 0, 1, satisfy the quasi-variational inequalities in (9), ρvi(Xt)−Avi(Xt) ≥ 0
for all t ≥ 0. Let X0 = x. Use Lemma 2 to obtain

v0(x) ≥ Ee−ρτ1 v0(Xτ1) and v1(x) ≥ Ee−ρν1 v1(Xν1).

Sending N → ∞, we obtain v0(x) ≥ J0(x, Λ0) for all Λ0, and v1(x) ≥ J1(x, Λ1) for all Λ1.
This implies that v0(x) ≥ V0(x) and v1(x) ≥ V1(x).

For the second step, we establish the equalities. Note that v0 ∈ C2(IR \ {x0, x1}), v1 ∈ C2(IR \
{x2}), and both v0 and v1 are in C1(IR).

Note also that if the position is i = 0 then Xt ∈ (−∞, x0] ∪ [x1, ∞) for all t ∈ [0, τ∗1 ], which implies
(ρ−A)v0(Xt) = 0 for all t ∈ [0, τ∗1 ].
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Similarly, if the position is i = 1 then Xt ∈ (−∞, x2] for all t ∈ [0, ν∗1 ], which implies (ρ −
A)v1(Xt) = 0 for all t ∈ [0, ν∗1 ].

Using Lemma 2, we get v0(x) = Ee−ρτ∗1 v0(Xτ∗1
) and v1(x) = Ee−ρν∗1 v0(Xν∗1

).
In view of Lemma 4, it remains to show Ee−ρν∗N v0(Xν∗N

)→ 0.
Note that Xν∗N

= x2 for all N ≥ 0, therefore, v0(Xν∗N
) = v0(x2).

Thus, it suffices to show Ee−ρν∗N → 0 as N → ∞. To this end, note that v0(x2) ≥ 0 by assumption,
so let N → ∞ in the first equation of Lemma 4 to obtain

v0(x) ≥
∞

∑
n=1

E
[
e−ρν∗n (Sν∗n − K)− e−ρτ∗n (Sτ∗n + K)

]
= −Ee−ρτ∗1 (Sτ∗1

+ K) +
∞

∑
n=1

E
[
e−ρν∗n (Sν∗n − K)− e−ρτ∗n+1(Sτ∗n+1

+ K)
]

≥ −Ee−ρτ∗1 (Sτ∗1
+ K) +

∞

∑
n=1

E
[
Sν∗n − Sτ∗n+1

− 2K
]
e−ρν∗n

= −Ee−ρτ∗1 (Sτ∗1
+ K) + (ex2 − ex1 − 2K)

∞

∑
n=1

Ee−ρν∗n .

Furthermore, ex2 − ex1 − 2K > 0 by assumption and τ∗1 < ∞ a.s. (Zhang and Zhang 2008). Also,
it can be seen from the definition of v0(x) in Theorem 1 that v0(x) is bounded. These imply the

convergence of
∞

∑
n=1

Ee−ρν∗n . Therefore, Ee−ρν∗n → 0 as n→ ∞.

Remark 3. There are two main approaches for an optimal stopping problem: the probabilistic approach and
variational inequality methods. The probabilistic approach focuses on sufficient conditions and often leads to full
characterization of optimal stopping strategies. The VI approach, on the other hand, involves mostly necessary
conditions. For a quick comparison between these two methods, we refer the reader to the book (Øksendal 2003).
Full characterization of value functions often requires substantial analytical efforts which limit the applicability
to vast majority problems arising in applications. The VI approach has demonstrated clear advantages when
treating optimal stopping problems with regime switching along this line. For example, in an optimal stopping
problem in connection with stock loans, a probabilistic approach was used in (Xia and Zhou 2007). When it
comes to the model with regime switching, the probabilistic method fails. Only the VI approach allows full
treatment of the problem in (Zhang and Zhou 2009).

Remark 4. The main results of this paper are based on the Ph.D. dissertation (Luu 2016). Our work was done
independently. It was brought to our attention during the review process that the problem considered in this
paper has been treated thoroughly in (Leung et al. 2015).

3. Numerical Results and Discussion

In this section, we consider a numerical example with the following specifications:

a = 0.8, b = 2, σ = 0.5, ρ = 0.5, K = 0.1.

Solving the quasi-algebraic Equations (15) and (16) gives (x0, x1, x2) = (−4.58, 1.22, 1.7).
Note that all the threshold levels x0, x1, and x2 are below the equilibrium b = 2. This equilibrium

serves as a pulling force that lifts the trajectory Xt from anywhere below b = 2. The price levels
S0 = exp(x0) = 0.01 and S1 = exp(x1) = 3.39 are considered to be the low and the price S2 =

exp(x2) = 5.47 is the high. Here two main factors affect the overall return: (i) the frequency for the
price to go from S1 to S2; (ii) the frequency of the price to travel from S1 to S2. It can be seen in Figure 1
that both the price levels S1 = 3.78 and S2 = 5.12 were crossed over several times indicating good
profit opportunities.
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The corresponding value functions V0(x) and V1(x) are given in Figure 3. Clearly, V0(x) is
uniformly bounded and V1(x) has an exponential growth rate which is consistent to Lemma 1.

Figure 3. The value functions V0(x) and V1(x).

We next examine the dependence of (x0, x1, x2). by varying one of the parameters at a time.
In Table 1, we compute the triple (x0, x1, x2) associated with varying b. Intuitively, a larger b

would result larger threshold levels x1 and x2. It can be seen from Table 1 that x1 and x2 are both
monotonically increasing as b increases.

Table 1. (x0, x1, x2) with varying b.

b 1 1.5 2 2.5 3

x0 −4.36 −4.46 −4.58 −4.66 −4.74
x1 0 0.64 1.22 1.78 2.34
x2 0.74 1.22 1.7 2.18 2.66

In Table 2, we vary a. Intuitively, a larger a implies larger pulling rate back to the equilibrium level
b = 2, which would encourage more transactions. It can be seen in Table 2 that the lower buying level
x0 decreases and the higher buying level x1 increases. This leads to a wider buying interval [x0, x1],
resulting in greater buying opportunities. The selling level x2 increases but the the interval [x1, x2] gets
narrower, which suggests one should take profit sooner as a gets bigger.

Table 2. (x0, x1, x2) with varying a.

a 0.6 0.7 0.8 0.9 1

x0 −4.2 −4.4 −4.58 −4.72 −4.86
x1 0.98 1.14 1.22 1.3 1.36
x2 1.58 1.62 1.7 1.74 1.78

In Table 3, we vary the volatility σ. Intuitively, larger σ implies greater range for the stock price
St = exp(Xt), which results in higher profit associated with each buying and selling transaction.
Table 3 shows that x0 stays flat, and the intervals [x0, x2] and [x1, x2] both get wider as σ increases,
which indicates higher profit.
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Table 3. (x0, x1, x2) with varying σ.

σ 0.3 0.4 0.5 0.6 0.7

x0 −4.56 −4.56 −4.58 −4.58 −4.6
x1 1.12 1.16 1.22 1.28 1.36
x2 1.54 1.62 1.7 1.8 1.9

In Table 4, we vary the discount rate ρ. Intuitively, larger ρ implies smaller in the value or reward
functions, which would discourage transactions. Table 4 shows that x0 increases and the interval
[x1, x2] gets wider as ρ increases. This indicates one would wait longer to buy or hold the stock longer.

Table 4. (x0, x1, x2) with varying ρ.

ρ 0.3 0.4 0.5 0.6 0.7

x0 −5 −4.86 −4.58 −4.32 −4.12
x1 1.56 1.36 1.22 1.06 0.9
x2 1.94 1.84 1.7 1.56 1.42

In Table 5, we vary the transaction cost K. Intuitively, larger K would discourage transactions.
Table 5 suggests a similar phenomenon to the case of ρ.

Table 5. (x0, x1, x2) with varying K.

K 0.01 0.05 0.1 0.5 1

x0 −5 −5 −4.58 −2.56 −1.6
x1 1.46 1.3 1.22 0.7 −0.46
x2 1.56 1.68 1.7 1.78 1.86

Remark 5. The result in this paper can be used as a guide when implementing a mean-reversion trading.
One idea is to start with the trading strategy determined by a parameter triple (x0, x1, x2) and then develop a
computational process to estimate these parameters. For example, in (Song et al. 2009), a stochastic approximation
method was used to estimate these key levels. The SA algorithm is simple and direct and can be carried out
without even assuming the mean reversing dynamics nor worrying about the trouble of model calibration.

4. Conclusions

In this paper, a mean-reverting trading was considered and an optimal rule was given
in terms of the triple (x0, x1, x2) corresponding to lows (two buying points) and a high (one
selling point). These key levels can be determined by solving a set of quasi-algebraic equations.
Moreover, the dependence of the threshold levels (x0, x1, x2) on the parameters is demonstrated in a
numerical example.

It would be interesting to consider more realistic models in which the equilibrium levels are
subject to jumps. In this case, one may introduce a finite state Markov chain to capture possible jumps.
Additional features can be considered include multiple asset trading. Naturally, this will increase the
dimension of the problem because one needs to introduce additional decision variables to capture not
only when to buy but also which asset to buy over time. It would be interesting to extend the results of
this paper to incorporate these practical considerations.
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