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Abstract: This study utilizes the seven bivariate generalized autoregressive conditional 

heteroskedasticity (GARCH) models to forecast the out-of-sample value-at-risk (VaR) of 21 stock 

portfolios and seven currency-stock portfolios with three weight combinations, and then employs 

three accuracy tests and one efficiency test to evaluate the VaR forecast performance for the above 

models. The seven models are constructed by four types of bivariate variance-covariance 

specifications and two approaches of parameters estimates. The four types of bivariate variance-

covariance specifications are the constant conditional correlation (CCC), asymmetric and symmetric 

dynamic conditional correlation (ADCC and DCC), and the BEKK, whereas the two types of 

approach include the standard and non-standard approaches. Empirical results show that, 

regarding the accuracy tests, the VaR forecast performance of stock portfolios varies with the 

variance-covariance specifications and the approaches of parameters estimate, whereas it does not 

vary with the weight combinations of portfolios. Conversely, the VaR forecast performance of 

currency-stock portfolios is almost the same for all models and still does not vary with the weight 

combinations of portfolios. Regarding the efficiency test via market risk capital, the NS-BEKK model 

is the most suitable model to be used in the stock and currency-stock portfolios for bank risk 

managers irrespective of the weight combination of portfolios. 

Keywords: value-at-risk; accuracy test; efficiency test; constant conditional correlation; dynamic 

conditional correlation; stock market 

 

1. Introduction 

In recent years, volatility and value-at-risk (VaR) forecasts have been a key topic in the financial 

field because they can be used to measure the risk of assets, especially for the VaR. However, why is 

the VaR more popular than volatility when we measure the assets’ risk? The reason is that it can react 

to the skewed and leptokurtic characteristics appearing at the return distribution of most financial 

assets when the long and short positions of assets are considered. Owing to this merit, VaR has been 

widely used in financial fields such as risk management, financial control, financial reporting, and 

computing capital requirement. For example, the capital requirement is the amount of capital a bank 

or another financial institution has to hold as required by its financial regulator. However, the capital 

requirements for general market risk are based on the output of a bank’s internal value-at-risk model 

and are calibrated to a common supervisory standard. In other words, a value-at-risk model produces 

an estimate of the maximum amount that the bank can lose on a particular portfolio over a given 

holding period and with a given degree of statistical confidence. Notably, if the bank’s internal value-

at-risk model overestimates the actual VaR, then the bank may lose the opportunity cost, whereas 
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when this model underestimates the actual VaR, then the bank cannot recover the loss as the crisis 

happens. Furthermore, there are a variety of empirical approaches to calculating value at risk. Hence, 

it is important to select an appropriate empirical approach or model to precisely predict the risk. 

Studies in the VaR literature have almost always focused on VaR forecasts and performance 

comparison among several models (Bams et al. 2017; Bayer 2018; Laporta et al. 2018; Lee and Su 2012; 

Su 2014a, 2014b, 2014c, 2015; Su et al. 2014; Yu et al. 2018). In contrast to previous studies, we wish to 

apply the findings of this study to the real world. Hence, except for performing a VaR forecasts 

performance comparison, this study combines an efficiency test with market risk capital (MRC) under 

the 1996 Market Risk Amendment (MRA) of the Basel Capital Accord to select a suitable model to 

manage a bank’s risk via the two-stage selection procedure of Sarma et al. (2003). MRC is the amount 

of regulatory capital a bank must hold with respect to its market risk exposure. In addition, most past 

studies of VaR have concentrated on the risk measure of a single asset (Lee and Su 2012; Su and Hung 

2011; Su 2014a, 2014b, 2015; Su et al. 2014). Actually, investors cannot just hold a single asset during 

a real investment process. Hence, the risk measure of a portfolio has become a significant topic today. 

This trend has led to the popularity of the multivariate GARCH models in recent research. However, 

as the number of component assets of a portfolio increases, the difficulty of parameter estimates of 

the multivariate GARCH models is rapidly enlarged. Hence, investors must consider not only the 

accuracy of the model forecast but also the ease of use of the model when they choose an appropriate 

empirical approach or model to predict the VaR. In the literature on empirical models, studies have 

almost always used the CCC, DCC, or BEKK types of multivariate GARCH models to explore 

empirical issues (Caporale et al. 2014; Li 2012; Moore and Wang 2014; Tamakoshi and Hamori 2014; 

Wang et al. 2010; Wang and Wang 2010; Weber 2013; Yaya et al. 2016). In contrast to the literature, 

this study also considers the two-step asymmetric dynamic conditional correlation (ADCC) model of 

Cappiello et al. (2006) (hereafter, NS-ADCC) because the ADCC model is the more general form of 

the dynamic conditional correlation (DCC) model of Engle (2002). In other words, the DCC model is 

a special case of the ADCC model. 

Regarding the above multivariate GARCH models, they can be classified as the following two 

categories when the interrelationship between two assets is discussed. The first class uses the 

conditional variances and correlations to depict the correlative relationship between two assets such 

as the constant conditional correlation (CCC) model of Bollerslev (1990), the DCC model of Engle 

(2002), and the ADCC model of Cappiello et al. (2006) (Caporale et al. 2014; Moore and Wang 2014; 

Tamakoshi and Hamori 2014; Yaya et al. 2016). The second class uses the conditional variance-

covariance matrix to explore the correlative relationship between two assets, such as the BEKK model 

(Baldi et al. 2016; Chang et al. 2013; Lin and Li 2015; Liu et al. 2017). The first class of model (CCC and 

DCC models) are also divided into two sub-categories depending on whether the parameters are 

estimated by only one step or two successive steps. That is, the first sub-category is called the 

standard approach, and it includes the standard CCC and DCC models (hereafter, S-CCC and S-

DCC), for which the parameters are estimated by one step only. In contrast, the second sub-category 

is called the non-standard approach, and it contains the non-standard CCC, DCC, and ADCC models 

(hereafter, NS-CCC, NS-DCC, and NS-ADCC), for which the parameters are estimated by two 

successive steps. The difference between the two sub-categories is that the non-standard, or two-step 

model, is easy to be estimated, and it is easy to be extended to the more flexible models. The second 

class of model, the BEKK model, is also divided into two sub-categories depending on whether the 

parameters of the model are simplified or not. That is, in the standard BEKK model (hereafter, S-

BEKK), the parameters are not simplified. Conversely, in the non-standard BEKK model (hereafter, 

NS-BEKK) derived by Su (2014c), the parameters are simplified by adopting the suggestion of 

Moschini and Myers (2002). Hence, the non-standard BEKK model has the same merits that the non-

standard CCC and DCC models own. That is, the non-standard BEKK model is easy to be estimated, 

and it is also easy to extend to the more flexible models. Owing to the two-step model’s being easy 
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to be estimated and extended to the more flexible models, the two-step or non-standard DCC1 is very 

useful for determining optimal hedging strategies, volatility spillovers, and causality in volatility 

among financial commodities. For example, Moore and Wang (2014) used the two-step bivariate 

DCC-GARCH model to investigate the sources of the dynamic relationship between real exchange 

rates and stock return differentials in relation to the US market for the developed and emerging Asian 

markets. Tamakoshi and Hamori (2014) adopted a two-step bivariate asymmetric DCC-GARCH 

model (hereafter, ADCC-GARCH) to examine the interdependence of US dollar exchange rates 

expressed in euros, British pounds, and Swiss francs and to further explore the effect of Europe’s 

recent financial turmoil on these dynamic correlations. Turhan et al. (2014) examined the dynamic 

relationship between crude oil and major asset classes consisting of stock, bond, foreign exchange 

rate, and gold markets via the two-step bivariate DCC-GARCH model with a mixed data sampling 

methodology. Ozkan and Erden (2015) applied the two-step multivariate DCC-GARCH model to 

obtain the time-varying exchange rate pass-through (ERPT) measure, then used a panel regression 

model to investigate the macroeconomic determinants of the degree of ERPT. The ERPT denotes the 

transmission of the movements in exchange rates to import prices and domestic prices. 

Subsequently, this study mainly uses the two-stage selection procedure of Sarma et al. (2003) to 

select a suitable model to manage the risk of the institution. The first stage is to perform the accuracy 

tests via using three types of back-testing—Kupiec’s (1995) unconditional coverage test, 

Christoffersen’s (1998) conditional coverage test, and Engle and Manganelli’s (2004) dynamic 

quantile test—to evaluate the out-of-sample VaR forecast performance of the seven bivariate GARCH 

models: the S-CCC, NS-CCC, S-DCC, NS-DCC, S-BEKK, NS-BEKK, and NS-ADCC. The samples 

include the 21 stock portfolios and seven currency-stock portfolios with three weight combinations. 

The results are used to investigate which bivariate variance-covariance specification and which 

parameter estimate approach has a better VaR forecast performance, and whether the asymmetric 

DCC model has a better forecast performance than its corresponding symmetric one. In addition, this 

study also explores whether the different weight combinations and component combinations of 

portfolios will affect the results. The second stage is to execute an efficiency test via market risk capital 

to select a suitable model to manage the risk of the bank. This is performed by the superior predictive 

ability (SPA) test of Hansen (2005). Empirical results show that, regarding the accuracy tests, the VaR 

forecast performance of stock portfolios varies with the variance-covariance specifications and the 

approaches of parameters estimate. For example, the standard (respectively, non-standard) approach 

has better VaR forecast performance for the DCC and BEKK (respectively, CCC) types of bivariate 

variance-covariance specification. In particular, the DCC type of bivariate variance-covariance 

specification with the standard approach achieves the best VaR forecast performance among the 

seven bivariate GARCH models with no exception, indicating that this result is one of the most 

significant findings in this study. Notably, the above findings do not change even if the weight 

combinations of the portfolios vary. On the contrary, the VaR forecast performance of currency-stock 

portfolios is almost the same for all models, and still does not vary with the weight combinations of 

the portfolios. Hence, the above VaR forecast performance comparison results vary with the 

component combination of the portfolio but do not vary with the weight combinations of portfolios 

for the accuracy tests. Regarding the efficiency test via market risk capital, the NS-BEKK model is the 

most suitable model to be used in both the stock and currency-stock portfolios for the bank risk 

manager, irrespective of the weight combination of the portfolios, implying that the result is another 

one of the most significant findings in this study. 

The remainder of this paper is organized as follows. Section 2 describes the empirical models 

utilized in this study: the three correlation types of the bivariate GARCH model (CCC, DCC, ADCC) 

and the variance-covariance type of the bivariate GARCH model (BEKK). Section 3 discusses the 

theory of three types of back-testing, market risk capital, and the superior predictive ability test that 

are used to evaluate the VaR forecast performance for alternative VaR models. Section 4 states the 

                                                 
1 Owing to the wide application of the DCC model, McAleer (2018) derived the stationarity and invertibility 

conditions of the DCC model in order to provide a solid statistical foundation for the estimates of the DCC 

parameters. 
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basic statistical features for the return series of both United States dollar index and seven stock indices 

in American and Europe. Section 5 analyzes the empirical results of alternative bivariate GARCH 

models and further explores the issues addressed in this study via the performance assessments of 

VaR forecasts. Finally, the conclusion is drawn in the last section. 

2. Methodology 

As shown in the section of the introduction, the seven bivariate GARCH models are composed 

of four bivariate variance-covariance specifications (i.e., the CCC, DCC, ADCC, and BEKK) with the 

standard and non-standard approaches. Notably, only the non-standard approach is considered for 

the ADCC specification (i.e., the NS-ADCC model). The four bivariate variance-covariance 

specifications can roughly be classified into the following two categories. The first category uses the 

conditional variances and correlations to depict the correlative relationship between two assets such 

as the CCC, DCC, and the ADCC. The second category uses the conditional variance-covariance 

matrix to explore the correlative relationship between two assets such as the BEKK model. 

Subsequently, the theory of the above two categories of models is depicted at the following two 

subsections. 

2.1. The Variance-Correlation Type of Bivariate GARCH Models 

In this subsection, the CCC and DCC models are selected as the representative of the variance-

correlation type of bivariate GARCH models. The bivariate DCC-GARCH(1,1) model is composed of 

a mean equation and a variance-covariance equation. Hence, the mean equation in the vector form 

can be defined as follows. 

𝐫𝐭 = 𝛍 + 𝐞𝐭, 𝐞𝐭|Ωt−1 = 𝐇𝐭
1 2⁄

∙ 𝐳𝐭~N(𝟎, 𝐇𝐭), 𝐳𝐭~N(𝟎, 𝐈) (1) 

where 𝐫𝐭 = (r1,t, r2,t)
′
 is a column vector of log returns, that is, ri,t = (lnPi,t − lnPi,t−1) × 100 , Pi,t 

denotes the close price of the ith stock index at time t; 𝛍 = (μ1, μ2)′ denotes a column vector of the 

above mean returns; 𝐞𝐭 = (e1,t, e2,t)
′
 is a column vector of the error terms; and 𝐳𝐭 follows a bivariate 

Gaussian distribution with a mean zero and its variance-covariance matrix equals the identity matrix, 

𝐈. Conversely, the variance-covariance equation is expressed in the form of DCC-GARCH(1,1), and 

its vector form is represented as follows. 

𝐇𝐭 = 𝐃𝐭 ∙ 𝐑𝐭 ∙ 𝐃𝐭 (2) 

where 𝐇𝐭  denotes the variance-covariance matrix; 𝐃𝐭 = diag(h11,t
0.5 , h22,t

0.5 ) is a diagonal matrix; 𝐑𝐭 =

diag(q11,t
−0.5, q22,t

−0.5) ∙ 𝐐𝐭 ∙ diag(q11,t
−0.5, q22,t

−0.5)  is the correlation matrix, 𝐐𝐭 = (qij,t)  denotes a 2 × 2 

symmetric positive definite matrix, and can be expressed as 𝐐𝐭 = (1 − a′ − b′)𝐐̅ + a′𝐮𝐭−𝟏∙𝐮𝐭−𝟏
′ +

b′𝐐𝐭−𝟏 , 𝐮𝐭 = (u1,t, u2,t)
′
 is a column vector with ui,t = ei,t √hii,t⁄ , 𝐐̅  is the 2 × 2  unconditional 

variance matrix of 𝐮𝐭, and a′ and b′ are the non-negative scalar parameters satisfying the condition 

of a′ + b′ < 1.2 Except for the DCC-GARCH(1,1) model, we also follow Tamakoshi and Hamori (2014) 

to use the asymmetric DCC-GARCH(1,1) (hereafter, ADCC) model. The ADCC model is a special 

case of the asymmetric generalized DCC (hereafter, AGDCC) proposed by Cappiello et al. (2006). 

This model considers the asymmetry in the correlation and can better capture the heterogeneity 

present in the data. In the AGDCC model, 𝐐𝐭 = (qij,t) is expressed as follows. 

𝐐𝐭 = (𝐐̅ − 𝐀′𝐐̅𝐀 − 𝐁′𝐐̅𝐁 − 𝐆′𝐍̅𝐆) + 𝐀′𝐮𝐭−𝟏∙𝐮𝐭−𝟏
′ 𝐀 + 𝐆′𝐧𝐭−𝟏∙𝐧𝐭−𝟏

′ 𝐆 + 𝐁′𝐐𝐭−𝟏𝐁 (3) 

where A, B, and G are the 2 × 2 parameter matrices; 𝐐̅ and 𝐍̅ are the unconditional correlation 

matrices of 𝐮𝐭 and 𝐧𝐭; and 𝐧𝐭 = 𝐈[𝐮𝐭 < 𝟎] ∘ 𝐮𝐭, 𝐈[∙] is a 2 × 1 indicator function that takes on the 

value of 1 if the argument is true and 0 otherwise; ‘∘’ denotes a Hadamard product; and 𝐐̅ = E[𝐮𝐭𝐮𝐭
, ], 

and 𝐍̅ = E[𝐧𝐭𝐧𝐭
, ]. Notably, the 𝐐̅ and 𝐍̅ can be replaced with the sample analogues, T−1 ∑ 𝐮𝐭∙𝐮𝐭

′T
t=1  

and T−1 ∑ 𝐧𝐭∙𝐧𝐭
′T

t=1 , respectively. T denotes the sample size of the estimation period. If A, B, and G are 

                                                 
2 For more details about these two types of models, please see Bauwens et al. (2006) and Silvennoinen and 

Teräsvirta (2009). 

http://link.springer.com/search?facet-author=%22Timo+Ter%C3%A4svirta%22
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respectively replaced by scalars a̅, b̅, and g̅, then the AGDCC model degenerates into the ADCC 

model. Hence, the ADCC model can be expressed as the following form. 

𝐐𝐭 = (𝐐̅ − a′𝐐̅ − b′𝐐̅ − g′𝐍̅) + a′𝐮𝐭−𝟏∙𝐮𝐭−𝟏
′ + g′𝐧𝐭−𝟏∙𝐧𝐭−𝟏

′ + b′𝐐𝐭−𝟏 (4) 

where a′ = a̅2 , b′ = b̅2 , and g′ = g̅2 . In this case, parameters a̅,  b̅, and g̅ are not restricted as 

positive values. If g′ = 0, then the ADCC model degenerates into the DCC model created by Engle 

(2002). The correlation matrix 𝐑𝐭 can be expressed as follows. 

𝑹𝒕 = 𝑑𝑖𝑎𝑔(𝑞11,𝑡
−0.5, 𝑞22,𝑡

−0.5) ∙ 𝑸𝒕 ∙ 𝑑𝑖𝑎𝑔(𝑞11,𝑡
−0.5, 𝑞22,𝑡

−0.5) 

    = [
𝑞11,𝑡

−0.5    0

     0      𝑞22,𝑡
−0.5] [

𝑞11,𝑡  𝑞12,𝑡

𝑞12,𝑡  𝑞22,𝑡
] [

𝑞11,𝑡
−0.5    0

     0      𝑞22,𝑡
−0.5] 

= [
  1                       q12,t ∙ (q11,t ∙ q22,t)

−0.5

q12,t ∙ (q11,t ∙ q22,t)
−0.5

                    1
] 

(5) 

Hence, 𝐑𝐭 is also a symmetric positive definite matrix including the time varying conditional 

correlations ρ12,t = q12,t √q11,t ∙ q22,t⁄  and ρii,t = 1  for i = 1,2 . Owing to 𝐇𝐭 = 𝐃𝐭 ∙ 𝐑𝐭 ∙ 𝐃𝐭 , the 

variance-covariance specification of bivariate DCC-GARCH(1,1) or bivariate ADCC-GARCH(1,1) 

model is also expressed as the following matrix form.  

[
h11,t   h12,t

h21,t   h22,t
] = [

h11,t
0.5       0

0       h22,t
0.5 ] [

1    ρ12,t

ρ12,t    1
] [

h11,t
0.5       0

0       h22,t
0.5 ] 

      = [
h11,t                    ρ12,t(h11,t ∙ h22,t)

0.5

ρ12,t(h11,t ∙ h22,t)
0.5

                h22,t

] 

(6) 

Therefore, h12,t = h21,t = ρ12,t√h11,t ∙ h22,t  and hii,t  can be defined as any type of univariate 

GARCH(1,1) model such as hii,t = ωi + αiei,t−1
2 + βihii,t−1 for i = 1, 2. Notably, the above bivariate 

DCC-GARCH(1,1) model degenerates into the bivariate CCC-GARCH(1,1) model when the 

parameters a′ and b′ are set as zero. Therefore, the log-likelihood function of the bivariate DCC-

GARCH(1,1), CCC-GARCH(1,1), and ADCC-GARCH(1,1) models can be written as follows: 

L(𝚿) = ∑ ln{f(𝐫𝐭|Ωt−1; 𝚿)}
T

t=1
 

                                                   = −
T

2
ln (2π) −

1

2
∑ (ln|𝐇𝐭| + 𝐞𝐭

′ ∙ 𝐇𝐭
−𝟏 ∙ 𝐞𝐭)

T

t=1
 

(7) 

where 𝚿 = [μ1, μ2, ω1, α1, β1, ω2, α2, β2, ρ12]  and [μ1, μ2, ω1, α1, β1, ω2, α2, β2, a′, b′],  respectively, are 

the vector of parameters to be estimated for the bivariate CCC-GARCH(1,1) and bivariate DCC-

GARCH(1,1) models whereas 𝚿 = [μ1, μ2, ω1, α1, β1, ω2, α2, β2, a̅, b̅, g̅ ] is the vector of parameters to 

be estimated for the bivariate ADCC-GARCH(1,1) model. T denotes the sample size of the estimate 

period, f(∙) denotes the bivariate normal density, Ωt−1 denotes the information set of all observed 

returns up to time t − 1 whereas 𝐫𝐭, 𝐞𝐭, and 𝐇𝐭 are defined in Equations (1) and (2). 

In addition, both the bivariate CCC-GARCH(1,1) model and the bivariate DCC-GARCH(1,1) 

model can be classified into two sub-categories based on the procedure of the parameters estimate. If 

all the parameters of these models are estimated via only one step, then the bivariate CCC-

GARCH(1,1) model and the bivariate DCC-GARCH(1,1) model are respectively named as the 

standard CCC (hereafter, S-CCC) model and the standard DCC (hereafter, S-DCC) model.3 On the 

contrary, when the parameters of these models are estimated via two successive steps, the bivariate 

CCC-GARCH(1,1) model and the bivariate DCC-GARCH(1,1) model are respectively named as the 

                                                 
3 The parameters of the standard CCC and DCC models are estimated by the GARCH instruction provided 

by the Rats 6.0 program. The parameters of these models are estimated only by one step compared with the 

two steps’ CCC and DCC models. 
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non-standard CCC (hereafter, NS-CCC) model and the non-standard DCC (hereafter, NS-DCC) 

model. In this section, we select the NS-ADCC model as an example to illustrate the estimating 

procedure of the non-standard or two-step approach. The parameters of the bivariate ADCC-

GARCH(1,1) model are estimated via two successive steps only, hence, this model is named as the 

non-standard ADCC (hereafter, NS-ADCC) model. The detailed estimate procedure of NS-ADCC 

model is listed as follows. First, two univariate GARCH(1,1) models are fit for each of the two 

component assets’ return series (i.e., ri,t for i = 1, 2), and then the estimates of variance series hii,t 
and residue series ei,t for i = 1, 2 are obtained. Hence, the log-likelihood value LLi and the values 

of parameters μi, ωi, αi, and βi are obtained from the estimation of the ith univariate GARCH(1,1) 

model corresponding to the ith component asset for i = 1, 2 during this step of estimation. Second, 

two standardized residual return series (ui,t for i = 1, 2) are obtained by the residual return series (ei,t) 

divided by their estimated standard deviations series (√hii,t) (i.e., ui,t = ei,t √hii,t⁄  for i = 1, 2). In 

addition, the above two corresponding negative component residual return series (ni,t for i = 1, 2) are 

obtained by the relation: ni,t = I[ui,t < 0] ∙ ui,t where I[∙] is an indicator function that takes on the 

value of 1 if the argument is true and 0 otherwise. Subsequently, the above two standardized residual 

return series (ui,t for i = 1, 2) and their corresponding negative component residual return series 

(ni,t for i = 1, 2) are used to estimate the intercept parameters of the conditional correlation (a̅, b̅, and 
g̅ ). During this step of estimation, the log-likelihood value LL3 and the values of 

parameters  a̅, b̅, and g̅   are obtained from the estimation of the correlation matrix equation: 𝐐𝐭 =

(𝐐̅ − a′𝐐̅ − b′𝐐̅ − g′𝐍̅) + a′𝐮𝐭−𝟏𝐮𝐭−𝟏
′ + g′𝐧𝐭−𝟏𝐧𝐭−𝟏

′ + b′𝐐𝐭−𝟏  where a′ = a̅2 , b′ = b̅2 , and g′ = g̅2 . 

Notably, the two-step parameters estimate approach can be employed when the dimension of the 

multivariate GARCH model is greater than two. 

Under the framework of the parametric techniques (Jorion 2000), the one-day-ahead long 

position VaR of a portfolio 4  based on the bivariate CCC-GARCH(1,1), DCC-GARCH(1,1), and 

ADCC-GARCH(1,1) models can be calculated as follows. 

LVaRP,t = μP + zα ∙ √ĥP,t+1|t 

= ∑ wi ∙ μi + zα√∑ ∑ wiwjĥij,t+1|t

2

j=1

2

i=1

2

i=1
 

(8) 

where μP is the conditional mean of return for a portfolio; wi is the weight of component asset i 

(i.e., the share of asset i in a portfolio); μi is the conditional mean of return for component asset i, 

and zα denotes the left-tailed percentile at α% for the standardized normal distribution; ĥij,t+1|t is 

the one-step-ahead variance (respectively, covariance) forecast when i = j  (respectively, i ≠ j ) 

conditional on all information upon time t, and it can be obtained from Equation (6). 

2.2. The Variance-Covariance Type of Bivariate GARCH Models 

In this subsection, the BEKK5 model is chosen as the representative of the variance-covariance 

type of bivariate GARCH models. The bivariate BEKK-GARCH(1,1) model can be classified into the 

following two sub-categories based on the number of parameters to estimate in a model. The first 

                                                 
4 In a real case, if an institution wants to evaluate the operation performance of several fund managers that 

respectively have different values of assets measured with different currencies, indicating that it is hard to 

evaluate their operation performance when ‘the VaR expressed in actual monetary value’ is used. However, 

it is easy to evaluate their performance as ‘the VaR expressed in return’ is utilized since the return is 

dimensionless. Notably, we can convert the above expression via the following equation. ‘The VaR expressed 

in actual monetary value’ = ‘the VaR expressed in return’ * the value of asset’s position. Taking an example 

to illustrate it, if the value of an asset is USD 1000, and its VaR expressed in return is 1.4091%, then ‘the VaR 

expressed in actual monetary value’ is equal to USD 14.091 (=1.4091%* USD1000). 
5 The BEKK model is named after Baba et al. (1990). 



Risks 2018, 6, 133 7 of 41 

 

sub-category: the standard BEKK-GARCH(1,1) model (hereafter, S-BEKK)6 has eleven parameters. 

The second sub-category: the non-standard BEKK-GARCH(1,1) model derived by Su (2014c) 

(hereafter, NS-BEKK) has only nine parameters. The BEKK-GARCH model proposed by Engle and 

Kroner (1995) is a restricted version of the VEC model7 and it has the attractive property of the 

conditional covariance matrix being definitely positive owing to its matrix’s construction. Hence, the 

standard BEKK model has the following form. 

𝐇𝐭 = 𝐂𝟎
′ 𝐂𝟎 + ∑ ∑ 𝐀𝐢𝐤

′ 𝐞𝐭−𝐢𝐞𝐭−𝐢
′

p

i=1

𝐀𝐢𝐤 +

K

k=1

∑ ∑ 𝐆𝐣𝐤
′ 𝐇𝐭−𝐣

q

j=1

𝐆𝐣𝐤 

K

k=1

 (9) 

where 𝐀𝐢𝐤 and 𝐆𝐣𝐤 are n × n dimensional matrices, and 𝐂𝟎 is an upper triangular matrix. 𝐞𝐭−𝐢 is 

an n × 1 column vector of error terms, and 𝐇𝐭  denotes the n × n dimensional variance-covariance 

matrix. The decomposition of the constant term into a product of two triangular matrices is to ensure 

the positive definiteness of 𝐇𝐭 and the summation limit K determines the generality of the process. 

It should be clear that Equation (9) will be definitely positive under very weak conditions. 

Furthermore, this representation is sufficiently general since it includes all positive definite diagonal 

representations and nearly all positive definite VEC representations. To clearly illustrate the BEKK-

GARCH model, this study considers the bivariate BEKK-GARCH(1,1) model with the restriction 

condition of ‘K = p = q = 1’ and ‘K = 2, and p = q = 1’ for the standard and non-standard BEKK-

GARCH models, respectively. The above standard and non-standard BEKK-GARCH models are 

respectively named as the S-BEKK and NS-BEKK models. Hence, when the restrictions ′K = p = q =

1 and n = 2′ are substituted into Equation (9), the S-BEKK model can be obtained as follows. 

𝐇𝐭 = 𝐂𝟎
′ 𝐂𝟎 + 𝐀𝟏𝟏

′ 𝐞𝐭−𝟏𝐞𝐭−𝟏
′ 𝐀𝟏𝟏 + 𝐆𝟏𝟏

′ 𝐇𝐭−𝟏𝐆𝟏𝟏 (10) 

where the parameters 𝐀𝟏𝟏 and 𝐆𝟏𝟏 are 2 × 2 dimensional matrices and 𝐂𝟎 is an upper triangular 

matrix. They are defined as follows: 

𝐇𝐭 = [
h11,t   h12,t

h21,t   h22,t
] ,  𝐞𝐭−𝟏 = [

e1,t−1

e2,t−1
] , 𝐂𝟎 = [

c11  c12

 0     c22
], 𝐀𝟏𝟏 = [

a11  a12

 a21   a22
], 𝐆𝟏𝟏 = [

g11  g12

 g21   g22
].  

Hence, the S-BEKK model can also be expressed as follows. When the above matrix expression 

is manipulated, we obtain that, first, the variance-covariance matrix 𝐇𝐭 is a symmetric matrix (i.e., 

h12,t = h21,t). Second, the model in Equation (10) includes eleven parameters (i.e., the elements in 

matrices  𝐂𝟎, 𝐀𝟏𝟏, and 𝐆𝟏𝟏). Third, the elements of this variance-covariance matrix 𝐇𝐭 is a function 

of e1,t−1
2 , e2,t−1

2 , e1,t−1e2,t−1, h11,t−1, h22,t−1 and h12,t−1 and is expressed as follows. 

   h11,t = c11
2 + a11

2 e1,t−1
2 + 2a11a21e1,t−1e2,t−1 + a21

2 e2,t−1
2  

+g11
2 h11,t−1 + 2g11g21h12,t−1 + g21

2 h22,t−1 

 h12,t = c12c11 + a11a12e1,t−1
2 + (a21a12 + a11a22)e1,t−1e2,t−1 + a21a22e2,t−1

2  

+g11g12h11,t−1 + (g21g12 + g11g22)h12,t−1 + g21g22h22,t−1 

   h22,t = c22
2 + c12

2 + a12
2 e1,t−1

2 + 2a12a22e1,t−1e2,t−1 + a22
2 e2,t−1

2  

                                            +g12
2 h11,t−1 + 2g12g22h12,t−1 + g22

2 h22,t−1   

(11) 

                                                 
6 The parameters of the standard BEKK model are estimated by the GARCH instruction provided by the Rats 

6.0 program. The parameters of these models are estimated only by one step. This approach is the same as 

the standard CCC and DCC models mentioned above. 
7 According to Bauwens et al. (2006), there are three non-mutually exclusive approaches to construct 

multivariate GARCH models: (i) direct generalizations of the univariate GARCH model of Bollerslev (1986); 

(ii) linear combinations of univariate GARCH models; and (iii) nonlinear combinations of univariate GARCH 

models. Notably, both the VEC and BEKK models belong to the above first approach. In the general VEC 

model, each element of the conditional variance matrix (𝐇t) is a linear function of the lagged squared errors 

and cross-products of errors and lagged values of the elements of 𝐇t. The BEKK model is a special case of 

the VEC model. Hence, the number of parameters in the BEKK model is less than that in the VEC model. For 

example, the numbers of parameters in the VEC(1,1) and BEKK(1,1,1) models are n(n + 1)[n(n + 1) + 1]/2 

and n(5n + 1)/2, respectively. The BEKK(1,1,1) model is expressed as Equation (10) in this study. 
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where parameters a11, g11, c11, and c22 are restricted to be positive in order to avoid ‘the BEKK 

model with K = 1’ being observationally equivalent structures8. Conversely, when the restrictions 

′K = 2, p = q = 1, and n = 2′ are substituted into Equation (9), the NS-BEKK model can be obtained 

as follows. 

 𝐇𝐭 = 𝐂𝟎
′ 𝐂𝟎 + 𝐀𝟏𝟏

′ 𝐞𝐭−𝟏𝐞𝐭−𝟏
′ 𝐀𝟏𝟏 + 𝐀𝟏𝟐

′ 𝐞𝐭−𝟏𝐞𝐭−𝟏
′ 𝐀𝟏𝟐 + 𝐆𝟏𝟏

′ 𝐇𝐭−𝟏𝐆𝟏𝟏 + 𝐆𝟏𝟐
′ 𝐇𝐭−𝟏𝐆𝟏𝟐    (12) 

where the matrices 𝐇𝐭, 𝐂𝟎 and the vector 𝐞𝐭−𝟏 are defined as the same as in Equation (10) and the 

parameters 𝐀𝟏𝟏, 𝐀𝟏𝟐, 𝐆𝟏𝟏 and 𝐆𝟏𝟐 are 2 × 2 dimensional matrices, defined as follows. 

   𝐀𝟏𝟏 = [
a11,1    0

 0      a22,1
],  𝐀𝟏𝟐 = [

0       0
  0   a22,2

],  𝐆𝟏𝟏 = [
g11,1    0

 0      g22,1
],  𝐆𝟏𝟐 = [

0       0
  0   g22,2

]  

Subsequently, substitute these matrices into Equation (12), we first obtain that the variance-

covariance matrix 𝐇𝐭 is a symmetric matrix (i.e., h21,t = h12,t). Second, the number of parameters of 

the model in Equation (12) will decrease to nine (i.e., the elements in matrices 𝐂𝟎, 𝐀𝟏𝟏, 𝐀𝟏𝟐, 𝐆𝟏𝟏 

and 𝐆𝟏𝟐 ). Third, the elements of this variance-covariance matrix 𝐇𝐭 are expressed as the similar 

form of univariate GARCH(1,1), and are represented as follows. 

h11,t = ω1 + α1e1,t−1
2 + β1h11,t−1 

h12,t = ω12 + α12e1,t−1e 2,t−1 + β12h12,t−1 

  h22,t = ω2 + α2e2,t−1
2 + β2h22,t−1    

(13) 

where ω1 = c11
2 , α1 = a11,1

2 , β1 = g11,1
2 ,   ω12 = c12c11 ,  α12 = a11,1a22,1 , β12 = g11,1g22,1 , ω2 = c22

2 +

c12
2 , α2 = a22,1

2 + a22,2
2 , β2 = g22,1

2 + g22,2
2 . Hence, the bivariate BEKK GARCH model with the 

restrictions ‘K = 2, and p = q = 1’ can be represented by a bivariate diagonal model in vech form.  

vech(𝐇𝐭) = [

h11,t

h12,t

h22,t

] = [

ω1

ω12

ω2

] + [
α1   0    0
0    α12  0
0   0    α2

] [

e1,t−1
2

e1,t−1e2,t−1

e2,t−1
2

] + [

β1   0    0
0    β12  0
0   0    β2

] [

h11,t−1

h12,t−1

h22,t−1

] (14) 

where the vech operator takes the ‘lower triangular’ portion of a symmetric matrix and stacks each 

element into a vector with a single column. This bivariate diagonal type of BEKK model uses only 9 

parameters. Thus it is more parsimonious as compared to the 11 parameters for the S-BEKK model 

under the condition of positive definite being fulfilled. Moreover, the parameters of the bivariate S-

BEKK and NS-BEKK models are also estimated by the maximum likelihood (ML) optimizing 

numerically the Gaussian log-likelihood function. Hence, the log-likelihood function of these two 

models can be written as follows: 

L(𝚿) = ∑ ln{f(𝐫𝐭|Ωt−1; 𝚿)}
T

t=1
 

= −
T

2
ln (2π) −

1

2
∑ (ln|𝐇𝐭| + 𝐞𝐭

′ ∙ 𝐇𝐭
−𝟏 ∙ 𝐞𝐭)

T

t=1
 

(15) 

where 𝚿 = [μ1, μ2, c11, c12, c22, a11, a12, a21, a22, g11, g12, g21, g22]  and 

[μ1, μ2, ω1, α1, β1, ω12, α12, β12, ω2, α2, β2] respectively are the vector of parameters to be estimated for 

the bivariate S-BEKK and NS-BEKK models, T denotes the sample size of estimate period, f(∙) 

denotes the bivariate normal density and Ωt−1 denotes the information set of all observed returns 

up to time t − 1. Notably, the mean equation of these two models is also expressed in Equation (1). 

Under the framework of the parametric techniques (Jorion 2000), the one-day-ahead long 

position VaR of a portfolio based on the bivariate S-BEKK and NS-BEKK models can be calculated as: 

LVaRP,t = μP + zα ∙ √ĥP,t+1|t 

= ∑ wi ∙ μi + zα√∑ ∑ wiwjĥij,t+1|t

2

j=1

2

i=1

2

i=1
 

(16) 

                                                 
8 Please see the Proposition 2.1 of Engle and Kroner (1995) for more details. 
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where μP, wi, μi, and zα are defined as the same in Equation (8); ĥij,t+1|t is one-step-ahead variance 

(respectively, covariance) forecast when i = j  (respectively, i ≠ j ) conditional on all information 

upon time t. ĥij,t+1|t can be obtained from Equation (11) for the S-BEKK model and Equation (13) for 

the NS-BEKK model. 

3. Assessment Methods of Alternative VaR Models 

In the previous section, the seven bivariate GARCH models (S-CCC, NS-CCC, S-DCC, NS-DCC, 

S-BEKK, NS-BEKK, and NS-ADCC) were used to calculate the parametric approach VaR for 21 bi-

component stock portfolios9 and seven bi-component currency-stock portfolios. The stock portfolios 

comprise of alternative two stock indices among seven stock markets in the US and Europe, whereas 

the seven currency-stock portfolios comprise the US dollar index with alternative one stock index 

among the seven stock markets. Moreover, many financial institutions are required to hold capital 

against their market risk exposure. The MRC requirements are calculated based on VaR estimates 

generated by the financial institutions’ own risk management models. Hence, the accuracy of these 

VaR estimates is of concern to both financial institutions and their regulators. Thus, in this study, 

three accuracy measure tests—Kupiec’s (1995) unconditional coverage test, Christoffersen’s (1998) 

conditional coverage test, and Engle and Manganelli’s (2004) dynamic quantile test—are mainly used 

to perform the back-testing of the VaR model, and the empirical results are used to compare the VaR 

forecasting ability of the seven abovementioned models. Except for performing a VaR forecasts 

performance comparison, this study combines an efficiency test with MRC to select a suitable model 

to manage the risk to a bank via using the two-stage selection procedure of Sarma et al. (2003). Thus 

the theory of MRC and the superior predictive ability (SPA) test of Hansen (2005) are also described 

in this section. 

3.1. The Failure Rate and Unconditional Coverage Test 

If the predicted VaR is not able to cover the realized loss, this is termed as a violation. A binary 

loss function (BLF) is merely the reflection of the likelihood ratio test of the unconditional coverage 

test (LRuc) and gives a penalty of one to each exception of the VaR. Hence, the BLF of a long position 

is a Bernoulli random variable and it can be defined as follows. 

BLt+1 = {
1 if rP,t+1 < LVaRP,t+1|t

0 if rP,t+1 ≥ LVaRP,t+1|t
 (17) 

where BLt+1 denotes the one-day-ahead BLF of long position, and rP,t = w1r1,t + w2r2,t, and w1 =

w2 = 0.5 denote the component weights of an equal weight bi-component portfolio. However, in this 

study, there are other two component weights’ combinations: w1 = 0.25, w2 = 0.75  and w1 =

0.75, w2 = 0.25. If a VaR model truly provides the level of coverage defined by its confidence level, 

then the average binary loss function (ABLF) or the failure rate over the full sample will equal c for 

the (1 − c)th percentile VaR. 

Kupiec (1995) proposed the unconditional coverage test (LRuc) which is a likelihood ratio test for 

testing the model accuracy. The null hypothesis of this test is that the probability of failure for each 

trial (π̂) equals the specified model probability (p). The likelihood ratio test statistic is given by 

LRuc = −2ln [
pn1(1 − p)n0

π̂n1(1 − π̂)n0
] ~χ2(1) (18) 

where π̂ = n1 (n0 + n1)⁄  is the maximum likelihood estimate of p, n1 represents the total number 

of VaR violations and n0 + n1 represents the full sample size. The LRuc test can be employed to test 

whether the sample point estimate is statistically consistent with the VaR model’s prescribed 

confidence level. 

                                                 
9 Regarding the seven stock indices, the total number of bi-component portfolios can be calculated by 𝐶2

7 =

21. 
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3.2. Conditional Coverage Test 

Even if the LRuc test can reject a model that either overestimates or underestimates the true but 

unobservable VaR, it cannot inspect whether the exceptions are randomly distributed. In a risk 

management framework, it is significant that the VaR exceptions must be uncorrelated over time, 

which hints that both the independence and unconditional coverage tests based on the evaluation of 

interval forecasts must be simultaneously considered when the competition of a group of VaR models 

is performing. Christoffersen (1998) thus proposed a conditional coverage test (LRcc) to jointly test the 

correct unconditional coverage and serial independence. The LRcc test is a joint test of these two 

properties and the corresponding test statistics are LRcc = LRuc + LRind when we condition on the first 

observation. The LRind test denotes the likelihood ratio statistic that tests whether exceptions are 

independent, and the LRuc is defined in the previous subsection. Therefore, under the null hypothesis 

of the expected proportion of exceptions equals p and the failure process is independent, the 

appropriate likelihood ratio test statistic is expressed as follows: 

LRcc = LRuc + LRind = −2ln [
pn(1 − p)T−n

π̂01
n01(1 − π̂01)n00π̂11

n11(1 − π̂11)n10
] ~χ2(2) (19) 

where nij  denotes the number of observations with value i followed by value j (i, j = 0, 1), πij =

P{It = j|It−1 = i} (i, j = 0, 1), π̂01 = n01 (n00 + n01)⁄ , π̂11 = n11 (n10 + n11)⁄ . 

3.3. Dynamic Quantile Test 

Engle and Manganelli (2004) proposed the dynamic quantile (DQ) test to remedy the inefficiency 

in the conditional coverage test by Christoffersen (1998). We define a sequence of indicator variables 

for testing the VaR of the long position as follows. 

HitL,t = I(rP,t+1 < LVaRP,t+1|t) − c (20) 

where HitL,t is an indicator function of the long position. Engle and Manganelli (2004) suggested to 

jointly test that: (1) E(HitL,t) = 0; (2) HitL,t is uncorrelated with variables included in the information 

set. These two tests can be done by using an artificial regression, HitL,t = 𝐗𝐁 + εt, where 𝐗 is an 

N × k matrix whose first column is a column of ones, and the remaining columns are additional 

explanatory variables such as five lags of HitL,t and the current VaR, hence, k equals seven. Engle 

and Manganelli (2004) showed that under the null hypothesis, the dynamic quantile test statistic is 

represented as DQ = 𝐁̂′𝐗′𝐗𝐁̂ c(1 − c)⁄ , where 𝐁̂ is the ordinary least squares estimate of 𝐁, and 𝐗′ 

and 𝐁̂′  respectively denotes the transpose of matrix 𝐗 and vector 𝐁̂. The DQ test statistic has an 

asymptotic Chi-square distribution with seven degrees of freedom, χ2(7). 

3.4. Market Risk Capital and the Superior Predictive Ability Test 

According to the 1996 Market Risk Amendment (MRA) to the Basel Capital Accord, the 

regulatory capital for the trading positions of commercial banks is determined by the banks’ own 

internal VaR estimates and then the market risk capital (MRC) loss function for a long position is 

expressed as follows. 

MRCt = max [VaRt(10, 0.99),
kt

60
∑ VaRt−i(10,0.99)

59

i=0

] (21) 

where VaRt(10,0.99) denotes the VaR estimate generated on day t under the conditions of a 99% 

confidence level and a 10-day holding period, and it is expressed in return; kt  is the MRA’s 

multiplication factor that equals 3 to 4 depending on the number of exceptions over the past 250 days. 

For example, the multiplier value is 3 when the exceptions are between 0 and 4; the multiplier values 

are 3.4, 3.5, 3.65, 3.75, and 3.85 for the five through nine exceptions, respectively; and the multiplier 

value is 4 as the exceptions are above 10. In other words, MRCt is the amount of regulatory capital a 

bank must hold with respect to its market risk exposure. The MRA capital loss function has several 

elements that reflect the bank regulators’ concerns. Given its actual use by market participants, the 
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regulatory loss function implied in the MRA is a natural way to evaluate the relative performance of 

VaR estimates within an economic framework. For more details, please see Lopez (1999). 

Subsequently, we will introduce the theory of the superior predictive ability (SPA) test by 

Hansen (2005). The SPA test is used to explore whether any of the competing models significantly 

outperform the benchmark. For the jth model, we generate a T number of VaR forecast: VaRj,t for t 

= 1, 2, …, T. For every VaR forecast, we generate the loss function Lj,t ≡ MRCj,t that represents the 

function as defined in Equation (21). The performance of the jth model relative to the benchmark 

0th model at time t can be defined as: 

Fj,t = L0,t − Lj,t for j = 1, 2, … , m; t = 1, 2, … , T (22) 

Assuming stability for Fj,t, we can define the expected performance of the jth model relative to 

the benchmark as μj = E(Fj,t) for j = 1, 2, … , m. If the jth model outperforms the benchmark one, 

then the value of μj will be positive. Hence, we can analyze whether any of the competing models 

significantly outperform the benchmark via testing the null hypothesis that μj ≤ 0, for j = 1, 2, … , m. 

Consequently, the null hypothesis that none of the models is better than the benchmark (i.e., no 

predictive superiority over the benchmark itself) can be formulated as H0: μmax ≡ max(μj ≤ 0, j =

1, 2, … , m) ≤ 0. The associated test statistic proposed by Hansen (2005) is expressed as follows. 

TSPA = max (
√TF̅j

ω̂jj
, j = 1,2, … , m) (23) 

where ω̂jj
2 denotes a consistent estimate of ωjj

2 = lim
T→∞

var(√TF̅j), and F̅j = (∑ Fj,t
T
t=1 ) T⁄ . A consistent 

estimator of ωjj  and p-value of test statistic TSPA  can be obtained by the stationary bootstrap 

procedure by Politis and Romano (1994). More details of this procedure are illustrated in Hansen 

(2005) and Hansen and Lunde (2005). 

4. Data and Descriptive Statistics 

The study data include the daily prices of the following seven stock indices (with abbreviations 

in parentheses): the US NYSE (Ny), S&P500 (Sp), and Nasdaq (Na) in America; the France CAC40 

(Ca), Germany DAX (Da), UK FTSE (Ft), and Swiss SMI (Sm) in Europe; and the one US dollar index 

(Udi). Subsequently, 21 alternative weight combinations’ bi-component stock portfolios are 

constructed by choosing alternative two stock indices among the above seven stock indices, and they 

are the Ny-Sp, Ny-Na, Ny-Ca, Ny-Da, Ny-Ft, Ny-Sm, Sp-Na, Sp-Ca, Sp-Da, Sp-Ft, Sp-Sm, Na-Ca, Na-

Da, Na-Ft, Na-Sm, Ca-Da, Ca-Ft, Ca-Sm, Da-Ft, Da-Sm, and Ft-Sm10. In addition, seven alternative 

weight combinations’ bi-component currency-stock portfolios are constructed by the US dollar index 

with an alternative one-stock index among the above seven stock indices: Udi-Ny, Udi-Sp, Udi-Na, 

Udi-Ca, Udi-Da, Udi-Ft, and Udi-Sm. These 21 stock portfolios and seven currency-stock portfolios 

are used as the data to evaluate the VaR of seven bivariate GARCH models. For example, the Ny-Sp 

pair of data of an equal weight bi-component’s portfolio is constructed by NYSE and the S&P500 

stock indices with the same weights. The daily closing spot prices of the seven stock indices cover the 

period from 24 August 2000 (respectively, 3 February 2014) to 31 January 2014 (respectively, 7 March 

2016) for the estimation (respectively, forecast) period, totaling 3300 (respectively, 500) observations11. 

                                                 
10 For each pair of data, they are retained for the same trade date and are deleted otherwise. Taking the Ny-

Da pair of data as an example, both NYSE and DAX are traded on 31 January 2002, thus the close prices of 

both data are retained on this date. Conversely, if only NYSE is traded on 25 May 2003, whereas DAX is not 

traded on this date, then the close price of NYSE on this date must be deleted, and vice versa. 
11 When we conduct a hypothesis test there are two kinds of errors: type I and type II errors. Briefly, type I 

errors happen when we reject a true null hypothesis whereas type II errors happen when we fail to reject a 

false null hypothesis. Although the errors cannot be completely eliminated, we can minimize one type of 

error. However, when we try to decrease the probability of one type of error, the probability for the other 

type increases. The only way to decrease these two types of errors is to increase the sample size. Thus, in 

this study, we set the sample size of the estimation (respectively, forecast) period as 3300 (respectively, 500). 

They are large enough in order to decrease type I and type II errors as much as we can. 
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These trade data for alternative stock indices were downloaded from http://finance.yahoo.com/. The 

trade data of the US dollar index were downloaded from https://research.stlouisfed.org. Returns are 

defined as the difference in the logarithms of two successive daily prices of stock index multiplied by 

100. 

Table 1 lists the basic statistical characteristics of the US dollar index and the seven stock indices’ 

return series for the overall sample periods. The average daily returns are positive for NYSE, S&P500, 

Nasdaq, and DAX and negative for the other indices. However, they are very small compared to their 

corresponding standard deviations except for the UDI, implying that the seven stock indices are 

volatile in terms of price level except for UDI. Regarding the coefficient of skewness, most of these 

return series are significantly left-skewed except for Nasdaq, CAC40, and DAX. As indicated by the 

excess kurtosis, all the values significantly exceed zero at the 1% level, thereby inferring that the 

distribution of returns has a larger and thicker tail than the normal distribution, and implying a 

leptokurtic characteristic. Moreover, the J-B normality test statistic proposed by Jarque and Bera (1987) 

are all significant at the 1% level and thus reject the hypothesis of normality, confirming that none of 

the return series is normally distributed. The Ljung-Box Q2(24) statistics for the squared returns are 

all significant at the 1% level and thus indicate that the return series exhibit serial dependence and 

strong ARCH effects. Thus, the above preliminary data analysis suggests that the GARCH family 

models can be used to seize the fat tails and time-varying volatility found in the above eight indices’ 

return series. 

Table 1. The descriptive statistics of daily return for the overall period. 

 Mean Std. Dev. Max. Min. Skewness Kurtosis J-B 𝐐𝟐(𝟐𝟒) 

NYSE 0.0089 1.2783 11.5257 −10.232 −0.2954 c 9.169 c 13,370.5 c 7455.9 c 

S&P500 0.0074 1.2701 10.9571 −9.4695 −0.1789 c 8.1254 c 10,476.6 c 6366.9 c 

Nasdaq 0.0042 1.5947 11.1594 −9.5876 0.0327 4.6001 c 3352.0 c 5291.3 c 

CAC40 −0.0100 1.5396 10.5945 −9.4715 0.0105 4.6143 c 3372.2 c 3455.4 c 

DAX 0.0079 1.5817 10.7974 −9.5756 −0.0399 4.4070 c 3076.9 c 3645.6 c 

FTSE −0.0015 1.2463 9.3842 −9.2645 −0.0890 b 5.9661 c 5642.3 c 4986.8 c 

SMI −0.0011 1.2668 10.7876 −10.518 −0.1255 c 8.2662 c 10,831.7 c 2591.4 c 

UDI −0.0028 0.4755 2.1552 −4.1066 −0.2346 c 3.3553 c 1817.9 c 1062.7 c 

Notes: (1) The superscripts b and c at each statistic denote that the values of that statistic are significant 

at the 5% and 1% levels, respectively. (2) Kurtosis denotes the excess kurtosis. (3) J-B statistics are 

based on Jarque and Bera (1987), and they are asymptotically chi-squared-distributed with 2 degrees 

of freedom. (4) Q2(24)  statistics are asymptotically chi-squared-distributed with 24 degrees of 

freedom. 

5. Empirical Results and Analyses 

In this study, the seven bivariate GARCH models: the S-CCC, NS-CCC, S-DCC, NS-DCC, S-

BEKK, NS-BEKK, and NS-ADCC models are utilized to estimate the VaR of 21 bi-component stock 

portfolios, and seven bi-component currency-stock portfolios, and the further three accuracy 

measures: the LRuc, LRcc, and DQ tests and one efficiency test are used to evaluate the out-of-sample 

VaR forecast performance of the above seven bivariate GARCH models12. Before the performance 

competition of VaR forecast for the above seven bivariate GARCH models is executed, the fitting 

ability of the above seven models is explored via the empirical results of the parameters for the 

alternative models. 

                                                 
12 The out-of-sample VaR forecast is executed via a rolling window approach. That is, the seven bivariate 

GARCH models are estimated for each of 28 pair-wise data series, with a sample of 3300 daily returns, and 

then a one-day-ahead VaR forecast of the bi-component portfolio for the next period is obtained. 

Subsequently, the estimation period is then rolled forward by adding one new day and dropping the most 

distant day. Via repeating this procedure, the out-of-sample VaR forecasts are computed for the next 500 

days. 

https://research.stlouisfed.org/
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5.1. Estimation Results for Alternative Bivariate GARCH Models 

In this subsection, only the empirical results of the non-standard or the two-step ADCC type of 

the bivariate GARCH model (i.e., the NS-ADCC model) for the overall period are illustrated. Table 2 

lists the empirical result of the NS-ADCC model for the six NYSE-based bi-component portfolios13. 

Notably, via the example of Ny-Sp portfolio in this table, this two-step estimate procedure is 

performed as follows. First, the parameters of the NS-ADCC model for two stock indices are 

estimated by using the two independent univariate GARCH(1,1) models. Thus, the coefficients 

μ1(0.0505), ω1(0.0178), α1(0.0886), β1(0.8986) and one log-likelihood value LL1 (−4800.17) for the 

first univariate GARCH(1,1) model corresponding to the first component stock index are produced, 

and they are listed in the column ‘Ny-Sp’ in panel A of Table 2. Similarly, the coefficients μ2(0.0491), 

ω2(0.0168), α2(0.0880), β2(0.9000) and one value of the log-likelihood LL2 (−4803.92) for the second 

univariate GARCH(1,1) model corresponding to the second component stock index are produced 

and they are listed in the column ‘Ny-Sp’ in panel B of Table 2. In addition, the two variance 

series(i. e. , h11,t, and h22,t) and two residue series (i. e., e1,t and e2,t) are also obtained in this step. 

Second, the above two standardized residual return series (ui,t for i = 1, 2) and their corresponding 

negative component residual return series ( ni,t for i = 1,2 ) are used to estimate the intercept 

parameters of the conditional correlation matrix equation listed in Equation (4). During this step of 

estimation, the values of parameters a̅(0.2041), b̅(0.9738), and g̅ (−2 × 10−5) and one log-likelihood 

value LL3 (−4386.75) are obtained, and they are listed in panel C of Table 2. As shown in Table 2, the 

ωi, αi, and βi coefficients where i = 1, 2 are positive and significant at the 1% level for all six NYSE-

based portfolios. Notably, the values of ω1, α1, and β1 coefficients are all equal for all NYSE-based 

portfolios owing to having the same first component asset within the two-step estimate procedure. 

Moreover, the values of parameters a̅ and b̅ are all significantly positive, whereas the values of 

parameter g̅ are very small and are not significant for most cases, indicating that the asymmetric 

property of correlation seems not to exist in the stock-based portfolios. Notably, the values of a̅2 +

b̅2 + g̅2 for the six NYSE-based portfolios are less than 1, indicating that the correlation matrix 𝐐𝐭 is 

positive definite. In addition, the mean conditional correlation for the overall period is between 0.4944 

(Ny-Sm) and 0.9746 (Ny-Sp) for all NYSE-based portfolios. Finally, the values of Q1
2(24) and Q2

2(24) 

test statistics are significant for most of the six pairs of data. However, the values of the above 

statistics are significantly lower than those appearing in Table 1. These results indicate that the serial 

correlation has been significantly reduced in standard residuals, confirming that the NS-ADCC 

model addressed in this study is sufficient to correct the serial correlation that exists in the conditional 

variance equation of these six pairs of returns series. 

Table 2. The empirical results of NS-ADCC model. 

 Ny-Sp Ny-Na Ny-Ca Ny-Da Ny-Ft Ny-Sm 

Panel A. The univariate GARCH(1,1) model for the first component stock index 

μ1 
0.0505 

(0.015) c 

0.0505 

(0.015) c 

0.0505 

(0.015) c 

0.0505 

(0.015) c 

0.0505 

(0.015) c 

0.0505 

(0.015) c 

ω1 
0.0178 

(0.003) c 

0.0178 

(0.003) c 

0.0178 

(0.003) c 

0.0178 

(0.003) c 

0.0178 

(0.003) c 

0.0178 

(0.003) c 

α1 
0.0886 

(0.003) c 

0.0886 

(0.003) c 

0.0886 

(0.003) c 

0.0886 

(0.003) c 

0.0886 

(0.003) c 

0.0886 

(0.003) c 

β1 
0.8986 

(0.006) c 

0.8986 

(0.006) c 

0.8986 

(0.006) c 

0.8986 

(0.006) c 

0.8986 

(0.006) c 

0.8986 

(0.006) c 

Q1
2(24) 39.228 b 39.228 b 39.228 b 39.228 b 39.228 b 39.228 b 

LL1 −4800.17 −4800.17 −4800.17 −4800.17 −4800.17 −4800.17 

Panel B. The univariate GARCH(1,1) model for the second component stock index 

μ2 0.0491 0.0656 0.0503 0.0811 0.0407 0.0512 

                                                 
13 Due to the limited space, the empirical results of the other 22 bi-component portfolios for the NS-ADCC 

model, and the empirical results for the other six bivariate GARCH models (i.e. the S-CCC, NS-CSS, S-DCC, 

NS-DCC, S-BEKK, and NS-BEKK models) are all omitted here and are available upon request. 
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(0.015) c (0.018) c (0.018) c (0.018) c (0.014) c (0.016) c 

ω2 
0.0168 

(0.001) c 

0.0174 

(0.001) c 

0.0220 

(0.001) c 

0.0239 

(0.002) c 

0.0132 

(0.001) c 

0.0387 

(0.001) c 

α2 
0.0880 

(0.002) c 

0.0758 

(0.001) c 

0.0872 

(0.002) c 

0.0926 

(0.002) c 

0.0945 

(0.002) c 

0.1242 

(0.002) c 

β2 
0.9000 

(0.001) c 

0.9163 

(0.001) c 

0.9040 

(0.001) c 

0.8982 

(0.001) c 

0.8972 

(0.002) c 

0.8511 

(0.001) c 

Q2
2(24) 38.818 b 44.580 c 30.213 26.734 30.074 8.831 

LL2 −4803.92 −5598.51 −5557.72 −5588.51 −4751.05 −4833.02 

Panel C. The conditional correlation matrix equation 

a̅ 
0.2041 

(0.009) c 

0.1925 

(0.019) c 

0.1000 

(0.011) c 

0.0715 

(4 × 10−8) c 

0.1451 

(0.000) c 

−0.101 

(5 × 10−10) c 

b̅ 
0.9738 

(0.002) c 

0.9782 

(0.003) c 

0.9939 

(0.001) c 

0.9934 

(3 × 10−8) c 

0.9619 

(1 × 10−10) c 

0.6633 

(1 × 10−9) c 

g̅ 
−2 × 10−5 

(3 × 10−5) 

0.0701 

(0.064) 

−9 × 10−6 

(0.035) 

0.1044 

(2 × 10−11) c 

−1 × 10−5 

(0.000)c 

−1.3 × 10−4 

(0.0) c 

ρ12 
0.9746 

(0.014) 

0.8748 

(0.059) 

0.6219 

(0.093) 

0.6326 

(0.090) 

0.5769 

(0.051) 

0.4944 

(0.011) 

LL3 −4386.75 −7768.51 −9449.89 −9428.01 −8758.57 −9078.06 

Note: (1) The symbols Ny, Sp, Na, Ca, Da, Ft, and Sm denote the USNYSE, S&P500, and Nasdaq; 

France CAC40; Germany DAX; United Kingdom FTSE; and Swiss SMI stock indices, respectively. (2) 

The superscripts b and c at each coefficient estimate denote the value of that coefficient being 

significant at the 5% and 1% levels, respectively. (3) Numbers in parentheses are standard errors. (4) 

LL1 and LL2 respectively indicate the log-likelihood value for two independent univariate GARCH 

equations whereas LL3 denotes the log-likelihood value for the bivariate ADCC equation. (5) Q1
2(24) 

and Q2
2(24) respectively denote the Ljung-Box Q test for the 24th order serial correlation of the 

squared returns for the first and second component stock indices of an equal weight bi-component 

portfolio. (6) ρ12 is the mean correlation between two component stock indices of an equal weight 

bi-component portfolio during the first estimate period. 

5.2. The Performance Assessments of VaR Forecasts 

In this study, according to the procedure of the parameters estimate or the number of parameter 

estimate of model (i.e., the approach of parameters estimate), the seven bivariate GARCH models: 

the S-CCC, NS-CCC, S-DCC, NS-DCC, NS-ADCC, S-BEKK, and NS-BEKK models can be classified 

into the following two categories: the standard CCC, DCC, and BEKK models (i.e., the S-CCC, S-DCC, 

and S-BEKK models); and the non-standard CCC, DCC, ADCC, and BEKK models (i.e., the NS-CCC, 

NS-DCC, NS-ADCC, and NS-BEKK models). Or, according to the specification depicting the 

correlative relationship between two assets, they can be divided as the following four categories: the 

CCC model by Bollerslev (1990) (i.e., the S-CCC and NS-CCC models), the DCC model by Engle (2002) 

(i.e., the S-DCC and NS-DCC models), the ADCC model by Cappiello et al. (2006) (i.e., the NS-ADCC 

model), and the BEKK model defined in Engle and Kroner (1995) (i.e., the S-BEKK and NS-BEKK 

models). Subsequently, the above seven bivariate GARCH models are utilized to estimate the VaR of 

the 21 bi-component stock portfolios and seven bi-component currency-stock portfolios, and then the 

three accuracy measures and one efficiency test are used to evaluate the out-of-sample VaR forecast 

performance of the above seven bivariate GARCH models. Further, regarding the results of accuracy 

tests, this study explores which bivariate variance-covariance specification, which parameter 

estimate approach has a better VaR forecast performance, and whether the asymmetric DCC model 

has t better forecast performance than its corresponding symmetric one. In addition, this study also 

explores whether the different weight combinations and the different component combinations of 

portfolios affect the above comparison results. Regarding the results of the efficiency test, which 

determines which model is the most suitable to manage the risk of a bank via combing the MRC. The 

above efficiency test is performed by the superior predictive ability (SPA) test by Hansen (2005). 

5.2.1. Preliminary Analysis of Average VaR Performance 
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In this subsection, the failure rate and the mean VaR14 during the out-of-sample period are first 

used to evaluate the forecast performance of the above seven bivariate GARCH models: the S-CCC, 

NS-CCC, S-DCC, NS-DCC, NS-ADCC, S-BEKK, and NS-BEKK models 15 . Basically, the greater 

(respectively, smaller) the mean VaR of a model in the absolute value, the lower (respectively, higher) 

the failure rate of the model. If, as reported in the empirical results, all the failure rates are almost 

higher (respectively, lower) than the prescribed level, indicating that all models underestimate 

(respectively, overestimate) the true VaR and if a model produces only lower (respectively, higher) 

failure rates or the greater (respectively, smaller) mean VaR, then this model will have a better 

performance. 

Regarding the bi-component stock portfolios with an equal weight, Table 3 (respectively, Table 

4) reports the failure rates (respectively, mean VaR) of long position for each of the seven bivariate 

GARCH models under a 95% confidence level over the entire out-of-sample period16. Before the 

implementation of more VaR evaluation tests, the failure rates and mean VaR can be considered as 

the preliminary analysis of average VaR performance during the forecasting period. To easily explore 

the issues addressed in this study, the corresponding comparison results of failure rates (respectively, 

mean VaR) are summarized in panel A (respectively, panel B) of Table 5. Subsequently, we will 

illustrate how to execute the several groups of model performance competition regarding the issues 

addressed, and then depict how to summarize the comparison results in Table 5. As shown in Table 

3, except for a few cases such as the Na-Sm and Ca-Sm of S-DCC, all failure rates are almost higher 

than the prescribed level, indicating that all models underestimate the true VaR. This result implies 

which kind of VaR models can bear a better performance because they produce lower failure rates. 

According to the issues addressed in this study, four categories of the model performance 

competitions will be executed in this section. The first category of the model performance competition 

is the performance competition between the standard approach and its corresponding non-standard 

approach based on the same bivariate variance-covariance specification and it includes three groups 

of the model performance competitions—the S-CCC vs. NS-CCC, the S-DCC vs. NS-DCC, and the S-

BEKK vs. NS-BEKK. The first category of the model performance competition is used to inspect which 

approach of parameters estimate, the standard or non-standard approach, has a better VaR forecast 

performance, and it is accomplished by finding the total number of portfolios with a lower value of 

the failure rate between the standard approach and its corresponding non-standard approach that a 

specified bivariate GARCH model has based on the same variance-covariance specification, and then 

these results are summarized in column S1 in Table 3. For instance, regarding the first panel of Table 

3, the S-CCC (respectively, NS-CCC) model has the lower value of failure rate between the S-CCC 

and NS-CCC models only for the Ny-Sp and Sp-Na portfolios (respectively, Ny-Da and Ny-Ft 

portfolios). Hence, the numbers in column S1 corresponding to the S-CCC and NS-CCC models of 

the first panel in Table 3 are 2 and 2, respectively. Conversely, the S-DCC (respectively, NS-DCC) 

model has the lower value of failure rate between the S-DCC and NS-DCC models for all seven 

portfolios (respectively, none of the portfolios). Hence, the numbers in column S1 corresponding to 

the S-DCC and NS-DCC models of the first panel in Table 3 are 7 and 0, respectively. Concerning the 

last group of the model performance competition, the S-BEKK vs. NS-BEKK, and the other two panels, 

the results are summarized in column S1 of Table 3 corresponding to the specified model and the 

                                                 
14 The mean VaR is the average of all the VaR values over the out-of-sample period, and can be calculated by 

the following equation: Mean VaR = (∑ LVaRp,t
500
t=1 ) 500⁄ , where LVaRp,t denotes the value of the portfolio’s 

VaR at time t, and can be calculated by Equation (8) or Equation (16). The sample size of the out-of-sample 

period is equal to 500 in this study. 
15 Actually, it is very hard to compete against the models’ forecasting performance via the failure rate since it 

cannot provide the significance level for the obtained conclusion. Owing to the above reason, the forecasting 

performance comparison of alternative models based on the failure rate is listed in the section of 

‘Preliminary analysis of average VaR performance’. 
16 Notably, the failure rate and mean VaR is regarded as the preliminary analysis of the average VaR 

performance. They cannot provide precise results. Moreover, due to the limited space, the detailed results 

of the VaR forecasting performance at the 99% level based on failure rate are omitted here and are available 

upon request. However, the summary results of this level are also listed in Table 5. 
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specified panel with the same inference process. Finally, regarding the 95% level, the results in 

column S1 corresponding to the three panels of Table 3 are also respectively summarized at the three 

columns underneath the 95% level that are also underneath S1 in Panel A of Table 5. 

Table 3. The out-of-sample Value-at-risk (VaR) forecasts performance based on the failure rates. 

 Ny-Sp Ny-Na Ny-Ca Ny-Da Ny-Ft Ny-Sm Sp-Na S1 S2 S3 S4 

S-CCC 0.056 0.072 0.078 0.086 0.082 0.068 0.072 2 0 0 - 

NS-CCC 0.064 0.072 0.078 0.084 0.080 0.068 0.074 2 3 0 - 

S-DCC 0.050 0.058 0.066 0.060 0.060 0.050 0.058 7 7 7 - 

NS-DCC 0.064 0.072 0.074 0.084 0.074 0.072 0.074 0 4 0 2 

S-BEKK 0.064 0.072 0.080 0.074 0.082 0.072 0.078 2 0 0 - 

NS-BEKK 0.066 0.072 0.078 0.086 0.078 0.072 0.072 3 1 0 - 

NS-ADCC 0.064 0.072 0.076 0.084 0.076 0.068 0.074 - - - 1 

 Sp-Ca Sp-Da Sp-Ft Sp-Sm Na-Ca Na-Da Na-Ft     

S-CCC 0.092 0.078 0.090 0.074 0.080 0.074 0.088 0 0 0 - 

NS-CCC 0.080 0.076 0.084 0.070 0.080 0.072 0.088 5 2 0 - 

S-DCC 0.060 0.058 0.074 0.058 0.058 0.070 0.064 7 6 6 - 

NS-DCC 0.078 0.074 0.082 0.070 0.076 0.072 0.086 0 5 0 1 

S-BEKK 0.076 0.068 0.090 0.074 0.078 0.068 0.082 3 1 1 - 

NS-BEKK 0.080 0.078 0.080 0.072 0.076 0.076 0.080 4 3 0 - 

NS-ADCC 0.080 0.074 0.082 0.070 0.076 0.070 0.082 - - - 2 

 Na-Sm Ca-Da Ca-Ft Ca-Sm Da-Ft Da-Sm Ft-Sm     

S-CCC 0.072 0.074 0.068 0.060 0.072 0.066 0.072 2 1 1 - 

NS-CCC 0.072 0.066 0.062 0.064 0.070 0.068 0.066 4 2 0 - 

S-DCC 0.042 * 0.060 0.062 0.046 * 0.058 0.068 0.052 5 5 5 - 

NS-DCC 0.072 0.064 0.062 0.060 0.072 0.068 0.068 0 2 0 1 

S-BEKK 0.074 0.070 0.058 0.062 0.064 0.066 0.064 4 2 2 - 

NS-BEKK 0.068 0.064 0.062 0.060 0.074 0.068 0.066 3 4 0 - 

NS-ADCC 0.074 0.064 0.062 0.060 0.072 0.068 0.068  - - - 0 

Note: (1) Ny, Sp, Na, Ca, Da, Ft and Sm denote the USNYSE, S&P500, and Nasdaq; France CAC40, Germany DAX; 

United Kingdom FTSE; and Swiss SMI stock indices, respectively. (2) S-CCC and NS-CCC respectively denote the 

standard and non-standard (i.e., the two-step) constant conditional correlation models; S-DCC and NS-DCC 

respectively denote the standard and non-standard (i.e., the two-step) dynamic conditional correlation models; S-

BEKK denotes the standard BEKK model whereas NS-BEKK denotes the non-standard (i.e., the simplified) BEKK 

model derived by Su (2014); NS-ADCC denotes the non-standard (i.e., the two-step) asymmetric type of the 

dynamic conditional correlation models. (3) The symbol ‘-’ in column S1, S2, S3, and S4 denotes that no comparison 

result exists in this case. (4) The number in this table denotes the failure rate at the 95% level for equal weight bi-

component stock portfolios. (5) The superscript * represents that the empirical failure rate is lower than the 

theoretical failure rate. (6) The bold font denotes the lower value of the failure rate when the predictive accuracies 

of the two bivariate GARCH models are compared with each other based on the same bivariate models but with 

different types of estimate approaches. (i.e., the S-CCC vs. NS-CCC; the S-DCC vs. NS-DCC; and the S-BEKK vs. 

NS-BEKK) (7) The underlined font denotes the lowest value of failure rate when the predictive accuracies of the 

three bivariate GARCH models are compared with each other based on the same estimated approaches but with 

different types of bivariate models (i.e., the S-CCC, S-DCC, and S-BEKK; the NS-CCC, NS-DCC, and NS-BEKK). 

(8) The shaded font denotes the lowest value of the failure rate when the predictive accuracies of all bivariate 

GARCH models except the NS-ADCC are compared with each other. (9) The italic font denotes the lower value of 

failure rate when the predictive accuracies of the non-standard symmetric and asymmetric DCC bivariate GARCH 

models are compared with each other (i.e., the NS-DCC vs. NS-ADCC). (10) The numbers in column S1 denote the 

total number of portfolios that have the lower failure rate when the S-CCC, S-DCC, and S-BEKK models are 

compared with the NS-CCC, NS-DCC, and NS-BEKK models, respectively. (11) The numbers in column S2 denote 

the total number of portfolios that have the lowest failure rate when three bivariate GARCH models (i.e., the S-

CCC, S-DCC, and S-BEKK) or the other three bivariate GARCH models (i.e., the NS-CCC, NS-DCC, and NS-BEKK) 

are compared with each other. (12) The numbers in column S3 denote the total number of portfolios that have the 

lowest failure rate when all bivariate GARCH models except the NS-ADCC are compared with each other. (13) 

The numbers in column S4 denote the total number of portfolios that have the lower failure rate when the NS-

DCC and NS-ADCC models are compared with each other. 
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Table 4. The out-of-sample VaR forecasts performance based on the mean VaR. 

 Ny-Sp Ny-Na Ny-Ca Ny-Da Ny-Ft Ny-Sm Sp-Na S1 S2 S3 S4 

S-CCC −1.4091 −1.4483 −1.5124 −1.5304 −1.2833 −1.3269 −1.4743 0 0 0 - 

NS-CCC −1.4098 −1.4657 −1.5443 −1.5693 −1.3090 −1.3493 −1.4983 7 1 0 - 

S-DCC −1.5538 −1.5421 −1.6369 −1.7554 −1.3867 −1.4296 −1.5800 7 7 7 - 

NS-DCC −1.4102 −1.4910 −1.5578 −1.5693 −1.3243 −1.3507 −1.5198 0 7 0 4 

S-BEKK −1.3908 −1.4551 −1.5733 −1.5852 −1.3034 −1.3448 −1.4913 4 0 0 - 

NS-BEKK −1.3820 −1.4664 −1.5387 −1.5411 −1.3126 −1.3253 −1.4967 3 0 0 - 

NS-ADCC −1.4102 −1.4909 −1.5551 −1.5693 −1.3234 −1.3479 −1.5198 - - - 0 

 Sp-Ca Sp-Da Sp-Ft Sp-Sm Na-Ca Na-Da Na-Ft     

S-CCC −1.4932 −1.5176 −1.2668 −1.3117 −1.5738 −1.6023 −1.3522 0 0 0 - 

NS-CCC −1.5298 −1.5596 −1.2943 −1.3374 −1.6024 −1.6381 −1.3720 7 1 0 - 

S-DCC −1.5915 −1.6840 −1.3337 −1.4311 −1.7643 −1.7069 −1.4406 7 7 7 - 

NS-DCC −1.5432 −1.5586 −1.3081 −1.3427 −1.6171 −1.6402 −1.3913 0 6 0 4 

S-BEKK −1.5550 −1.5769 −1.2827 −1.3176 −1.6229 −1.6598 −1.3950 6 0 0 - 

NS-BEKK −1.5219 −1.5321 −1.2919 −1.3174 −1.6058 −1.6177 −1.3758 1 0 0 - 

NS-ADCC −1.5415 −1.5611 −1.3061 −1.3380 −1.6178 −1.6425 −1.3865 - - - 3 

 Na-Sm Ca-Da Ca-Ft Ca-Sm Da-Ft Da-Sm Ft-Sm     

S-CCC −1.3946 −1.9465 −1.6814 −1.7286 −1.6709 −1.7457 −1.4840 0 0 0 - 

NS-CCC −1.4078 −2.0114 −1.7267 −1.7713 −1.7241 −1.7910 −1.5147 7 0 0 - 

S-DCC −1.6290 −2.0847 −1.7812 −2.0290 −1.9297 −1.7918 −1.6887 6 7 6 - 

NS-DCC −1.4211 −2.0574 −1.7398 −1.7773 −1.7435 −1.7951 −1.5154 1 7 1 2 

S-BEKK −1.3816 −2.0203 −1.7504 −1.7624 −1.7478 −1.7912 −1.5184 6 0 0 - 

NS-BEKK −1.4024 −2.0156 −1.7250 −1.7125 −1.7332 −1.7133 −1.4849 1 0 0 - 

NS-ADCC −1.4111 −2.0557 −1.7398 −1.7773 −1.7435 −1.7951 −1.5154 - - - 0 

Note: (1) Refer to notes 1–3 of Table 3. (2) The numbers in this table denote the mean VaR at the 95% 

level for equal weight bi-component stock portfolios. (3) The bold font denotes the greater value of 

mean VaR in absolute value when the predictive accuracies of two bivariate GARCH models are 

compared with each other based on the same bivariate models but using different types of estimate 

approaches (i.e., S-CCC vs. NS-CCC; S-DCC vs. NS-DCC; and S-BEKK vs. NS-BEKK). (4) The 

underlined font denotes the greatest value of mean VaR in absolute value when the predictive 

accuracies of three bivariate GARCH models are compared with each other based on the same 

estimated approaches but using different types of bivariate models (i.e., the S-CCC, S-DCC, and S-

BEKK; the NS-CCC, NS-DCC, and NS-BEKK). (5) The shaded font denotes the greatest value of mean 

VaR in absolute value when the predictive accuracies of all bivariate GARCH models except the NS-

ADCC are compared with each other. (6) The italic font denotes the greater value of mean VaR in 

absolute value when the predictive accuracies of the non-standard symmetric and asymmetric DCC 

bivariate GARCH models are compared with each other (i.e., the NS-DCC vs. NS-ADCC). (7) The 

numbers in column S1 denote the total number of portfolios that have a greater value of mean VaR in 

absolute value when the S-CCC, S-DCC, and S-BEKK models are compared with NS-CCC, NS-DCC, 

and NS-BEKK models, respectively. (8) The numbers in column S2 denote the total number of 

portfolios that have the greatest value of mean VaR in absolute value when three bivariate GARCH 

models (i.e., S-CCC, S-DCC, and S-BEKK) or the other three bivariate GARCH models (i.e., NS-CCC, 

NS-DCC, and NS-BEKK) are compared with each other. (9) The numbers in column S3 denote the 

total number of portfolios that have the greatest value of mean VaR in absolute value when all 

bivariate GARCH models except the NS-ADCC are compared with each other. (10) The numbers in 

column S4 denote the total number of portfolios that have the greater value of mean VaR in absolute 

value when the NS-DCC and NS-ADCC models are compared with each other. 
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Table 5. The summary results for the out-of-sample VaR forecasts performance of equal-weight stock portfolios based on the mean VaR and failure rate. 

Panel A. Failure Rate 

 
S1 S2 S3 S4 

95% Level S1,95 99% Level S1,99 SS1 95% Level S2,95 99% Level S2,99 SS2 95% Level S3,95 99% Level S3,99 SS3 95% Level S4,95 99% Level S4,99 SS4 

S-CCC 2 0 2 4 1 1 0 2 6 0 0 1 1 0 0 0 0 1 0 0 1 1 0 0 0 0 1 - - - - - - - - - 

NS-CCC 2 5 4 11 1 2 5 8 19 3 2 2 7 2 2 4 8 15 0 0 0 0 1 0 0 1 1 - - - - - - - - - 

S-DCC 7 7 5 19 5 7 5 17 36 7 6 5 18 5 6 5 16 34 7 6 5 18 5 6 5 16 34 - - - - - - - - - 

NS-DCC 0 0 0 0 1 0 0 1 1 4 5 2 11 2 1 2 5 16 0 0 0 0 1 0 0 1 1 2 1 1 4 1 0 1 2 6 

S-BEKK 2 3 4 9 2 4 5 11 20 0 1 2 3 4 1 3 8 11 0 1 2 3 4 1 3 8 11 - - - - - - - - - 

NS-BEKK 3 4 3 10 1 2 2 5 15 1 3 4 8 3 3 2 8 16 0 0 0 0 3 2 0 5 5 - - - - - - - - - 

NS-ADCC - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 2 0 3 0 0 0 0 3 

Panel B. Mean VaR 

 
S1 S2 S3 S4 

95% Level S1,95 99% Level S1,99 SS1 95% Level S2,95 99% Level S2,99 SS2 95% Level S3,95 99% Level S3,99 SS3 95% Level S4,95 99% Level S4,99 SS4 

S-CCC 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - - - - - - - - - 

NS-CCC 7 7 7 21 6 7 7 20 41 1 1 0 2 1 1 0 2 4 0 0 0 0 0 0 0 0 0 - - - - - - - - - 

S-DCC 7 7 6 20 7 7 6 20 40 7 7 7 21 7 7 6 20 41 7 7 6 20 7 7 6 20 40 - - - - - - - - - 

NS-DCC 0 0 1 1 0 0 1 1 2 7 6 7 20 7 6 7 20 40 0 0 1 1 0 0 1 1 2 4 4 2 10 4 4 2 10 20 

S-BEKK 4 6 6 16 4 5 6 15 31 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 - - - - - - - - - 

NS-BEKK 3 1 1 5 3 2 1 6 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - - - - - - - - - 

NS-ADCC - - - - - - - - - - - - - - - - - - - - - - - - - - - 0 3 0 3 2 3 0 5 8 

Note: (1) Refer to notes 2–3 of Table 3. (2) The numbers in the columns 95% underneath S1 and S2 at panel A (respectively, panel B), respectively, are summarized from the 

numbers in the column S1 and S2 of Table 3 (respectively, Table 4) corresponding to the 95% level. (3) The numbers in the columns 95% underneath S3 and S4 at panel A 

(respectively, panel B), respectively, are summarized from the numbers in column S3 and S4 of Table 3 (respectively, Table 4) corresponding to the 95% level. (4) The 

numbers in the columns S1,95 and S1,99 underneath S1 at panel A (respectively, panel B), respectively, denote the total sum of three corresponding numbers in the columns 

95% and 99% underneath S1 at panel A (respectively, panel B) and the numbers in the column SS1 underneath S1 at panel A (respectively, panel B) denote the total sum of 

two corresponding numbers in the columns S1,95 and S1,99 underneath S1 at panel A (respectively, panel B). (5) In the same inference process, the numbers in the column 

SS2 underneath S2 at panel A (respectively, panel B) denote the total sum of two corresponding numbers in the columns S2,95 and S2,99 underneath S2 at panel A (respectively, 

panel B) whereas the numbers in the column SS3 underneath S3 at panel A (respectively, panel B) denote the total sum of two corresponding numbers in the columns S3,95 

and S3,99 underneath S3 at panel A (respectively, panel B). In addition, the numbers in the column SS4 underneath S4 at panel A (respectively, panel B) denote the total sum 

of two corresponding numbers in the columns S4,95 and S4,99 underneath S4 at panel A (respectively, panel B). (6) The bold font in all columns under S1 denotes the greater 

number when two numbers corresponding to two models are compared with each other and these two models have the same bivariate variance-covariance specification 

but with different approaches of parameter estimates (i.e., the S-CCC vs. NS-CCC; the S-DCC vs. NS-DCC; and the S-BEKK vs. NS-BEKK). (7) The bold font in all columns 

under S2 denotes the greatest number when three numbers corresponding to three models are compared with each other and these three models have the same approach 

of parameter estimates but with different bivariate variance-covariance specification (i.e., the S-CCC, S-DCC, and S-BEKK; the NS-CCC, NS-DCC, and NS-BEKK). (8) The 

bold font in all columns under S3 denotes the greatest number when six numbers corresponding to the six models are compared with each other, and these six models are 

the S-CCC, NS-CCC, S-DCC, NS-DCC, S-BEKK, and NS-BEKK. (9) The bold font in all columns under S4 denotes the greater number when two numbers corresponding 

to two models are compared with each other. The two models are the NS-DCC and NS_ADCC. 



Risks 2018, 6, 133 19 of 41 

 

The second category of the model performance competition is the performance competition 

among the three types of bivariate variance-covariance specifications (i.e., the CCC, DCC, and BEKK) 

based on the same approach of parameters estimate and it includes two groups of the model 

performance competition—the S-CCC, S-DCC, and S-BEKK; and the NS-CCC, NS-DCC, and NS-

BEKK. The second category of the model performance competition is used to inspect which type of 

bivariate variance-covariance specification has the best VaR forecast performance and it is achieved 

by finding the total number of portfolios with the lowest value of the failure rate among three types 

of bivariate variance-covariance specifications (i.e., the CCC, DCC, and BEKK) that a specified 

bivariate GARCH model has based on the same approach of parameters estimate, and then these 

results are summarized in column S2 in Table 3. For instance, regarding the first panel of Table 3, the 

S-DCC (respectively, the S-CCC and S-BEKK) model has the lowest value of failure rate among the 

S-CCC, S-DC,C and S-BEKK models for all seven portfolios (respectively, none of the portfolio). 

Hence, the numbers in column S2 corresponding to the S-CCC, S-DCC, and S-BEKK models of the 

first panel in Table 3 are 0, 7, and 0, respectively. Similarity, the NS-CCC (respectively, NS-DCC) 

model has the lowest value of failure rate among the NS-CCC, NS-DCC, and NS-BEKK models for 

the Ny-Sp, Ny-Da and Ny-Sm portfolios (respectively, Ny-Sp, Ny-Ca, Ny-Da, and Ny-Ft portfolios) 

whereas the NS-BEKK has the lowest value of failure rate only for Sp-Na. Hence, the numbers in 

column S2 corresponding to the NS-CCC, NS-DCC, and NS-BEKK models of the first panel in Table 

3 are 3, 4, and 1, respectively. Concerning the other two panels, the results are summarized in column 

S2 of Table 3 corresponding to the specified model and the specified panel with the same inference 

process. Finally, regarding the 95% level, the results in column S2 corresponding to three panels of 

Table 3 are also respectively summarized at the three columns underneath 95% level that are also 

underneath S2 in Panel A of Table 5. The third category of the model performance competition is the 

performance competition among all the bivariate GARCH models except the NS-ADCC model in 

order to inspect which model has the best VaR forecast performance, and it is achieved by finding 

the total number of portfolios with the lowest value of the failure rate among all the above six 

bivariate GARCH models that a specified bivariate GARCH model has, and then these results are 

summarized in column S3 in Table 3. For instance, regarding the first panel of Table 3, the S-DCC 

model has the lowest failure rate value among all the bivariate GARCH models except the NS-ADCC 

model for all seven portfolios. Hence, the number in column S3 corresponding to the S-DCC model 

of the first panel in Table 3 is 7 whereas those corresponding to the other five models are all zero 

except the NS-ADCC model. Concerning the other two panels, the results are summarized in column 

S3 of Table 3 corresponding to the specified model and the specified panel with the same inference 

process. Finally, regarding the 95% level, the results in column S3 corresponding to three panels of 

Table 3 are also respectively summarized at the three columns underneath the 95% level that are also 

underneath S3 in Panel A of Table 5. The last category of the model performance competition is the 

performance competition between the NS-DCC and NS-ADCC models and is used to inspect whether 

the asymmetric DCC model has a better forecast performance than its corresponding symmetric one. 

It is accomplished by finding the total number of portfolios with a lower value of the failure rate 

between the NS-DCC and NS-ADCC models, and then these results are summarized in column S4 in 

Table 3. For instance, regarding the first panel of Table 3, the NS-DCC (respectively, NS-ADCC) 

model has the lower value of failure rate between the NS-DCC and NS-ADCC models only for Ny-

Ca and Ny-Ft portfolios (respectively, the Ny-Sm portfolio). Hence, the numbers in column S4 

corresponding to the NS-DCC and NS-ADCC models of the first panel in Table 3 are 2 and 1, 

respectively. Concerning the other two panels, the results are summarized in column S4 of Table 3 

corresponding to the specified model and the specified panel with the same inference process. Finally, 

regarding the 95% level, the results in column S4 corresponding to three panels of Table 3 are also 

respectively summarized at the three columns underneath the 95% level that are also underneath S4 

in Panel A of Table 5.  

Regarding the seven bivariate GARCH models, panel A of Table 5 summarizes the results of the 

out-of-sample VaR forecasts’ performance of the equal weight bi-component stock portfolios based 

on failure rate for both 95% and 99% levels. Subsequently, in order to easily execute the competition 
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of predictive performances for the seven bivariate GARCH models, we sum the total number of 

portfolios owning the lower or the lowest value of failure rate that a specified bivariate GARCH 

model has based on two levels (i.e., the 95% and 99% levels) for each of the four categories of the 

model performance competition, and list them in column SS1 underneath S1, column SS2 underneath 

S2, column SS3 underneath S3, and column SS4 underneath S4 for the first, second, third, and last 

categories of the model performance competition, respectively. For instance, regarding the first 

category of the model performance competition and regarding the 95% level, the total number of 

portfolios with the lower value of the failure rate that the S-CCC model has is 4, that is, the summation 

of three numbers 2, 0, and 2. This number, 4, is listed in the entry corresponding to S-CCC model of 

the column S1,95 underneath S1. In the same inference, regarding the 99% level, the total number of 

portfolios with the lower value of failure rate that the S-CCC model has is 2, that is, the summation 

of three numbers 1, 1, and 0. This number, 2, is listed in the entry corresponding to S-CCC model of 

the column S1,99 underneath S1. Finally, we sum the above two numbers, 4 and 2, and record this 

number, 6 at the entry corresponding to the row S-CCC and column SS1 underneath S1. As shown in 

column SS1 underneath S1 in panel A of Table 5, we find that the NS-CCC model has a better VaR 

forecast performance for the CCC type of bivariate variance-covariance specification since this model 

has the larger number, 19 between the S-CCC (6) and NS-CCC (19) models, where the number in the 

brackets beside each model denotes the summation of the total number of portfolios having the lower 

value of failure rate for both 95% and 99% levels. In the same inference process, the S-DCC 

(respectively, S-BEKK) model has a better VaR forecast performance for the DCC (respectively, BEKK) 

type of bivariate variance-covariance specification. These results indicate that the standard approach 

has better VaR forecast performance for the DCC and BEKK types of bivariate variance-covariance 

specification whereas the non-standard or two-step approach has a better VaR forecast performance 

only for the CCC type of bivariate variance-covariance specification. As reported in column SS2 

underneath S2 in panel A of Table 5, we find that the S-DCC model has the best VaR forecast 

performance since this model has the larger number, 34, among the S-CCC (1), S-DCC (34), and S-

BEKK (11) models. On the contrary, the NS-CCC, NS-DCC, and NS-BEKK models seem to have the 

same VaR forecast performance since these three models have a nearly equal number among the NS-

CCC (15), NS-DCC (16), and NS-BEKK (16) models. These results indicate that the DCC type of 

bivariate variance-covariance specification has the best VaR forecast performance for the standard 

approach, whereas the three types of bivariate variance-covariance specification seem to have the 

same VaR forecast performance for the non-standard approach. As listed in column SS3 underneath 

S3 in panel A of Table 5, we find that the S-DCC model has the best VaR forecast performance since 

this model has the largest number, 34 among all six bivariate GARCH models. These results indicate 

that the DCC type of bivariate variance-covariance specification with a standard approach has the 

best VaR forecast performance. Finally, as shown in column SS4 underneath S4 in panel A of Table 5, 

we find that the NS-DCC model has a better VaR forecast performance since this model has the larger 

number, 6 between the NS-DCC (6), and NS-ADCC (3) models. These results indicate that the 

asymmetric DCC model does not have a better forecast performance than its corresponding 

symmetric one. 

Regarding the bi-component stock portfolios with an equal weight, Table 4 reports the mean 

VaR of long position for each of the seven bivariate GARCH models under a 95% confidence level 

over the entire out-of-sample period17. The performance competition of four groups of models will 

be executed with the same inference process as that implemented by the failure rate of Table 3. From 

Table 4, we find that all the values of mean VaR are negative since only the long position is considered 

in this study. As reported in the empirical results of Table 3, all models almost underestimate the true 

VaR since all failure rates are almost higher than the prescribed level. Moreover, the greater the mean 

VaR of a model in absolute value, the lower the failure rate of the model, indicating that the model 

with a greater value of mean VaR will bear better performance. Hence, regarding the 95% level, the 

                                                 
17 Due to the limited space, the detailed results of the VaR forecasting performance at the 99% level based on 

mean VaR are omitted here and are available upon request. However, the summary results of this level are 

also listed in Table 5. 
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first category of the model performance competition is accomplished by finding the total number of 

portfolios with a greater value of the mean VaR in absolute value between the standard approach 

and its corresponding non-standard approach that a specified bivariate GARCH model has, based on 

the same variance-covariance specification. Then these results are summarized in column S1 in Table 

4. For instance, regarding the first panel of Table 4, the S-CCC (respectively, NS-CCC) model has a 

greater value of mean VaR in absolute value between the S-CCC and NS-CCC models for none of 

these portfolios (respectively, all of the portfolios). Hence, the numbers in column S1 corresponding 

to the S-CCC and NS-CCC models of the first panel in Table 4 are 0 and 7, respectively. Concerning 

the other two groups of the model performance competition (i.e., the S-DCC vs. NS-DCC; and the S-

BEKK vs. NS-BEKK), and the other two panels in Table 4, the results are summarized in column S1 

of Table 4 corresponding to the specified model and the specified panel with the same inference 

process. Finally, regarding the 95% level, the results in column S1 corresponding to three panels of 

Table 4 are also respectively summarized at the three columns underneath the 95% level that are also 

underneath S1 in Panel B of Table 5. 

In the same inference process, regarding the 95% level, the second category of the model 

performance competition is achieved by finding the total number of portfolios with the greatest value 

of mean VaR in absolute value among the three types of bivariate variance-covariance specifications 

(i.e., CCC, DCC, and BEKK) that a specified bivariate GARCH model has, based on the same 

approach of parameters estimate. Then these results are summarized in column S2 in Table 4. 

Subsequently, regarding the 95% level, the results in column S2 corresponding to three panels of 

Table 4 are also respectively summarized at the three columns underneath the 95% level that are also 

underneath S2 in Panel B of Table 5. Concerning the 95% level, the third category of the model 

performance competition is achieved by finding the total number of portfolios with the greatest value 

of mean VaR in absolute value among all bivariate GARCH models except the NS-ADCC model that 

a specified bivariate GARCH model has, and then these results are summarized in column S3 in Table 

4. Subsequently, the results in column S3 corresponding to three panels of Table 4 are also 

respectively summarized at the three columns underneath the 95% level that are also underneath S3 

in Panel B of Table 5. Regarding the 95% level, the last category of the model performance competition 

is accomplished by finding the total number of portfolios with a greater value of mean VaR in 

absolute value between the NS-DCC and NS-ADCC models, and then these results are summarized 

in column S4 in Table 4. Subsequently, the results in column S4 corresponding to the three panels of 

Table 4 are also respectively summarized at the three columns underneath the 95% level that are also 

underneath S4 in Panel B of Table 5. Finally, we sum the total number of portfolios having a greater 

or the greatest value of mean VaR in absolute value that a specified bivariate GARCH model has 

based on two levels (i.e., 95% and 99% levels) for each of the four categories of the model performance 

competition and list them in column SS1 underneath S1, column SS2 underneath S2, column SS3 

underneath S3, and column SS4 underneath S4 in Panel B of Table 5 for the first, second, third, and 

last categories of the model performance competition, respectively. 

As shown in column SS1 underneath S1, column SS2 underneath S2, column SS3 underneath S3, 

and column SS4 underneath S4 in panel B of Table 5, we find that the results are almost the same as 

those found in the case of the failure rate. That is, regarding the first group of performance 

competition, the standard approach has a better VaR forecast performance for the DCC and BEKK 

types of bivariate variance-covariance specification whereas the non-standard or two-step approach 

has a better VaR forecast performance only for the CCC type of bivariate variance-covariance 

specification. Regarding the third group of the performance competition, the DCC type of bivariate 

variance-covariance specification with a standard approach has the best VaR forecast performance. 

With regard to the last group of performance competition, the NS-DCC model has better VaR forecast 

performance than the NS-ADCC model. From the above findings, these results of the first, third, and 

last groups of the performance competition are consistent with those found in the failure rate. 

Regarding the second group of the performance competition, the DCC type of bivariate variance-

covariance specification has the best VaR forecast performance among all three types of bivariate 

variance-covariance specifications irrespective of the standard or non-standard approach. This result 
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is slightly different from that found in the failure rate. Based on the failure rate, the DCC type of 

bivariate variance-covariance specification has the best VaR forecast performance only for the 

standard approach, whereas three types of bivariate variance-covariance specification seem to have 

the same VaR forecast performance for the non-standard approach. 

5.2.2. Summary Comparison Results Based on Alternative Accuracy Measures 

In this subsection, the 21 equal weight bi-component stock portfolios are used as a sample and 

three accuracy measures (i.e., LRuc, LRcc, and DQ) are utilized to perform the back-testing of each of 

the seven bivariate GARCH models: the S-CCC, NS-CCC, S-DCC, NS-DCC, S-BEKK, NS-BEKK, and 

the NS-ADCC models, and then the produced results are used to assess the VaR forecast performance 

for the above seven models according to the issues explored in this study. In principle, the model 

with the greater number that passes the above three back-testing bears a better performance than the 

model with the smaller that number. 

Table 6 reports the LRuc, LRcc, and DQ test statistics of long position for each of the seven 

bivariate GARCH models under a 95% confidence level over the entire out-of-sample period18 . 

Moreover, regarding a specified model, the total number of portfolios that pass the LRuc, LRcc, and 

DQ types of back-testing are counted and are respectively listed in column Sum of Panels A, B, and 

C in Table 6. For example, regarding the first subpanel of Panel A in Table 6, both the S-CCC and NS-

CCC models pass the LRuc test only for the Ny-Sp and Ny-Sm portfolios. Hence, the numbers in 

column Sum corresponding to the rows S-CCC and NS-CCC models of the first subpanel of Panel A 

in Table 6 are 2 and 2, respectively. Concerning the other five models and the other two subpanels, 

the results are summarized in column Sum of Panel A in Table 6 corresponding to the specified model 

and the specified subpanel with the same inference process. Finally, the results in column Sum 

corresponding to three subpanels of Panel A in Table 6 are also respectively summarized at the three 

columns underneath LRuc that are also underneath 95% in the first panel of Table 7. In the same 

inference, the results in column Sum corresponding to three subpanels of Panel B (respectively, C) in 

Table 6 are also respectively summarized at the three columns underneath LRcc (respectively, DQ) 

that are also underneath 95% in the first panel of Table 7. 

Table 6. The out-of-sample VaR forecasts performance based on alternative accuracy tests. 

Panel A. The LRuc Test 

 Ny-Sp Ny-Na Ny-Ca Ny-Da Ny-Ft Ny-Sm Sp-Na Sum 

S-CCC 
0.3653 4.5110 7.1022 11.3307 9.1101 3.0805 4.5110 

2 
[0.5455] [0.0336] [0.0076] [0.0007] [0.0025] [0.0792] [0.0336] 

NS-CCC 
1.9027 4.5110 7.1022 10.1944 8.0790 3.0805 5.3168 

2 
[0.1677] [0.0336] [0.0076] [0.0014] [0.0044] [0.0792] [0.0211] 

S-DCC 
0.0000 0.6421 2.4591 0.9921 0.9921 0.0000 0.6421 

7 
[1.0000] [0.4229] [0.1168] [0.3192] [0.3192] [1.0000] [0.4229] 

NS-DCC 
1.9027 4.5110 5.3168 10.1944 5.3168 4.5110 5.3168 

1 
[0.1677] [0.0336] [0.0211] [0.0014] [0.0211] [0.0336] [0.0211] 

S-BEKK 
1.9027 4.5110 8.0790 5.3168 9.1101 4.5110 7.1022 

1 
[0.1677] [0.0336] [0.0044] [0.0211] [0.0025] [0.0336] [0.0076] 

NS-BEKK 
2.4591 4.5110 7.1022 11.3307 7.1022 4.5110 4.5110 

1 
[0.1168] [0.0336] [0.0076] [0.0007] [0.0076] [0.0336] [0.0336] 

NS-ADCC 
1.9027 4.5110 6.1810 10.1944 6.1810 3.0805 5.3168 

2 
[0.1677] [0.0336] [0.0129] [0.0014] [0.0129] [0.0792] [0.0211] 

 Sp-Ca Sp-Da Sp-Ft Sp-Sm Na-Ca Na-Da Na-Ft  

S-CCC 15.0408 7.1022 13.7549 5.3168 8.0790 5.3168 12.5179 0 

                                                 
18 Due to the limited space, the detailed results of the VaR forecasting performance at the other three levels 

(90%, 99%, and 99.5%) based on the LRuc, LRcc, DQ tests are omitted here and are available upon request. 

However, the summary results of these three levels are also listed in Table 7. 
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[0.0001] [0.0076] [0.0002] [0.0211] [0.0044] [0.0211] [0.0004] 

NS-CCC 
8.0790 6.1810 10.1944 3.7650 8.0790 4.5110 12.5179 

1 
[0.0044] [0.0129] [0.0014] [0.0523] [0.0044] [0.0336] [0.0004] 

S-DCC 
0.9921 0.6421 5.3168 0.6421 0.6421 3.7650 1.9027 

6 
[0.3192] [0.4229] [0.0211] [0.4229] [0.4229] [0.0523] [0.1677] 

NS-DCC 
7.1022 5.3168 9.1101 3.7650 6.1810 4.5110 11.3307 

1 
[0.0076] [0.0211] [0.0025] [0.0523] [0.0129] [0.0336] [0.0007] 

S-BEKK 
6.1810 3.0805 13.7549 5.3168 7.1022 3.0805 9.1101 

2 
[0.0129] [0.0792] [0.0002] [0.0211] [0.0076] [0.0792] [0.0025] 

NS-BEKK 
8.0790 7.1022 8.0790 4.5110 6.1810 6.1810 8.0790 

0 
[0.0044] [0.0076] [0.0044] [0.0336] [0.0129] [0.0129] [0.0044] 

NS-ADCC 
8.0790 5.3168 9.1101 3.7650 6.1810 3.7650 9.1101 

2 
[0.0044] [0.0211] [0.0025] [0.0523] [0.0129] [0.0523] [0.0025] 

 Na-Sm Ca-Da Ca-Ft Ca-Sm Da-Ft Da-Sm Ft-Sm  

S-CCC 
4.5110 5.3168 3.0805 0.9921 4.5110 2.4591 4.5110 

3 
[0.0336] [0.0211] [0.0792] [0.3192] [0.0336] [0.1168] [0.0336] 

NS-CCC 
4.5110 2.4591 1.4130 1.9027 3.7650 3.0805 2.4591 

6 
[0.0336] [0.1168] [0.2345] [0.1677] [0.0523] [0.0792] [0.1168] 

S-DCC 
0.7107 0.9921 1.4130 0.1728 0.6421 3.0805 0.0415 

7 
[0.3991] [0.3192] [0.2345] [0.6775] [0.4229] [0.0792] [0.8384] 

NS-DCC 
4.5110 1.9027 1.4130 0.9921 4.5110 3.0805 3.0805 

5 
[0.0336] [0.1677] [0.2345] [0.3192] [0.0336] [0.0792] [0.0792] 

S-BEKK 
5.3168 3.7650 0.6421 1.4130 1.9027 2.4591 1.9027 

6 
[0.0211] [0.0523] [0.4229] [0.2345] [0.1677] [0.1168] [0.1677] 

NS-BEKK 
3.0805 1.9027 1.4130 0.9921 5.3168 3.0805 2.4591 

6 
[0.0792] [0.1677] [0.2345] [0.3192] [0.0211] [0.0792] [0.1168] 

NS-ADCC 
5.3168 1.9027 1.4130 0.9921 4.5110 3.0805 3.0805 

5 
[0.0211] [0.1677] [0.2345] [0.3192] [0.0336] [0.0792] [0.0792] 

Panel B. The LRcc Test 

 Ny-Sp Ny-Na Ny-Ca Ny-Da Ny-Ft Ny-Sm Sp-Na Sum 

S-CCC 
0.4874 4.5806 8.3725 14.2417 11.1676 5.8915 4.5806 

4 
[0.7836] [0.1012] [0.0152] [0.0008] [0.0037] [0.0525] [0.1012] 

NS-CCC 
2.3481 4.5806 8.3725 13.5015 10.4649 5.8915 5.3441 

4 
[0.3091] [0.1012] [0.0152] [0.0011] [0.0053] [0.0525] [0.0691] 

S-DCC 
0.4258 0.7050 3.8973 8.3789 3.3337 4.4727 1.6051 

6 
[0.8082] [0.7029] [0.1424] [0.0151] [0.1888] [0.1068] [0.4481] 

NS-DCC 
2.3481 4.5806 7.1218 13.5015 8.8586 6.6231 5.9173 

3 
[0.3091] [0.1012] [0.0284] [0.0011] [0.0119] [0.0364] [0.0518] 

S-BEKK 
2.3481 4.5806 10.4649 8.8586 11.1676 8.4983 7.4256 

2 
[0.3091] [0.1012] [0.0053] [0.0119] [0.0037] [0.0142] [0.0244] 

NS-BEKK 
2.7784 4.5806 8.3725 14.2417 9.8444 6.6231 4.5806 

3 
[0.2492] [0.1012] [0.0152] [0.0008] [0.0072] [0.0364] [0.1012] 

NS-ADCC 
2.3481 4.5806 7.7056 13.5015 9.3082 5.8915 5.9173 

4 
[0.3091] [0.1012] [0.0212] [0.0011] [0.0095] [0.0525] [0.0518] 

 Sp-Ca Sp-Da Sp-Ft Sp-Sm Na-Ca Na-Da Na-Ft  

S-CCC 
16.9305 8.3725 17.5529 7.1218 10.4649 11.0641 15.0612 

0 
[0.0002] [0.0152] [0.0001] [0.0284] [0.0053] [0.0039] [0.0005] 

NS-CCC 
10.4649 9.3082 15.4585 4.7351 10.4649 8.4983 15.0612 

1 
[0.0053] [0.0095] [0.0004] [0.0937] [0.0053] [0.0142] [0.0005] 

S-DCC 
1.7585 3.3432 5.9173 3.3432 1.6051 8.2299 5.5328 

6 
[0.4150] [0.1879] [0.0518] [0.1879] [0.4481] [0.0163] [0.0628] 

NS-DCC 8.3725 8.8586 12.8426 4.7351 7.7056 8.4983 14.2417 1 
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[0.0152] [0.0119] [0.0016] [0.0937] [0.0212] [0.0142] [0.0008] 

S-BEKK 
9.3082 5.891 17.5529 11.0641 8.3725 5.8915 11.1676 

2 
[0.0095] 5[0.0525] [0.0001] [0.0039] [0.0152] [0.0525] [0.0037] 

NS-BEKK 
9.1201 8.3725 12.2670 6.6231 7.7056 11.3752 12.2670 

0 
[0.0104] [0.0152] [0.0021] [0.0364] [0.0212] [0.0033] [0.0021] 

NS-ADCC 
10.4649 8.8586 12.8426 4.7351 7.7056 8.2299 12.8426 

1 
[0.0053] [0.0119] [0.0016] [0.0937] [0.0212] [0.0163] [0.0016] 

 Na-Sm Ca-Da Ca-Ft Ca-Sm Da-Ft Da-Sm Ft-Sm  

S-CCC 
8.4983 11.0641 5.8915 5.5726 8.4983 7.9810 6.6231 

2 
[0.0142] [0.0039] [0.0525] [0.0616] [0.0142] [0.0184] [0.0364] 

NS-CCC 
8.4983 10.7855 3.4251 5.5328 6.2122 8.0564 2.7784 

3 
[0.0142] [0.0045] [0.1804] [0.0628] [0.0447] [0.0178] [0.2492] 

S-DCC 
7.5978 1.7585 2.0071 5.7610 1.6051 5.8915 4.0175 

6 
[0.0223] [0.4150] [0.3665] [0.0561] [0.4481] [0.0525] [0.1341] 

NS-DCC 
8.4983 10.9746 3.4251 3.3337 8.4983 8.0564 3.2955 

3 
[0.0142] [0.0041] [0.1804] [0.1888] [0.0142] [0.0178] [0.1924] 

S-BEKK 
11.0641 10.7251 3.3432 3.4251 3.6140 7.9810 2.3481 

4 
[0.0039] [0.0046] [0.1879] [0.1804] [0.1641] [0.0184] [0.3091] 

NS-BEKK 
5.8915 10.9746 3.4251 5.5726 8.8586 8.0564 2.7784 

4 
[0.0525] [0.0041] [0.1804] [0.0616] [0.0119] [0.0178] [0.2492] 

NS-ADCC 
11.0641 10.9746 3.4251 3.3337 8.4983 8.0564 3.2955 

3 
[0.0039] [0.0041] [0.1804] [0.1888] [0.0142] [0.0178] [0.1924] 

Panel C. The DQ Test 

 Ny-Sp Ny-Na Ny-Ca Ny-Da Ny-Ft Ny-Sm Sp-Na Sum 

S-CCC 
10.3218 12.2181 12.0662 33.4966 26.8956 12.3289 10.0792 

5 
[0.1710] [0.0936] [0.0983] [0.0000] [0.0003] [0.0902] [0.1841] 

NS-CCC 
10.2944 12.0725 11.9839 28.8697 27.2485 12.5786 10.8587 

5 
[0.1724] [0.0981] [0.1010] [0.0001] [0.0003] [0.0830] [0.1448] 

S-DCC 
3.7374 8.5843 7.3272 19.6552 18.7722 10.3007 13.4539 

5 
[0.8094] [0.2838] [0.3956] [0.0063] [0.0089] [0.1721] [0.0617] 

NS-DCC 
10.3132 12.1512 11.2779 37.2880 22.0679 13.0092 12.2997 

5 
[0.1715] [0.0956] [0.1269] [0.0000] [0.0024] [0.0718] [0.0911] 

S-BEKK 
10.0575 12.2142 16.0366 19.1733 23.0047 20.5890 14.0009 

3 
[0.1853] [0.0937] [0.0247] [0.0076] [0.0017] [0.0044] [0.0511] 

NS-BEKK 
10.1730 12.5699 11.8918 34.6125 24.0851 11.2893 10.2065 

5 
[0.1789] [0.0833] [0.1041] [0.0000] [0.0011] [0.1264] [0.1771] 

NS-ADCC 
10.3132 12.1526 11.5718 33.5806 23.4834 12.5590 12.3032 

5 
[0.1715] [0.0956] [0.1155] [0.0000] [0.0014] [0.0836] [0.0910] 

 Sp-Ca Sp-Da Sp-Ft Sp-Sm Na-Ca Na-Da Na-Ft  

S-CCC 
30.3576 18.2263 37.9757 16.0300 15.2448 24.5045 31.0751 

0 
[0.0000] [0.0109] [0.0000] [0.0248] [0.0329] [0.0009] [0.0000] 

NS-CCC 
20.2060 18.0954 37.3363 12.2757 15.3185 18.6607 31.1347 

1 
[0.0051] [0.0115] [0.0000] [0.0918] [0.0321] [0.0093] [0.0000] 

S-DCC 
4.3366 6.6243 13.7254 11.9702 3.6055 15.4307 12.6713 

6 
[0.7402] [0.4690] [0.0562] [0.1015] [0.8239] [0.0308] [0.0805] 

NS-DCC 
14.5434 18.7120 30.9949 12.2764 14.4964 18.6412 30.5141 

1 
[0.0423] [0.0091] [0.0000] [0.0918] [0.0430] [0.0093] [0.0000] 

S-BEKK 
16.1927 13.1625 35.5377 20.6767 15.3437 13.9051 20.7264 

2 
[0.0234] [0.0682] [0.0000] [0.0042] [0.0318] [0.0528] [0.0041] 

NS-BEKK 
12.8649 18.0528 39.2391 13.9991 13.9110 25.1249 29.5862 

3 
[0.0754] [0.0117] [0.0000] [0.0511] [0.0527] [0.0007] [0.0001] 
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NS-ADCC 
20.5613 18.7242 31.0229 12.2829 14.4518 18.1772 34.3521 

1 
[0.0044] [0.0090] [0.0000] [0.0916] [0.0437] [0.0111] [0.0000] 

 Na-Sm Ca-Da Ca-Ft Ca-Sm Da-Ft Da-Sm Ft-Sm  

S-CCC 
25.8101 22.3909 10.9822 12.0453 17.3897 17.2360 26.4417 

2 
[0.0005] [0.0021] [0.1393] [0.0990] [0.0150] [0.0159] [0.0004] 

NS-CCC 
25.8747 21.4803 7.6053 12.5239 13.7256 17.2310 7.1334 

4 
[0.0005] [0.0031] [0.3686] [0.0845] [0.0562] [0.0159] [0.4151] 

S-DCC 
13.3830 3.3975 4.8187 10.4288 13.2134 17.0012 10.4312 

6 
[0.0633] [0.8459] [0.6820] [0.1655] [0.0670] [0.0173] [0.1654] 

NS-DCC 
25.8073 21.9385 7.7121 7.7693 19.4782 16.9916 9.4860 

3 
[0.0005] [0.0026] [0.3586] [0.3533] [0.0068] [0.0174] [0.2196] 

S-BEKK 
23.7673 21.6152 7.5296 9.2160 10.0008 17.0505 6.3742 

4 
[0.0012] [0.0029] [0.3758] [0.2375] [0.1885] [0.0170] [0.4967] 

NS-BEKK 
12.0903 21.9022 7.6893 11.8549 17.9357 16.7977 17.1000 

3 
[0.0976] [0.0026] [0.3607] [0.1054] [0.0122] [0.0187] [0.0167] 

NS-ADCC 
31.0924 21.9193 7.7121 7.7693 19.4782 16.9965 9.4886 

3 
[0.0000] [0.0026] [0.3586] [0.3533] [0.0068] [0.0174] [0.2194] 

Note: (1) Refer to notes 1–2 of Table 3. (2) The numbers in this table denote the value of the three 

accuracy tests at the 95% level for equal weight bi-component stock portfolios. The number in the 

bracket underneath the preceding number denotes the corresponding p-value of that test statistic. (3) 

The bold font indicates that the null hypothesis of the specific test statistic is accepted at the 5% 

significance level. (4) The LRuc (respectively, LRcc) test statistic is asymptotically χ2(1) (respectively, 

χ2(2)) distributed and its corresponding critical values at the 5% significance level is 3.841 (respectively, 

5.991). On the contrary, the DQ test statistic is asymptotically χ2(7) distributed and its corresponding 

critical values at the 5% significance level is 14.067. (5) The numbers in column Sum denote the total 

number of portfolios passing the specific test at the 5% significance level. 

Table 7 summarizes the results of the above three accuracy tests (i.e., LRuc, LRcc, and DQ) for four 

levels (i.e., 90%, 95%, 99%, and 99.5%) based on 21 equal weight bi-component stock portfolios as a 

sample. Subsequently, regarding all 21 equal weight bi-component stock portfolios, we sum the total 

number of portfolios that pass the three accuracy measures (i.e., LRuc, LRcc, and DQ) under the 90% 

(respectively, 95%) level for each of the seven bivariate GARCH models, and list them in column S90 

(respectively, S95) underneath the 90% (respectively, 95%) level at the first panel in Table 7. In other 

words, the numbers in column S90 (respectively, S95) underneath the 90% (respectively, 95%) level at 

the first panel of Table 7 denote the summation of three corresponding numbers in columns S90,uc, 

S90,cc and S90,dq (respectively, S95,uc, S95,cc and S95,dq). Moreover, the numbers in column S90,uc (respectively, 

S90,cc) underneath the 90% denote the summation of three corresponding numbers in column LRuc 

(respectively, LRcc) underneath the 90% whereas those in column S90,dq underneath the 90% denote 

the summation of three corresponding numbers in column DQ underneath the 90%. In the same 

inference process, we sum the total number of portfolios that pass the three accuracy measures (i.e., 

LRuc, LR and DQ) under a 99% (respectively, 99.5%) level for each of the seven bivariate GARCH 

models and list them in column S99 (respectively, S995) underneath a 99% (respectively, 99.5%) level at 

the second panel of Table 7. 

In the same inference process that is executed in the previous subsection, four categories of the 

model performance competition will be executed in this section according to the issues addressed in 

this study. The issues are respectively explored for the 90%, 95%, 99%, and 99.5% levels via the 

numbers in column S90 underneath the 90% level, S95 underneath the 95% level, S99 underneath the 

99% level, and S995 underneath the 99.5% level in Table 7. The first category of the model performance 

competition is used to inspect which approach of parameters estimate (i.e., the standard or non-

standard approach) has a better VaR forecast performance based on the same bivariate variance-

covariance specification. We find that the NS-CCC model has a better VaR forecast performance than 

the S-CCC model for the CCC type of bivariate variance-covariance specification for most of the four 

levels since the NS-CCC model has the larger total number of portfolios that pass three accuracy 
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measures except the 99.5% level. For example, regarding the 90% level, the NS-CCC model has the 

larger number, 38 between the S-CCC (33) and NS-CCC (38) models, where the number in the 

brackets beside each model denotes the summation of the total number of portfolios that pass three 

accuracy measures for the 90% level. In the same inference process, the S-DCC (respectively, S-BEKK) 

model has a better VaR forecast performance for the DCC (respectively, BEKK) type of bivariate 

variance-covariance specification for all levels. These results indicate that the standard approach has 

better VaR forecast performance for the DCC and BEKK types of bivariate variance-covariance 

specification whereas the non-standard approach has a better VaR forecast performance only for the 

CCC type of bivariate variance-covariance specification. These results are consistent with those found 

in the failure rate and mean VaR. 

The second category of the model performance competition is used to inspect which type of 

bivariate variance-covariance specification will have the best VaR forecast performance based on the 

same approach of parameters estimate. We find that the S-DCC model has the best VaR forecast 

performance since this model has the largest total number of portfolios that pass the three accuracy 

measures among the S-CCC, S-DCC, and S-BEKK models for all four levels. On the contrary, the NS-

CCC, NS-DCC, and NS-BEKK models seem to have the same VaR forecast performance since, for 

these three models, the corresponding total numbers of portfolios that pass the three accuracy 

measures are almost equal. For example, regarding the 90% (respectively, 95%) level, the above total 

numbers are 38 (respectively, 27), 42 (respectively, 23), 38 (respectively, 25) for the NS-CCC, NS-DCC, 

and NS-BEKK models, respectively. Conversely, regarding the 99% (respectively, 99.5%) level, the 

above total numbers are 6 (respectively, 2), 5 (respectively, 5), 9 (respectively, 3) for the NS-CCC, NS-

DCC, and NS-BEKK models, respectively. The above results indicate that the DCC type of bivariate 

variance-covariance specification has the best VaR forecast performance only for the standard 

approach, whereas three types of bivariate variance-covariance specifications seem to have the same 

VaR forecast performance for the non-standard approach. In other words, the above results are 

completely consistent with those found in the failure rate, whereas they are slightly different from 

those found in the mean VaR. The third category of the model performance competition is used to 

inspect which model has the best VaR forecast performance among all the bivariate GARCH models 

except the NS-ADCC model. We find that the S-DCC model has the best VaR forecast performance 

since this model has the largest total number of portfolios that pass three accuracy measures among 

all bivariate GARCH models excluding or including the NS-ADCC model. These results indicate that 

the DCC type of bivariate variance-covariance specification with the standard approach has the best 

VaR forecast performance. These results are consistent with those found in the failure rate and mean 

VaR. Finally, the last or the fourth category of the model performance competition is used to explore 

whether the two-step asymmetric DCC model has a better performance than its corresponding 

symmetric one. We find that both the NS-ADCC and NS-DCC models almost have the same forecast 

performance since the NS-ADCC model has a larger total number of portfolios that pass three 

accuracy measures for the 95% and 99.5% levels whereas the NS-DCC model has the larger total 

number of portfolios that pass the three accuracy measures for the 90% and 99% levels. For example, 

regarding the 90% (respectively, 95%) level, the above total numbers are 42 (respectively, 23) and 40 

(respectively, 26) for the NS-DCC and NS-ADCC models, respectively. Conversely, regarding the 

99% (respectively, 99.5%) level, the above total numbers are 5 (respectively, 5) and 0 (respectively, 7) 

for the NS-DCC and NS-ADCC models, respectively.  

To sum up, irrespective of the results from the preliminary analysis of the average VaR 

performance in the previous subsection or the results from the three types of back-testing in this 

subsection, we get the following conclusions: first, the standard approach has a better VaR forecast 

performance for the DCC and BEKK types of bivariate variance-covariance specification whereas the 

non-standard approach has a better VaR forecast performance only for the CCC type of bivariate 

variance-covariance specification; second, the DCC type of bivariate variance-covariance 

specification has the best VaR forecast performance for the standard approach whereas three types 

of bivariate variance-covariance specification seem to have the same VaR forecast performance for 

the non-standard approach; third, the DCC type of bivariate variance-covariance specification with 
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the standard approach has the best VaR forecast performance among all the bivariate GARCH models 

including the NS-ADCC model; fourth, both the NS-ADCC and NS-DCC models almost have the 

same VaR forecast performance. Finally, we firmly believe that the DCC type of bivariate variance-

covariance specification plays a significantly important role as the dynamic risk is measured. 
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Table 7. The summary results for the out-of-sample VaR forecasts performance of equal-weight stock portfolios based on alternative accuracy tests. 

 
90% Level 95% Level 

LRuc S90,uc LRcc S90,cc DQ S90,dq S90 LRuc S95,uc LRcc S95,cc DQ S95,dq S95 

S-CCC 7 7 4 18 5 2 1 8 3 2 2 7 33 2 0 3 5 4 0 2 6 5 0 2 7 18 

NS-CCC 7 7 5 19 6 3 2 11 3 3 2 8 38 2 1 6 9 4 1 3 8 5 1 4 10 27 

S-DCC 7 7 7 21 7 7 4 18 6 4 3 13 52 7 6 7 20 6 6 6 18 5 6 6 17 55 

NS-DCC 7 7 6 20 6 5 3 14 3 3 2 8 42 1 1 5 7 3 1 3 7 5 1 3 9 23 

S-BEKK 7 7 7 21 5 5 4 14 3 2 3 8 43 1 2 6 9 2 2 4 8 3 2 4 9 26 

NS-BEKK 7 7 4 18 7 4 2 13 3 2 2 7 38 1 0 6 7 3 0 4 7 5 3 3 11 25 

NS-ADCC 7 7 6 20 6 4 3 13 3 2 2 7 40 2 2 5 9 4 1 3 8 5 1 3 9 26 

 
99% Level 99.5% Level 

LRuc S99,uc LRcc S99,cc DQ S99,dq S99 LRuc S995,uc LRcc S995,cc DQ S995,dq S995 

S-CCC 2 1 0 3 1 0 0 1 1 0 0 1 5 2 1 0 3 0 0 0 0 0 0 0 0 3 

NS-CCC 1 1 0 2 1 0 1 2 1 0 1 2 6 1 1 0 2 0 0 0 0 0 0 0 0 2 

S-DCC 4 5 4 13 3 2 2 7 2 2 2 6 26 5 5 5 15 1 0 0 1 1 0 3 4 20 

NS-DCC 1 0 0 1 1 0 1 2 1 0 1 2 5 2 3 0 5 0 0 0 0 0 0 0 0 5 

S-BEKK 2 3 0 5 2 2 0 4 1 1 1 3 12 2 4 1 7 0 0 1 1 1 0 2 2 10 

NS-BEKK 1 1 1 3 2 1 1 4 1 0 1 2 9 1 2 0 3 0 0 0 0 0 0 0 0 3 

NS-ADCC 0 0 0 0 0 0 0 0 0 0 0 0 0 2 4 0 6 0 0 0 0 0 0 1 1 7 

Note: (1) Refer to note 2 of Table 3. (2) The numbers in the columns LRuc, LRcc, and DQ underneath the 95% level at the first panel are respectively summarized from the numbers in the column 

Sum of Panels A, B, and C in Table 6. (3) The numbers in the columns S95,uc (S99,uc), S95,cc (S99,cc), and S95,dq (S99,dq) underneath the 95% (99%) level at the first (second) panel denote the total number 

of portfolios that pass the LRuc, LRcc, and DQ tests at the specified model for all 21 bi-component stock portfolios, respectively. (4) The numbers in column S95 (S99) underneath the 95% (99%) 

level at the first (second) panel denote the total sum of three corresponding numbers in columns S95,uc (S99,uc), S95,cc (S99,cc), and S95,dq (S99,dq) representing the total number of portfolios that pass 

the LRuc, LRcc, or DQ tests at the specified model for the 95% (99%) level. (5) In the same inference process, the numbers in column S90 (S995) underneath the 90% (99.5%) level at the first (second) 

panel denote the total sum of three corresponding numbers in columns S90,uc (S995,uc), S90,cc (S995,cc), and S90,dq (S995,dq). (6) The bold font in columns S90, S95, S99, and S995 denotes the greater number 

when two numbers corresponding to two models are compared with each other and these two models have the same bivariate variance-covariance specification but a different parameter 

estimate approach (i.e., the S-CCC vs. NS-CCC; the S-DCC vs. NS-DCC; and the S-BEKK vs. NS-BEKK). (7) The underlined font in columns S90, S95, S99, and S995 denotes the greatest number 

when three numbers corresponding to the three models are compared with each other and these three models have the same parameter estimate approach but a different bivariate variance-

covariance specification (i.e., the S-CCC, S-DCC, and S-BEKK; the NS-CCC, NS-DCC, and NS-BEKK). (8) The shade font in columns S90, S95, S99, and S995 denotes the greatest number when six 

numbers corresponding to the six models are compared with each other and these six models are the S-CCC, NS-CCC, S-DCC, NS-DCC, S-BEKK, and NS-BEKK models. (9) The italic font in 

columns S90, S95, S99, and S995 denotes the greater number when two numbers corresponding to two models are compared with each other and these two models are the NS-DCC and NS-ADCC.
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5.3. Robust Check for the Performance Assessments of VaR Forecasts 

To check whether a different portfolio (different components with different weights) has the 

same VaR forecast comparison results with the equal-weight bi-component portfolio described in the 

previous section, we add the following two additional sub-issues in this section. First we add two 

other weight combinations (w1 = 25%, w2 = 75%;  and w1 = 75%, w2 = 25% ) for the original 21 

stock-based bi-component portfolios to investigate whether the different weight combinations of 

portfolios will affect the VaR forecast comparison results. Second, this work also considers Udi as a 

new component asset to construct seven currency-stock-based bi-component portfolios to investigate 

whether the different component combinations of portfolios will affect the VaR forecast comparison 

results. In addition, besides the three accuracy tests, we also perform an efficiency test via the MRC 

to analyze whether any of the competing models significantly outperform the benchmark, and then 

select the most suitable model for the risk management of a bank. 

5.3.1. Can the Weight Combinations of Portfolios Affect the Performance of VaR Forecasts? 

Regarding the above first sub-issue, we summarize the results of Table 7 again to easily compare 

the results for the three weight combinations of stock-based portfolios. Taking an example of the 90% 

level, the numbers in column S90,uc (respectively, S90,cc) of Table 7 are recorded in column LRuc 

(respectively, LRcc) underneath the 90% level in panel A of Table 8. Similarly, the numbers in column 

S90,dq (respectively, S90) of Table 7 are recorded in column DQ (respectively, Sum) underneath the 90% 

level in panel A of Table 8. Subsequently, via following the procedure in the case of equal-weight bi-

component portfolios, we summarize the results of three accuracy tests for the weight combinations: 

w1 = 25%, and w2 = 75% (respectively, w1 = 75%, and w2 = 25%) in panel B (respectively, C) of 

Table 8. Table 8 lists all summary results of the out-of-sample VaR forecasts performance for the three 

weight combinations of stock-based portfolios. Then we execute four groups of the model 

performance comparisons as listed in Section 5.2.2. As reported in Table 8, regarding the three weight 

combinations, we find that, first, the NS-CCC model has a better VaR forecast performance than the 

S-CCC model for the CCC type of bivariate variance-covariance specification for most cases because 

the NS-CCC model has a larger total number of portfolios that pass the three accuracy measures 

except for the cases of the 99.5% level in panel A and both the 99% and 99.5% levels in panel C. Using 

the same inference process, the S-DCC model has a better VaR forecast performance than the NS-

DCC model for all cases. Conversely, the S-BEKK model has a better VaR forecast performance than 

the NS-BEKK model except for the 90%, 95%, and 99% levels in panel B. Second, the S-DCC model 

has the best VaR forecast performance because this model has the largest total number of portfolios 

that pass the three accuracy measures among the S-CCC, S-DCC, and S-BEKK models for all cases. 

In contrast, the NS-CCC, NS-DCC, and NS-BEKK models seem to have the same VaR forecast 

performance because, for these three models, the corresponding total numbers of portfolios that pass 

the three accuracy measures are almost equal. Third, the S-DCC model has the best VaR forecast 

performance because this model has the largest total number of portfolios that pass the three accuracy 

measures among all seven bivariate GARCH models for all cases. Fourth, both the NS-ADCC and 

NS-DCC models have almost the same VaR forecast performance because, for these two models, the 

corresponding total numbers of portfolios that pass the three accuracy measures are almost equal.  

From this, we reach the following conclusions irrespective of weight combinations. First, the 

standard approach has a better VaR forecast performance for the DCC and BEKK types of bivariate 

variance-covariance specifications, whereas the non-standard approach has better VaR forecast 

performance only for the CCC type of bivariate variance-covariance specification. Second, the DCC 

type of bivariate variance-covariance specification has the best VaR forecast performance only for the 

standard approach, whereas three types of bivariate variance-covariance specifications seem to have 

the same VaR forecast performance for the non-standard approach. Third, the DCC type of bivariate 

variance-covariance specification with the standard approach shows the best VaR forecast 

performance among the seven bivariate GARCH models. Fourth, the NS-ADCC and NS-DCC models 

have almost the same VaR forecast performance. These findings can also be observed from the 

numbers in the column SUM of Table 8. Hence the different weight combinations of portfolios do not 
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affect the VaR forecast comparison results for the stock-based portfolio. Notably, the finding that the 

DCC type of bivariate variance-covariance specification with the standard approach (i.e., the S-DCC 

model) shows that the best VaR forecast performance among the seven bivariate GARCH models is 

the most significant because there is no exception in this group in terms of the model performance 

comparisons for all four levels and for all three weight combinations. 

5.3.2. Can the Component Combinations of Portfolios Affect the Performance of VaR Forecasts? 

Regarding this second sub-issue, Table 9 reports the out-of-sample VaR forecasts performance 

of seven equal-weight currency-stock portfolios based on alternative accuracy tests for the 90% level. 

Subsequently, we summarize the results of Table 9 in Table 10 to easily compare the results for three 

weight combinations of currency-stock-based portfolios. For example, the numbers in column Sum 

in panel A (respectively, B) in Table 9 are recorded in column LRuc (respectively, LRcc) underneath 

the 90% level in panel A of Table 10. Conversely, the numbers in column Sum in panel C in Table 9 

are recorded in column DQ underneath the 90% level in panel A of Table 10. Table 10 lists all the 

summary results of the out-of-sample VaR forecast performance for three weight combinations of 

currency-stock-based portfolios. Then we execute four groups of the model performance 

comparisons imitating the same process performed in Table 8. Before we perform this analysis, we 

find a specific phenomenon existing in Table 10 compared to Table 8. For example, the total numbers 

of portfolios that pass three accuracy measures are almost equal for most cases, such as all four levels 

of panel A; the 99% and 99.5% levels of panel B; the 90% and 95% levels of panel B except for the S-

CCC model; and the 90%, 95%; and 99.5% levels of panel C except for the S-CCC model. Taking an 

example of the 90% level of panel A, the total numbers of portfolios that pass the three accuracy 

measures are 17, 18, 20, 20, 19, 20, and 21 for the S-CCC, NS-CCC, S-DCC, NS-DCC, S-BEKK, NS-

BEKK, and NS-ADCC models, respectively. This phenomenon indicates that all seven models seem 

to have the same VaR forecast performance because the seven numbers are almost the same. 

Subsequently, we execute four groups of the model performance comparisons. As reported in 

Table 10, regarding the three weight combinations, we find that, first, both the S-CCC and NS-CCC 

models seem to have the same VaR forecast performance because, for these two models, the 

corresponding total numbers of portfolios that pass the three accuracy measures are almost equal 

except for the cases of the 90% and 95% levels of panel B and all levels of panel C. The phenomenon 

is more significant for both the S-DCC and NS-DCC models and for both the S-BEKK and NS-BEKK 

models because, regarding these two pairs of models, the total numbers of portfolios that pass the 

three accuracy measures are almost equal for all three panels and for all three levels. Second, the S-

DCC (respectively, NS-DCC) model seems to have the best VaR forecast performance because this 

model has the largest total number of portfolios that pass the three accuracy measures among the S-

CCC, S-DCC, and S-BEKK (respectively, NS-CCC, NS-DCC, and NS-BEKK) models for most cases. 

However, this result is not significant because the corresponding total numbers are almost equal for 

these three models. Third, the seven models seem to have the same VaR forecast performance because 

the models with the largest total number of portfolios that pass the three accuracy measures among 

the seven models are uniformly distributed in all seven models. Fourth, the NS-ADCC and NS-DCC 

models have almost the same VaR forecast performance because the corresponding total numbers of 

portfolios that pass the three accuracy measures are almost equal for these two models. 

From this, we reach the following conclusions irrespective of weight combinations. All seven 

models seem to have the same VaR forecast performance. This result is consistent with that found at 

the preliminary analysis in the previous paragraph. These findings can also be roughly observed 

from the numbers in the column SUM of Table 10. Hence the different weight combinations of 

portfolios do not affect the comparison results for the currency-stock-based portfolio. To sum up, the 

weight combinations of portfolios do not affect the comparison results for both the currency-stock 

and stock-based portfolios. However, the different component combinations of portfolios will affect 

the comparison results. 
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5.3.3. Efficiency Evaluation Test via Market Risk Capital 

Through performing the VaR forecasts’ performance comparison among all seven models via 

three accuracy tests, we know which approach of parameters estimate (i.e., the standard or non-

standard approach) has a better VaR forecast performance for a specific type of bivariate variance-

covariance specification and which type of bivariate variance-covariance specification (i.e., the CCC, 

DCC, or BEKK) has a better VaR forecast performance for a specific approach of parameters estimate 

and, more strictly, which model has the best VaR forecast performance among all seven models. The 

question is how to use these findings in real cases such as the risk management of a bank. That is, 

which model is more suitable for banking risk management? Thus, via combining the MRC under 

the 1996 MRA to the Basel Capital Accord, this study utilizes the two-stage selection procedure of 

Sarma et al. (2003) to select a suitable model to manage the institutional risk. Regarding the above 

two-stage selection procedure, the first stage of the model selection involves several statistical 

accuracy tests (e.g., LRuc, LRcc, and DQ) that were executed previously. On the other hand, the second 

stage includes an efficiency test based on specific loss functions such as the MRC loss function. To 

repeat, the MRC is the amount of regulatory capital a bank must hold with respect to its market risk 

exposure. Regarding the above efficiency test, we use the superior predictive ability (SPA) test by 

Hansen (2005). The null hypothesis of this test is that none of the models is better than the benchmark. 

If the p-value of this test statistic is greater than the 10% level, then the null hypothesis is accepted, or 

the benchmark model shows better performance than the other competing models. In the SPA test, 

each competing model has to take turns being the benchmark model. Hence, we perform this test 

seven times for the seven bivariate GARCH models.  

As defined by the MRC in Equation (21), the values of MRC depend on the values of VaR at the 

99% level. Hence, we only consider four models (S-DCC, NS-DCC, NS-BEKK, and NS-ADCC19) to 

perform the efficiency test. That is, we exclude the other three models (S-CCC, NS-CCC, and S-BEKK) 

because they have no portfolios passing the alternative accuracy test at the first stage. For example, 

the total number of tests passing the three accuracy tests is zero for the S-CCC model in panel B of 

Table 10 (i. e. , w1 = 25%, and w2 = 75% weight combination of currency-stock portfolio), the NS-

CCC model in panel A of Table 10 (i.e., w1 = 50%, and w2 = 50% weight combination of currency-

stock portfolio), and the S-BEKK model in panel B of Table 8 (i. e. , w1 = 25%, and w2 = 75% weight 

combination of stock portfolio). Table 11 lists the results of the efficiency evaluation test based on 

MRC for equal-weight bi-component stock and currency-stock portfolios20. Moreover, regarding a 

specified model, the total number of portfolios that pass the SPA test is counted and listed in column 

Sum of Table 11. For example, regarding the first subpanel of panel A of Table 11, no stock portfolio 

passes the SPA test for both the NS-DCC and NS-ADCC models; only the Ny-Ft portfolio passes this 

test for the S-DCC model and all seven stock portfolios pass this test for the NS-BEKK model. Hence, 

the numbers in column Sum corresponding to the rows S-DCC, NS-DCC, NS-BEKK, and NS-ADCC 

models of the first subpanel of panel A of Table 11 are 1, 0, 7, and 0, respectively. We also count the 

total number of portfolios that pass the SPA test for a specified model when taking 21 stock portfolios 

as a whole, and then record it in parentheses “( )” in column Sum in the third subpanel of panel A. 

As reported there, the total numbers of portfolios that pass the SPA test for the S-DCC, NS-DCC, NS-

BEKK, and NS-ADCC models respectively are 8, 2, 21, and 2 when taking 21 stock portfolios as a 

whole. These results are also summarized in column “w1 = 0.5, w2 = 0.5” underneath Stock portfolios 

in Table 12. With the same inference process, the total numbers of portfolios that pass the SPA test 

for the S-DCC, NS-DCC, NS-BEKK, and NS-ADCC models respectively are 5, 0, 7, and 1 when taking 

seven currency-stock portfolios as a whole. These results are recorded in the column Sum of panel B 

in Table 11 and also summarized in column “w1 = 0.5, w2 = 0.5” underneath Currency-stock portfolios 

                                                 
19 Even if the total number of passing three accuracy tests is zero for the NS-ADCC model at panel A of Table 

8 (i. e., w1 = 50%, and w2 = 50% weight combination of stock portfolio), we considered this model since 

the NS-DCC model is the special case of NS-ADCC model. 
20 Due to the limited space, the results of the efficiency evaluation test based on MRC for the other two weight 

combinations stock and currency-stock portfolios are omitted here and are available upon request. 

However, the summary results of the above results are also listed in Table 12. 
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in Table 12. In Table 11, we also show that when a model passes the SPA test, the corresponding MRC 

is almost the smallest among all competing models’ MRCs.  

Table 12 lists the summary results of the efficiency evaluation test based on MRCs for three 

weight combinations of stock and currency-stock portfolios. As reported in Table 12, we find that the 

NS-BEKK model has the best efficiency, followed by the S-DCC model for all the cases of three weight 

combinations of both the stock and currency-stock portfolios because the NS-BEKK model has the 

largest total number of portfolios that pass the SPA test. For example, as shown in column “w1 = 0.5, 

w2 = 0.5” underneath Stock portfolios in Table 12, the total number of portfolios that pass the SPA 

test is equal to 21 for the NS-BEKK model. This number, 21, is the largest among the 8 (the S-DCC), 2 

(the NS-DCC), 21 (the NS-BEKK), and 2 (the NS-ADCC). These results indicate that irrespective of 

the weight combination of the portfolios, the NS-BEKK is the most suitable model to be used in the 

stock- and currency-stock-based portfolio by the bank risk manager. In addition, we are surprised 

that the NS-BEKK model is selected from the efficiency evaluation test for both the stock- and 

currency-stock-based portfolios, whereas the S-DCC model is chosen from the accuracy tests only for 

the stock-based portfolio. The reason we guess for this is that the three accuracy tests are based on 

the one-day VaR, whereas the efficiency evaluation test is based on the MRC that depends on the 10-

day VaR at the 99% confidence level and the MRA’s multiplication factor. As to the other reasons, 

they are left for future investigations. 
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Table 8. All the summary results of the out-of-sample VaR forecast performances for the three weight combinations stock portfolios. 

Panel A. 𝐰𝟏 = 𝟓𝟎%, 𝐚𝐧𝐝 𝐰𝟐 = 𝟓𝟎% bi-component portfolios 

 
90% Level 95% Level 99% Level 99.5% Level 

SUM 
LRuc LRcc DQ Sum LRuc LRcc DQ Sum LRuc LRcc DQ Sum LRuc LRcc DQ Sum 

S-CCC 18 8 7 33 5 6 7 18 3 1 1 5 3 0 0 3 59 

NS-CCC 19 11 8 38 9 8 10 27 2 2 2 6 2 0 0 2 73 

S-DCC 21 18 13 52 20 18 17 55 13 7 6 26 15 1 4 20 153 

NS-DCC 20 14 8 42 7 7 9 23 1 2 2 5 5 0 0 5 75 

S-BEKK 21 14 8 43 9 8 9 26 5 4 3 12 7 1 2 10 91 

NS-BEKK 18 13 7 38 7 7 11 25 3 4 2 9 3 0 0 3 75 

NS-ADCC 20 13 7 40 9 8 9 26 0 0 0 0 6 0 1 7 73 

Panel B. 𝐰𝟏 = 𝟐𝟓%, 𝐚𝐧𝐝 𝐰𝟐 = 𝟕𝟓% bi-component portfolios 

 
90% Level 95% Level  99% Level 99.5% Level 

SUM 
LRuc LRcc DQ Sum LRuc LRcc DQ Sum LRuc LRcc DQ Sum LRuc LRcc DQ Sum 

S-CCC 10 5 3 18 7 6 7 20 1 0 0 1 2 0 0 2 41 

NS-CCC 20 14 11 45 13 11 11 35 2 1 1 4 3 0 3 6 90 

S-DCC 21 16 14 51 18 12 14 44 11 5 4 20 12 2 6 20 135 

NS-DCC 20 14 11 45 13 11 11 35 1 1 1 3 2 0 3 5 88 

S-BEKK 19 11 11 41 15 8 9 32 0 0 0 0 5 1 4 10 83 

NS-BEKK 17 14 11 42 11 11 12 34 0 0 1 1 1 0 1 2 79 

NS-ADCC 19 14 11 44 13 11 11 35 1 1 1 3 2 0 3 5 87 

Panel C. 𝐰𝟏 = 𝟕𝟓%, 𝐚𝐧𝐝 𝐰𝟐 = 𝟐𝟓% bi-component portfolios 

 
90% Level 95% Level  99% Level 99.5% Level 

SUM 
LRuc LRcc DQ Sum LRuc LRcc DQ Sum LRuc LRcc DQ Sum LRuc LRcc DQ Sum 

S-CCC 16 15 10 41 12 11 10 33 7 2 0 9 8 0 0 8 91 

NS-CCC 20 17 14 51 16 16 13 45 1 2 1 4 4 0 1 5 105 

S-DCC 21 19 17 57 20 19 17 56 13 5 2 20 11 3 4 18 151 

NS-DCC 21 16 14 51 17 16 14 47 3 2 1 6 4 0 0 4 108 

S-BEKK 21 17 14 52 19 18 16 53 6 3 2 11 7 1 1 9 125 

NS-BEKK 20 16 12 48 18 15 12 45 2 1 1 4 3 0 0 3 100 

NS-ADCC 21 16 14 51 18 15 14 47 2 2 1 5 3 0 0 3 106 

Note: (1) Refer to note 2 of Table 3. (2) The numbers in columns LRuc, LRcc, and DQ underneath the 90% level at panel A are the numbers in columns S90,uc, S90,cc, and 

S90,dq underneath the 90% level in Table 7. Similarly, the numbers in column Sum underneath the 90% level at panel A are the numbers in columns S90 underneath 
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the 90% level case in Table 7. As to the numbers in columns LRuc, LRcc, DQ, and Sum underneath the 95%, 99%, 99.5% levels in panel A, they are defined as the 90% 

level. (3) The numbers in the column Sum at each panel denote the total sum of three corresponding numbers in columns LRuc, LRcc, and DQ. (4) The numbers in 

the column SUM at each panel denote the total sum of the four corresponding numbers in the columns Sum of the 90%, 95%, 99%, and 99.5% levels. (5) The bold 

font in the columns Sum, and SUM denotes the greater number when two numbers corresponding to two models are compared with each other and these two 

models have the same bivariate variance-covariance specification but a different parameter estimate approach (i.e., the S-CCC vs. NS-CCC; the S-DCC vs. NS-DCC; 

and the S-BEKK vs. NS-BEKK). (6) The underlined font in the columns Sum, and SUM denotes the greatest number when three numbers corresponding to three 

models are compared with each other and these three models have the same parameter estimate approach but with different bivariate variance-covariance 

specifications (i.e., the S-CCC, S-DCC, and S-BEKK; NS-CCC, NS-DCC, and NS-BEKK). (7) The shaded font in the columns Sum, and SUM denotes the greatest 

number when seven numbers corresponding to even models are compared with each other. (8) The italic font in the columns Sum, and SUM denotes the greater 

number when two numbers corresponding to two models are compared with each other, and these two models are the NS-DCC and NS-ADCC. 

Table 9. The out-of-sample VaR forecasts performance of the equal weight currency-stock portfolios based on alternative accuracy tests for the 90% level. 

 Udi-Ny Udi-Sp Udi-Na Udi-Ca Udi-Da Udi-Ft Udi-Sm Sum 

Panel A. The LRuc test  

S-CCC 0.3643[0.5461] 0.0899[0.7642] 0.0000[1.0000] 1.7119[0.1907] 5.8681[0.0154] 0.0000[1.0000] 1.0466[0.3062] 6 

NS-CCC 0.0220[0.8818] 0.0223[0.8811] 0.0220[0.8818] 1.3597[0.2435] 5.8681[0.0154] 0.0878[0.7669] 0.3474[0.5555] 6 

S-DCC 0.0899[0.7642] 1.1375[0.2861] 0.8303[0.3621] 0.0000[1.0000] 1.3597[0.2435] 0.0223[0.8811] 0.8303[0.3621] 7 

NS-DCC 0.2036[0.6517] 1.9058[0.1674] 0.0899[0.7642] 0.0220[0.8818] 1.3597[0.2435] 0.0223[0.8811] 0.5729[0.4491] 7 

S-BEKK 0.0878[0.7669] 0.0000[1.0000] 0.0220[0.8818] 2.5309[0.1116] 7.2612[0.0070] 0.1965[0.6575] 1.3597[0.2435] 6 

NS-BEKK 0.0899[0.7642] 1.9058[0.1674] 0.0000[1.0000] 0.1965[0.6575] 1.7119[0.1907] 0.0878[0.7669] 0.2036[0.6517] 7 

NS-ADCC 0.2036[0.6517] 1.9058[0.1674] 0.0899[0.7642] 0.0220[0.8818] 1.3597[0.2435] 0.0223[0.8811] 0.3643[0.5461] 7 

Panel B. The LRcc test 

S-CCC 0.5221[0.7702] 0.1279[0.9380] 2.4 × 10−5 [0.9999] 2.4195[0.2982] 6.0139[0.0494] 5.0545[0.0798] 6.0584[0.0483] 5 

NS-CCC 0.1643[0.9211] 0.0313[0.9844] 0.0329[0.9836] 2.2588[0.3232] 6.0139[0.0494] 4.1640[0.1246] 7.0446[0.0295] 5 

S-DCC 0.5617[0.7551] 1.1650[0.5584] 0.8347[0.6587] 1.9366[0.3797] 3.1793[0.2039] 3.7804[0.1510] 7.1652[0.0278] 6 

NS-DCC 0.2911[0.8645] 2.0396[0.3606] 0.1279[0.9380] 2.9583[0.2278] 2.2588[0.3232] 3.7804[0.1510] 6.3292[0.0422] 6 

S-BEKK 0.1634[0.9215] 2 × 10−5[0.9999] 0.0329[0.9836] 2.9262[0.2315] 7.2906[0.0261] 5.5319[0.0629] 5.8702[0.0531] 6 

NS-BEKK 0.1279[0.9380] 2.0396[0.3606] 2 × 10−5[0.9999] 1.3339[0.5132] 2.4195[0.2982] 2.6549[0.2651] 9.3299[0.0094] 6 

NS-ADCC 0.2911[0.8645] 2.0396[0.3606] 0.1279 [0.9380] 2.9583[0.2278] 2.2588[0.3232] 3.7804[0.1510] 5.5747[0.0615] 7 

Panel C. The DQ test 

S-CCC 1.9277[0.9637] 1.1787[0.9914] 2.3263[0.9395] 5.2358[0.6312] 9.1635[0.2411] 8.9207[0.2583] 14.5328[0.0424] 6 

NS-CCC 2.5911[0.9200] 1.3865[0.9859] 2.4799[0.9286] 6.1659[0.5205] 9.1240[0.2438] 7.4978[0.3789] 13.0912[0.0699] 7 

S-DCC 3.5911[0.8254] 2.1972[0.9481] 4.8508[0.6781] 8.3832[0.3000] 13.7697[0.0554] 7.4171[0.3867] 11.3058[0.1258] 7 

NS-DCC 2.7042[0.9109] 2.7454[0.9075] 2.4149[0.9333] 8.0607[0.3272] 10.8364[0.1459] 6.9173[0.4375] 9.9127[0.1935] 7 
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S-BEKK 2.4411[0.9314] 2.3166[0.9402] 2.5963[0.9196] 7.0117[0.4276] 11.5043[0.1180] 9.6540[0.2090] 12.9049[0.0744] 7 

NS-BEKK 2.3700[0.9365] 2.3697[0.9365] 2.2142[0.9470] 6.5538[0.4767] 9.2576[0.2346] 6.5970[0.4720] 12.8241[0.0765] 7 

NS-ADCC 2.6933[0.9118] 3.0184[0.8832] 2.5772[0.9211] 8.0607[0.3272] 10.8363[0.1459] 6.9173[0.4375] 11.0342[0.1371] 7 

Note: (1) Refer to notes 1–2 of Table 3. In addition, the symbol Udi denotes the US dollar index. (2) The numbers in this table denote the values of three accuracy 

tests (i.e., LRuc, LRcc, and DQ) at the 90% level for equal weight bi-component currency-stock portfolios. On the contrary, the numbers in the bracket beside the 

preceding numbers denote the corresponding p-values of those test statistics. (3) The bold font indicates that the null hypotheses of the LRuc, LRcc, and DQ tests 

statistics are accepted at the 5% significance level. (4) The LRuc (respectively, LRcc) test statistic is asymptotically distributed χ2(1) (respectively, χ2(2)) and its 

corresponding critical value at the 5% significance level is 3.841 (respectively, 5.991). Conversely, the DQ test statistic is asymptotically distributed χ2(7) and its 

corresponding critical value at the 5% significance level is 14.067. (5) The numbers in column Sum denote the total number of portfolios passing the above the three 

accuracy tests at the 5% significance level. 

Table 10. All the summary results of the out-of-sample VaR forecast performance for the three weight combinations of currency-stock-based portfolios. 

Panel A. 𝐰𝟏 = 𝟓𝟎%, 𝐚𝐧𝐝 𝐰𝟐 = 𝟓𝟎% bi-component portfolios 

 
90% Level 95% Level 99% Level 99.5% Level 

SUM 
LRuc LRcc DQ Sum LRuc LRcc DQ Sum LRuc LRcc DQ Sum LRuc LRcc DQ Sum 

S-CCC 6 5 6 17 5 3 4 12 1 0 0 1 0 0 0 0 30 

NS-CCC 6 5 7 18 5 3 4 12 0 0 0 0 0 0 0 0 30 

S-DCC 7 6 7 20 6 7 5 18 1 2 0 3 0 1 1 2 43 

NS-DCC 7 6 7 20 6 7 5 18 1 2 1 4 0 1 2 3 45 

S-BEKK 6 6 7 19 3 5 4 12 0 0 0 0 0 0 0 0 31 

NS-BEKK 7 6 7 20 6 7 6 19 1 2 1 4 0 0 1 1 44 

NS-ADCC 7 7 7 21 6 6 5 17 1 1 1 3 0 1 2 3 44 

Panel B. 𝐰𝟏 = 𝟐𝟓%, 𝐚𝐧𝐝 𝐰𝟐 = 𝟕𝟓% bi-component portfolios 

 
90% Level 95% Level 99% Level 99.5% Level 

SUM 
LRuc LRcc DQ Sum LRuc LRcc DQ Sum LRuc LRcc DQ Sum LRuc LRcc DQ Sum 

S-CCC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

NS-CCC 7 6 6 19 6 6 6 18 0 1 1 2 0 0 0 0 39 

S-DCC 7 6 7 20 7 5 5 17 2 1 1 4 3 0 0 3 44 

NS-DCC 7 6 7 20 7 5 5 17 0 2 1 3 0 0 1 1 41 

S-BEKK 7 6 6 19 5 4 4 13 0 0 1 1 0 0 0 0 33 

NS-BEKK 7 6 6 19 7 5 4 16 0 1 1 2 0 0 1 1 38 

NS-ADCC 7 6 7 20 7 5 5 17 0 2 1 3 0 0 1 1 41 

Panel C. 𝐰𝟏 = 𝟕𝟓%, 𝐚𝐧𝐝 𝐰𝟐 = 𝟐𝟓% bi-component portfolios 

 90% Level 95% Level 99% Level 99.5% Level SUM 
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LRuc LRcc DQ Sum LRuc LRcc DQ Sum LRuc LRcc DQ Sum LRuc LRcc DQ Sum 

S-CCC 0 1 4 5 2 2 6 10 7 4 4 15 7 3 4 14 44 

NS-CCC 7 7 7 21 7 7 7 21 3 2 0 5 3 0 0 3 50 

S-DCC 7 5 6 18 7 6 7 20 5 2 2 9 4 0 2 6 53 

NS-DCC 7 5 6 18 7 7 7 21 7 3 3 13 6 0 2 8 60 

S-BEKK 7 7 7 21 7 7 6 20 3 2 0 5 3 0 0 3 49 

NS-BEKK 7 5 6 18 7 7 7 21 5 2 3 10 5 0 2 7 56 

NS-ADCC 7 6 6 19 7 7 7 21 7 3 3 13 6 0 2 8 61 

Note: (1) Refer to note 2 of Table 3. (2) The numbers in columns LRuc, LRcc, and DQ underneath the 90% level at panel A are the numbers in the columns Sum at 

Panels A, B, and C in Table 9. The numbers in the column Sum underneath the 90% level at panel A are the total sum of three corresponding numbers in columns 

LRuc, LRcc, and DQ. As to the numbers in columns LRuc, LRcc, DQ, and Sum underneath the 95%, 99%, 99.5% levels at panel A, they are defined as the 90% level case. 

(3) As to the other notes, please refer to the notes 3–8 in Table 8. 

Table 11. The efficiency evaluation test based on the market risk capital for equal weight stock and currency-stock portfolios. 

Panel A. The bi-component stock portfolios 

 Ny-Sp Ny-Na Ny-Ca Ny-Da Ny-Ft Ny-Sm Sp-Na Sum 

S-DCC 
7.8910(1.724) 8.0044(2.008) 8.2003(2.348) 8.4113(1.788) 6.8843(1.994) 6.9209(2.080) 8.0728(2.027) 

1 
[0.000] [0.000] [0.000] [0.000] [0.510] [0.010] [0.000] 

NS-DCC 
7.2111(2.455) 7.5252(2.501) 7.9801(2.340) 8.0803(2.160) 7.0083(2.383) 6.8579(2.166) 7.6419(2.577) 

0 
[0.000] [0.004] [0.000] [0.000] [0.000] [0.000] [0.007] 

NS-BEKK 
7.0659(2.337) 7.3937(2.269) 7.8118(2.146) 7.8791(1.923) 6.8751(2.120) 6.6864(1.885) 7.4977(2.295) 

7 
[0.498] [0.528] [0.568] [0.619] [0.557] [0.523] [0.535] 

NS-ADCC 
7.2111(2.455) 7.5250(2.501) 7.9720(2.367) 8.0878(2.163) 7.0207(2.425) 6.8287(2.112) 7.6419(2.577) 

0 
[0.000] [0.001] [0.000] [0.000] [0.001] [0.000] [0.004] 

 Sp-Ca Sp-Da Sp-Ft Sp-Sm Na-Ca Na-Da Na-Ft  

S-DCC 
7.8820(2.256) 8.2991(1.942) 6.8906(2.186) 6.9046(2.072) 8.3522(1.901) 8.3967(1.829) 7.0895(1.999) 

2 
[0.037] [0.000] [0.104] [0.000] [0.019] [0.073] [0.634] 

NS-DCC 
7.8908(2.339) 8.0216(2.170) 6.9040(2.405) 6.7965(2.182) 8.1983(2.369) 8.3949(2.230) 7.2283(2.402) 

0 
[0.000] [0.000] [0.003] [0.000] [0.031] [0.000] [0.011] 

NS-BEKK 
7.7161(2.116) 7.8271(1.902) 6.7619(2.113) 6.6260(1.868) 8.1093(2.122) 8.2155(1.924) 7.1130(2.097) 

7 
[0.520] [0.665] [0.917] [0.523] [0.733] [0.945] [0.442] 

NS-ADCC 
7.8820(2.368) 8.0500(2.172) 6.8929(2.407) 6.7560(2.148) 8.2153(2.413) 8.4142(2.221) 7.2187(2.453) 

0 
[0.000] [0.000] [0.006] [0.000] [0.013] [0.000] [0.066] 

 Na-Sm Ca-Da Ca-Ft Ca-Sm Da-Ft Da-Sm Ft-Sm  
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S-DCC 
7.5970(1.947) 10.2190(2.242) 9.2129(1.436) 8.8354(1.232) 8.5388(0.915) 9.3045(1.837) 8.1860(2.395) 

5(8) 
[0.000] [0.822] [0.140] [0.465] [0.889] [0.548] [0.000] 

NS-DCC 
7.0929(2.193) 10.6129(2.697) 9.1373(2.960) 9.1406(2.709) 9.1602(2.746) 9.1858(2.414) 7.9692(2.715) 

2(2) 
[0.000] [0.000] [0.005] [0.000] [0.889] [0.548] [0.002] 

NS-BEKK 
6.9765(1.852) 10.3884(2.538) 8.9687(2.588) 8.7994(2.439) 9.0521(2.563) 8.7474(2.143) 7.7521(2.266) 

7(21) 
[0.856] [0.178] [0.889] [0.548] [0.889] [0.548] [0.521] 

NS-ADCC 
7.0177(2.155) 10.6069(2.707) 9.1373(2.960) 9.1406(2.709) 9.1602(2.746) 9.1864(2.415) 7.9690(2.715) 

2(2) 
[0.144] [0.000] [0.008] [0.000] [0.889] [0.548] [0.001] 

Panel B. The bi-component currency-stock portfolios 

 Udi-Ny Udi-Sp Udi-Na Udi-Ca Udi-Da Udi-Ft Udi-Sm Sum 

S-DCC 
4.1895(1.214) 4.2479(1.338) 4.7965(1.348) 6.2143(1.543) 6.3642(1.361) 4.8727(1.547) 5.1948(1.394) 

5 
[0.002] [0.433] [0.028] [0.115] [0.388] [0.315] [0.297] 

NS-DCC 
4.1493(1.220) 4.2775(1.272) 4.7987(1.332) 6.2952(1.528) 6.4516(1.314) 4.9358(1.567) 5.2512(1.328) 

0 
[0.005] [0.000] [0.000] [0.000] [0.000] [0.000] [0.001] 

NS-BEKK 
4.1102(1.214) 4.2392(1.233) 4.7541(1.236) 6.1904(1.469) 6.3584(1.270) 4.8605(1.536) 5.1756(1.149) 

7 
[0.649] [0.634] [0.927] [0.885] [0.612] [0.685] [0.703] 

NS-ADCC 
4.1486(1.223) 4.2577(1.276) 4.7742(1.341) 6.2952(1.528) 6.4516(1.315) 4.9358(1.567) 5.2512(1.328) 

1 
[0.002] [0.049] [0.129] [0.000] [0.000] [0.000] [0.001] 

Note: (1) The symbols Ny, Sp, Na, Ca, Da, Ft, Sm, and Udi denote the USNYSE, S&P500, and Nasdaq; France CAC40; Germany DAX; United Kingdom FTSE; Swiss 

SMI stock indices; and the US dollar index, respectively. (2) S-DCC and NS-DCC respectively denote the standard and non-standard (i.e., the two-step) dynamic 

conditional correlation models; NS-BEKK denotes the non-standard (i.e., the simplified) BEKK model derived by Su (2014), whereas NS-ADCC denotes the non-

standard (i.e., the two-step) asymmetric type of dynamic conditional correlation models. (3) The numbers in this table and parentheses ‘( )’ denote the mean values 

and standard deviation of market risk capital, respectively. The numbers in the brackets ‘[ ]’ denote the reality check p-value of the Hansen’s consistent test for the 

market risk capital-based loss function. In the SPA test, each competing model has to take turns to be the benchmark model and the null hypothesis is that none of 

the models is better than the benchmark. The number of bootstrap replications to calculate the p-values is 1000 and the dependency parameter q is 0.5. (4) The bold 

font in brackets ‘[ ]’ denotes a p-value greater than 10% level, indicating that the above null hypothesis is accepted or that the benchmark model has a better 

performance than the other competing model. (5) The numbers in the column Sum denote the total number of bi-component portfolios that adopt the SPA test for a 

specified model. (6) The bold font in the column Sum denotes the greatest number among the four numbers in an alternative subpanel. (7) The numbers in the 

parentheses ‘( )’ of the column Sum at the third subpanel of panel A denote the total number of portfolios that adopt the SPA test for a specified model when taking 

21 bi-component stock portfolios as a whole. 



Risks 2018, 6, 133 38 of 41 

 

Table 12. The summary results of the efficiency evaluation test based on the market risk capital (MRC) 

for the three weight combinations of the stock and currency-stock portfolios. 

 

Stock Portfolios Currency-Stock Portfolios 

w1 w2 w1 w2 w1 w2 w1 w2 w1 w2 w1 w2 

0.5 0.5 0.25 0.75 0.75 0.25 0.5 0.5 0.25 0.75 0.75 0.25 

S-DCC 8 8 7 5 4 0 

NS-DCC 2 0 1 0 1 0 

NS-BEKK 21 19 20 7 7 7 

NS-ADCC 2 0 1 1 1 0 

Note: (1) S-DCC and NS-DCC respectively denote the standard and non-standard (i.e., the two-step) 

dynamic conditional correlation models; NS-BEKK denotes the non-standard (i.e., the simplified) 

BEKK model derived by Su (2014), whereas NS-ADCC denotes the non-standard (i.e., the two-step) 

asymmetric type of dynamic conditional correlation model. (2) w1 and w2 are the weights of the two 

component assets of portfolios. (3) The numbers are summarized from those in the column Sum of 

Table 11 and denote the total number of bi-component portfolios that adopt the SPA test for a specified 

model. Notably, there are 21 bi-component stock portfolios and 7 bi-component currency-stock 

portfolios. (4) The bold font denotes the greatest number among the four numbers in each column. 

6. Conclusions 

In this study, the seven bivariate GARCH models were mainly used to forecast the out-of-sample 

VaR of 21 equal-weight bi-component portfolios composed of alternative two indices among seven 

stock indices in America and Europe. The seven bivariate GARCH models were composed of four 

bivariate variance-covariance specifications with two parameter estimate approaches. Subsequently, 

the out-of-sample forecast results were used to investigate which bivariate variance-covariance 

specification and which parameter estimate approach has a better VaR forecast performance and 

whether the asymmetric DCC model has a better forecast performance than its corresponding 

symmetric one. To explore whether a different portfolio (different components with different 

weights) has the same comparison results with the equal-weight portfolio, two additional sub-issues 

were explored. First, we added two other weight combinations (w1 = 25%,   w2 = 75%;  and w1 =

75%, w2 = 25%) for the original 21 stock-based portfolios to investigate whether the different weight 

combinations would affect the comparison results. Second, we also considered the US dollar index 

(Udi) as the new component asset to construct seven currency-stock-based bi-component portfolios 

to investigate whether the different component combinations of portfolios would affect the 

comparison results. Finally, via combining the MRC under the 1996 MRA to the Basel Capital Accord, 

we used the two-stage selection procedure of Sarma et al. (2003) to select a suitable model to manage 

the institutional risk.  

The empirical findings can be summarized as follows. Regarding the stock portfolios, we find 

the following findings irrespective of weight combinations. First, the standard approach has a better 

VaR forecast performance for the DCC and BEKK types of bivariate variance-covariance 

specification, whereas the non-standard approach has a better VaR forecast performance only for the 

CCC type of bivariate variance-covariance specification. Second, the DCC type of bivariate variance-

covariance specification has the best VaR forecast performance only for the standard approach, 

whereas three types of bivariate variance-covariance specification seem to have the same VaR forecast 

performance for the non-standard approach. Third, the DCC type of bivariate variance-covariance 

specification with the standard approach shows the best VaR forecast performance among the seven 

bivariate GARCH models. This result is one of the most significant findings in this study. Fourth, the 

NS-ADCC and NS-DCC models have almost the same VaR forecast performance. Hence, the different 

weight combinations of portfolios seem to not affect the comparison results for the stock-based 

portfolio. On the other hand, regarding the currency-stock portfolios, all seven models seem to have 

the same VaR forecast performance irrespective of weight combinations, indicating that the different 

weight combinations seem not to affect the comparison results for the currency-stock-based portfolio. 

Hence, regarding the accuracy test, the VaR forecast performance comparison results vary with the 
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component combination of the portfolio but do not vary with the weight combinations of the 

portfolios. Finally, regarding the efficiency evaluation test via market risk capital, we find that the 

NS-BEKK is the most suitable model to be used in stock- and currency-stock-based portfolios for the 

bank risk manager, irrespective of the weight combination of portfolios. This is another of the most 

significant findings in this study. 

Based on these findings, one important policy implication is proposed: the bank risk manager 

should select the NS-BEKK model to forecast the VaR of both the stock and currency-stock portfolios 

because the BEKK type of bivariate variance-covariance specification with the non-standard 

approach (i.e., with simplified parameters) produces the smallest value of MRC among all competing 

models’ MRCs. 
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