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Abstract: In this paper, we propose a credible regression approach with random coefficients to
model and forecast the mortality dynamics of a given population with limited data. Age-specific
mortality rates are modelled and extrapolation methods are utilized to estimate future mortality rates.
The results on Greek mortality data indicate that credibility regression contributed to more accurate
forecasts than those produced from the Lee–Carter and Cairns–Blake–Dowd models. An application
on pricing insurance-related products is also provided.
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1. Introduction

During the last decades, mortality has significantly declined in most developed countries around
the world, mainly due to the continuous improvement of living conditions and the evolution of
medical science and technology. This decline in mortality results in a steady increase of life expectancy,
which creates higher financial responsibilities for governments and annuity providers. Consequently,
finding ways to manage the mortality dynamics of a population is a very important step in building a
sustainable health and pension system. In this spirit, actuaries and demographers have focused on the
development of novel methods to model and forecast the mortality rates of a population.

Lee and Carter (1992) proposed a pioneer modelling method to forecast the mortality of the total
population of the United States, by decomposing the mortality rates into two age and one period
parameters. A remarkable variant of the Lee–Carter method, particularly designed for higher ages,
was proposed by Cairns et al. (2006), who incorporated two period parameters. In the literature, we can
find many extensions to these methods. Renshaw and Haberman (2006) extended the Lee–Carter
model by including a cohort effect, while Cairns et al. (2009) added a cohort parameter to the
Cairns et al. (2006) model. In addition, Plat (2009) proposed a model which combines preferable
characteristics of the Lee and Carter (1992) and Cairns et al. (2006) models.

An issue that sometimes appears in mortality modelling is that, for some countries, there are
too few data to fit. This issue affects the existing modelling methods, which inevitably base their
forecasts on population datasets of a limited historical period of observations. In the literature,
there are extensions of the Lee–Carter method that can be utilized when dealing with limited
datasets. For instance, Li et al. (2004) extended the Lee–Carter model to be applied for Chinese
and South Korean mortality data, which are available at only a few points in time and at unevenly
spaced intervals. Zhao (2012) modified the Lee–Carter model by incorporating linearized cubic
splines and other additive functions to approximate the model parameters and forecast mortality for
short-base-period Chinese data and Huang and Browne (2017) presented a stochastic modification
of the CMI (Continuous Mortality Investigation) model to project mortality improvement rates for
limited Chinese data using clustering analysis techniques.

Recently, some alternative modelling approaches have also been proposed as a tool in mortality
forecasting. Differently from the above Lee–Carter variants and extensions, these approaches are
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based on credibility theory, aiming to model the period patterns of limited mortality data for a specific
age, using useful information from a wider age span. Bühlmann (1967) established the theoretical
foundation of modern credibility theory (also known as greatest accuracy credibility theory), which is
widely used in non-life insurance and Hachemeister (1975) introduced a credibility regression model
to estimate auto-mobile bodily injury claims for various states in the USA.

Credibility regression has a long history in credibility literature, with applications mainly in
non-life insurance: De Vylder (1978) proposed estimators for the structural parameters in a more
general regression model; Norberg (1980) proposed empirical credibility estimators under various
model assumptions and established asymptotic optimality; Ledolter et al. (1991) derived a credibility
method that allows for time-varying parameters in the process; and Pitselis (2004) presented the
relationship between claim amounts and a set of explanatory variables into a credibility regression
model with cross-section and time effects, with applications for general insurance data. For an extensive
review on credibility theory for non-life insurance, we also refer to the works of Goovaerts et al. (1990),
Bühlmann and Gisler (2005) and Klugman et al. (2012).

Regarding some life insurance applications of credibility theory, Hardy and Panjer (1998) used
empirical Bayes credibility theory to provide a theoretical basis for the calculation of risk measures
associated with mortality risk for insurance companies. Salhi et al. (2016) proposed a credibility
approach, which consists on reviewing the fitting parameters of a Makeham mortality curve, as new
observations arrive. Schinzinger et al. (2016) presented a multivariate evolutionary credibility model
for mortality improvement rates to describe the joint dynamics of mortality through time in several
populations. Moreover, Li and Lu (2018) proposed a Bayesian non-parametric model for the mortality
of a small population, when a benchmark mortality table of a larger population is also available and
serves as part of the prior information. By using an adaptive smoothing procedure based on the local
likelihood, Salhi and Thérond (2018) proposed a methodology to adjust the graduated mortality table
based on credibility techniques. In addition, Gong et al. (2018) highlighted the importance of using
credibility procedures in individual life and annuity business.

Two recent contributions to modelling mortality under a credibility framework were also
made by Tsai and Lin (2017a, 2017b). In the first paper, they applied Bühlmann credibility to
mortality data of Japan, the United Kingdom and the United States, while, in the second one, they
incorporated Bühlmann credibility into the Lee and Carter (1992) model, the Cairns–Blake–Dowd
model (Cairns et al. 2006) and the linear relational model of Tsai and Yang (2015) to improve forecasting
performance for the United Kingdom dataset. However, it has been observed that the age-specific
mortality rates show a clear downward trend over time. Moreover, when we have limited mortality
data experience for a specific age, but extensive data experience for the entire age range, the use of
credibility regression techniques should be preferred to capture mortality trends. Our work aims to
exploit the advantages of credibility regression compared with the most widely used mortality models,
as an alternative to Bühlmann credibility, to forecast the mortality rates, especially for populations
with limited data.

The rest of this paper is organized as follows. Section 2 briefly reviews the Lee–Carter,
the Cairns–Blake–Dowd and the random coefficients regression models. Section 3 proposes a credibility
regression approach with randomly varying coefficients and a special case with fixed coefficients to
model mortality rates. Section 4 presents the extrapolation methods used to estimate future mortality
rates under the credibility regression approaches. An empirical illustration using Greek male and
female data is presented in Section 5.1, in which forecasting performances of credibility regression, and
the Lee–Carter and Cairns–Blake–Dowd methods are evaluated with the MAFE and RMSFE measures.
A comparison between Bühlmann credibility and credibility regression forecasting methods is also
presented in Section 5.2 and an application on pricing insurance-related products follows in Section 5.3.
Finally, concluding remarks are discussed in Section 6.
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2. Mortality Modelling: A Review of Methods

In this section, we briefly review the Lee–Carter model, the Cairns–Blake–Dowd model and the
random coefficients regression models that will be utilized in next sections.

2.1. The Lee–Carter Model

In its original form, the Lee–Carter (LC) model links the natural logarithm of the observed
mortality rates Yt,x = log m(t, x) for age x = x0, . . . , xk−1 and year t = t0, . . . , tn−1 with the following
model predictor:

Yt,x = α
(1)
x + α

(2)
x κt + εt,x, (1)

where α
(1)
x is an age parameter that reflects the average mortality at age x, κt is a period parameter

which indicates the general level of mortality in year t and α
(2)
x is an age parameter that indicates the

deviation from the average mortality at age x, as the general level of mortality changes. The errors
εt,x are expected to be normally distributed, with zero mean and constant variance, reflecting specific
period and age effects not captured by the model. Thus, after assuming that errors are independent
and homoscedastic with zero mean, Lee and Carter (1992) suggested a close approximation to the
SVD (Singular Value Decomposition) method, under the constraints ∑

xk−1
x=x0 α

(2)
x = 1 and ∑

tn−1
t=t0

κt = 0,
to obtain the following parameter estimates:

α̂
(1)
x =

1
tn−1 − t0 + 1

tn−1

∑
t=t0

log m(t, x) ,

κ̂t =
xk−1

∑
x=x0

[log m(t, x)− α̂
(1)
x ] ,

α̂
(2)
x =

∑
tn−1
t=t0

[log m(t, x)− α̂
(1)
x ]κ̂t

∑
tn−1
t=t0

κ̂2
t

.

Later on, to allow for heteroscedasticity in error variance, Brouhns et al. (2002) assumed that
D(t, x) follows a Poisson distribution with mean m(t, x) · E(t, x). Under this approach, age and period
parameters are estimated by maximising the log-likelihood function of (1).

After choosing one of the above estimation approaches, period estimates are extrapolated using
time series methods. Lee and Carter (1992) suggested a random walk with a drift parameter θ̂ to
project period parameter for h = 1, 2, . . . , H years ahead, according to κ̂tn−1+h = κ̂tn−1 + θ̂h. Then,

projected κts are utilized along with the estimates of age parameters α
(1)
x and α

(2)
x to obtain the following

mortality forecasts:

Ŷtn−1+h,x = α̂
(1)
x + α̂

(2)
x κ̂tn−1+h = Ŷtn−1,x + (α̂

(2)
x θ̂)h, for h = 1, 2, . . . , H. (2)

2.2. The Cairns–Blake–Dowd Model

The Cairns–Blake–Dowd (CBD) model links the logit transformation of one-year probabilities of
death Yt,x = logit q(t, x) with the following model predictor:

Yt,x = logit q(t, x) = κ
(1)
t + (x− x̄)κ(2)t + εt,x, (3)

where κ
(1)
t is a period parameter which indicates the general level of mortality in year t and κ

(2)
t is a

period parameter that shows how mortality affects each age, while x̄ is the mean age of the considered
fitting age interval and εt,x reflects specific effects not captured by the model and is expected to be
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normally distributed, with zero mean and constant variance. Again, we briefly present the estimates
of the model parameters, which can be obtained by regressing logit q(t, x) on (x− x̄) for each t:

κ̂
(1)
t =

1
xk−1 − x0 + 1

xk−1

∑
x=x0

logit q(t, x) and κ̂
(2)
t =

∑
xk−1
x=x0 [logit q(t, x)(x− x̄)]

∑
xk−1
x=x0(x− x̄)2

.

Alternatively, Cairns et al. (2009) assumed that deaths follow a Poisson distribution with mean
m(t, x) · E(t, x), where m(t, x) = − log[1− q(t, x)]. Then, the CBD model parameters are obtained
by maximizing the log-likelihood function of (3). Assuming that period estimates are independent,
each one of them is extrapolated using a random walk with a drift parameter (θ̂i, i = 1, 2) and then
mortality forecasts for h = 1, 2, . . . , H are obtained by

Ŷtn−1+h,x = (κ̂
(1)
tn−1

+ θ̂1h) + (x− x̄)(κ̂(2)tn−1
+ θ̂2h) = Ŷtn−1,x + [θ̂1 + (x− x̄)θ̂2]h . (4)

Remark 1. We can easily observe that expressions in Equations (2) and (4) are both linear functions of the
forecasting horizon h, where their intercepts are equal to the fitted rates of the last observed year and their slopes
are the products of the estimated age parameters with the drift terms.

2.3. The Random Coefficients Regression Model

Empirical data indicate that mortality in each age x = x0, . . . , xk−1 decreases linearly over
time. Especially in higher ages, mortality rates have been significantly improving over the last
few years. We are interested in a model structure able to capture the improvement trends and
describe the mortality evolution through time. For this reason, we consider a regression structure with
random coefficients, aiming to capture the underlying mortality effects that are not included in the
explanatory variables.

For each age x, the regression model with random coefficients is defined by Yt,x = β1t,x +

∑
p
k=2 βkt,xZkt,x + ε0t,x , for t = t0, t1, . . . , tn−1, where Yt,x is the response variable, βkt,x, k = 1, 2, . . . , p

are the randomly varying coefficients and Zkt,x are the explanatory variables. Then, each coefficient
element can be decomposed in βkt,x = βk,x + εkt,x, for all t and k, with βk, x and εkt,x being the
fixed and random parts, respectively, assuming that E(εkt,x) = 0, Var(εkt,x) = σ2

k,x for all t and

Cov(εkt,x, εk′ t′ ,x) = 0 for k 6= k
′

and t 6= t
′
. For more details on regression models with random

coefficients, we refer to the works of Hildreth and Houck (1968), Hsiao (1986) and Greene (2012).
The above formulation means that the unknown regression coefficients can take different values

over an observed period. Actually, mortality dynamics for a specific age can vary over time, due to
unknown or exogenous1 factors.

Nevertheless, the random coefficients regression model may be reduced to a fixed coefficients
model with heteroscedastic variances, defined as

Yt,x = β1,x +
p

∑
k=2

βk,xZkt,x + vt,x, with vt,x = (ε0t,x + ε1t,x) + ∑
p
k=2 Zkt,xεkt,x, (5)

where

E(vt,x) = 0, Var(vt,x) = E(v2
t,x) = (σ2

0,x + σ2
1,x) + ∑

p
k=2 σ2

k,xZ2
kt,x and Cov(vt,x, vt′ ,x) = 0, (6)

for all x and t, with t 6= t
′
.

1 Medical, biological, environmental or other factors that affect mortality evolution of each corresponding age over consecutive
years are treated as unknown or exogenous due to the lack of specific data.
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We have to point out that error variances σ2
0,x and σ2

1,x cannot be identified separately, while the
sum (σ2

0,x + σ2
1,x) can. Therefore, without loss of generality, σ2

0,x is dropped and the above variance
is simplified to Var(vt,x) = σ2

1,x + ∑
p
k=2 σ2

k,xZ2
kt,x. Note that variance heteroscedasticity is still present

even if σ2
k,x = σ2

x for k = 1, 2, . . . , p, due to the existence of squared explanatory variables Z2
kt,x.

3. Credible Regression Mortality Models

In this section, we propose a mortality modelling approach embedded, for the first time, in a
credibility regression framework with varying coefficients. The parameter estimation procedure is
described and a special case with fixed coefficients is also provided.

3.1. A Credibility Regression Approach with Randomly Varying Coefficients

Denote D(t, x) as the observed number of deaths at age x in year t and E(t, x) as the average
population aged x during year t (also called as population exposure to risk). Then, age-specific
mortality rates m(t, x) are obtained by the ratio D(t, x)/E(t, x) and one-year probabilities of death
can be derived from the identity q(t, x) = 1− exp[−m(t, x)], which is implied by the assumption of a
constant force of mortality over each year of integer age and over each calendar year.

We assume that response variable Yt,x refers to an appropriate transform (log or logit) of a
mortality measure

[
m(t, x) or q(t, x)

]
for age x = x0, . . . , xk−1 of year t = t0, . . . , tn−1, where variable x

corresponds to consecutive integer ages (k in total) and t corresponds to consecutive calendar years
(n in total). We also consider Ax as an age-related random risk parameter, Yx = (Yt0,x, Yt1,x, . . . , Ytn−1,x)

′

as a mortality vector and Zx as the design matrix of explanatory variables. We note that, in general,
the design matrix could consist of various explanatory variables that reflect mortality characteristics.
For instance, in a medical study, mortality may depend on various factors, such as the genetic
background of an individual aged x, the life style, the nutrition, the toxicity of the environment,
a possible infectious cause (bacteria, parasites, or fungi) or other socio-demographic factors that should
affect mortality dynamics. Therefore, the pair that describes mortality evolution in age x is (Ax, Yx),
under the following assumptions:

(i) The pairs (Ax0 , Yx0), (Ax1 , Yx1), . . . , (Axk−1 , Yxk−1) are independent and Ax0 , . . . , Axk−1 are
independent and identically distributed.

(ii) E(Yx|Ax) = Zxβ(Ax), where Zx is a fixed n× p design matrix of full rank p (< n) and β(Ax)

is an unknown regression vector of length p.
(iii) Cov(Yx|Ax) = diag

[
dt0t0(Ax), . . . , dtn−1tn−1(Ax)

]
,

where dtt(Ax) = σ2
1 (Ax) +

p

∑
k=2

σ2
k (Ax) Z2

kt,x, with σ2
1 (Ax) = σ2

01(Ax) + σ2
11(Ax),

or in matrix formulation:

Cov(Yx|Ax) =


σ2

1 (Ax) +
p

∑
k=2

σ2
k (Ax) Z2

kt0,x 0

. . .

0 σ2
1 (Ax) +

p

∑
k=2

σ2
k (Ax) Z2

ktn−1,x

.

The structural parameters are defined as follows:

b = E(β(Ax)), Φ = Cov[β(Ax)], s2 = E[σ2(Ax)] = E
[(

σ2
1 (Ax), . . . , σ2

p(Ax)
)′]

and

∆x = E[Cov(Yx|Ax)].
(7)



Risks 2019, 7, 27 6 of 22

In such a regression setting, ∆x has to be estimated. Consequently, instead of the ordinary least
squares method, regression coefficients are estimated with the generalised least squares method (GLS).
Then, an individual estimator of β(Ax) can be obtained by

β̂x = (Z
′
x∆−1

x Zx)
−1Z

′
x∆−1

x Yx and Cov(β̂x|Ax) = (Z
′
x∆−1

x Zx)
−1. (8)

Proposition 1. Under the above assumptions, the credibility estimator of β(Ax) is given by

BRC
x = Cx β̂x + (I − Cx) b, (9)

with
Cx = Φ(Ξx + Φ)−1, (10)

where β̂x is given in (8), b and Φ are defined in (7), Ξx = E[Cov(β̂x|Ax)] and I is the p× p identity matrix.

Proof. The mean square error of (9) can be defined in terms of the norm ‖.‖2
E as

Q = ‖β(Ax)− BRC
x ‖2

E

= E{[β(Ax)− BRC
x ]

′
[β(Ax)− BRC

x ]} (11)

= E
[[

β0(Ax)
]′

β0(Ax) + (β0
x)
′
C
′
x Cx β0

x − [β0(Ax)]
′

Cx β0
x − (Cx β0

x)
′
β0(Ax)

]
,

where β0(Ax) = β(Ax)− b and β0
x = βx − b . Using the product rule and differentiating with respect

to matrix Cx, we have

∂Q
∂(Cx)

= −2E
[
β0(Ax)(β0

x)
′ − Cx β0

x (β0
x)
′]

. (12)

By substituting the values of β0(Ax) and β0
x and setting (12) equal to zero, we obtain

Cx = E
{
[β(Ax)− b] [βx − b]

′}{
E
[
(βx − b)(βx − b)

′]}−1

= Cov[β(Ax), βx] [Cov(βx)]
−1 (13)

=
{

E {Cov[β(Ax), βx|Ax]}+ Cov{E[β(Ax)|Ax], E[βx|Ax]
}}

[Cov(βx)]
−1

= {0 + Cov[β(Ax)]} {E[Cov(βx|Ax) + Cov[E(βx|Ax)]}−1,

which yields (10).

Then, the credibility estimator of future mortality rates Ytn−1+h,x, h = 1, 2, . . . , H may be compactly
written as

Yn+h
x = Zn+h

x BRC
x ,

where Zn+h
x denotes the design matrix of future periods.

3.2. Estimation of Structural Parameters

To estimate the structural parameters of the random coefficients credibility regression model, we
can proceed similarly as in Hildreth and Houck (1968). Let rx = (rt0,x, . . . , rtn−1,x)

′
be the vector of the

least squares residuals from the regression of Yx on Zx given Ax, which is obtained by

rx = Yx − Zx β̂x = Mxvx, (14)
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where β̂x = (Z
′
xZx)

−1Z
′
xYx is the least squares estimator of coefficients in ordinary regression, Mx =

I − Zx(Z
′
xZx)

−1Z
′
x is a symmetric and idempotent matrix of order n× n and vx = Yx − Zx β(Ax) is

the error term. Then, given Ax, the variance matrix of rx, via (6), becomes

E(rxr
′
x|Ax) = E(Mxvxv

′
x Mx|Ax), (15)

from which we can get
E(ṙx|Ax) = ṀxŻxσ2(Ax), (16)

where ṙx = (r2
t0,x, . . . , r2

tn−1,x)
′
, Ṁx = {m2

ts,x}t,s=t0,...,tn−1 and Żx = {Z2
kt,x}k=1,...,p, t=t0,...,tn−1 are the

Hadamard products of matrices rx, Mx and Zx, respectively, while σ2(Ax) is as defined in (7).
In addition, (16) implies that, for given Ax, least squares residuals ṙx are regressed on σ2(Ax),
which yields

ṙx = ṀxŻxσ2(Ax) + ex = Gxσ2(Ax) + ex, (17)

where Gx = ṀxŻx and ex is a n × 1 disturbance vector, such that E(ex|Ax) = 0. Hence, its
variance-covariance matrix is given by

Cov(ex|Ax) = E{[ṙx − E(ṙx|Ax)][ṙx − E(ṙx|Ax)]
′ |Ax}

= E(ṙx|Ax)[E(ṙx|Ax)]
′
+ 2E(rxr

′
x|Ax) ∗ E(rxr

′
x|Ax)− E(ṙx|Ax)[E(ṙx|Ax)]

′
(18)

= 2Ψ̇x,

where Ψ̇x represents the Hadamard product of matrix Ψx by itself, with

Ψx = E(rxr
′
x|Ax) = E(Mxvx(Mxvx)

′ |Ax) = MxE(vxv
′
x|Ax)Mx = Mx∆x Mx.

Then, if σ2
k s are known, the GLS estimator of σ2(Ax) in (17) is obtained by minimising the criterion

function [ṙx −Gxσ2(Ax)]
′
(2Ψ̇x)

−1[ṙx −Gxσ2(Ax)], which gives

σ̂2
x = (G

′
xΨ̇−1

x Gx)
−1G

′
xΨ̇−1

x ṙx . (19)

However, estimators of β(Ax) in (8) and σ2(Ax) in (19) are non-operational, because the
variance-covariance matrices ∆x and 2Ψ̇x are functions of unknown variances. Therefore, operational
estimators of β(Ax) and σ2(Ax) can be obtained by replacing unknown matrices with estimators ∆̂x

and 2̂Ψ̇x, respectively. A least squares estimator of the unknown variances σ2(Ax) is directly obtained
from (17) as follows:

σ̂2
x = (G

′
xGx)

−1G
′
x ṙx

= [(ṀxŻx)
′
(ṀxŻx)]

−1(ṀxŻx)
′
ṙx (20)

= (Ż
′
x Ṁ2

x Żx)
−1Ż

′
x Ṁx ṙx ,

where equality Ṁ
′
x = Ṁx holds true, since (Mx ∗Mx)

′
= Mx ∗Mx for a symmetric matrix Mx.

Remark 2. In the actuarial literature, there are many other types of estimators for variance in (17). For instance,
Hildreth and Houck (1968) suggested the unbiased estimator σ̂2 (alt1)

x = (Ż
′
x ṀxŻx)

−1Ż
′
x ṙx, while Rao (1973)

proposed the so-called “Minimum Norm Quadratic Unbiased Estimator” (MINQUE), given by σ̂2 (alt2)
x =

(Ż
′
x ṀxŻx)

−1Ż
′
x Ṁx ṙx.

The random coefficients (RC) credibility estimator of β(Ax), denoted as B̂RC
x = (B̂RC

1x , . . . , B̂RC
px )

′
,

is given by

B̂RC
x = Ĉx

̂̂βx + (I − Ĉx) b̂ , (21)



Risks 2019, 7, 27 8 of 22

where ̂̂βx = (Z
′
x∆̂−1

x Zx)
−1Z

′
x∆̂−1

x Yx

and ∆̂x = diag
(

δ̂x
t0t0

, ..., δ̂x
tn−1,tn−1

)
, with δ̂x

tt = ŝ2
1 +

p

∑
k=2

ŝ2
k Z2

kt,x, t = t0, ..., tn−1, obtained according

to (7), by using the mean of the estimated variances in (20). Future mortality estimates follow from

Ŷn+h
x = Zn+h

x B̂RC
x = Zn+h

x Ĉx
̂̂βx + Zn+h

x (I − Ĉx) b̂, h = 1, 2, . . . , H, (22)

where Ĉx = Φ̂(Ξ̂x + Φ̂)−1, x = x0, . . . , xk−1, is the corresponding credibility factor. We suggest the
following estimators for parameters b, Ξx and Φ to obtain De Vylder’s (1978) optimality (minimum
variance within the class of unbiased estimators):

b̂ = (
xk−1

∑
x=x0

Ĉx)
−1

xk−1

∑
x=x0

Ĉx
̂̂βx , (23)

Ξ̂x =
1

xk−1 − x0 + 1

xk−1

∑
x′=x0

(Z
′
x∆̂−1

x′ Zx)
−1 (24)

and

Φ̂ =
1

xk−1 − x0

xk−1

∑
x=x0

Ĉx(
̂̂
βx − b̂)( ̂̂βx − b̂)

′
. (25)

Note that the estimators of Φ̂ and b̂ are implicit functions of the parameter to be estimated and should
be calculated iteratively, by imposing (Φ̂ + Φ̂

′
)/2 = 0 to retain symmetry after each iteration.

3.3. Credibility Regression with Fixed Coefficients and Weights: A Special Case

In the case of fixed regression’s coefficients, the previous model reduces to a special case of
Hachemeister’s (1975) model with no weighs, i.e., Wx = I. In particular, some weights may appear in
each regression line of Ax. For instance, population exposures E(t, x), for t = t0, . . . , tn−1 can be used
as weights. In this case, we have the standard regression case of Hachemeister’s model. To proceed,
we follow the same Assumptions (i) and (ii) as in the random coefficients case, but covariance matrix in
Assumption (iii) is simplified to Cov(Yx|Ax) = σ2(Ax)Wx, where Wx is a fixed n× n positive definite
diagonal matrix, with weights Wx = diag [E(t0, x), . . . , E(tn−1, x)]. The structural parameters are now
defined as

b = E[β(Ax)], U = Cov[β(Ax)] and s2 = E[σ2(Ax)] (26)

and the ordinary least squares estimator of the coefficients vector β(Ax) is given by

β̂x = (Z
′
xW−1

x Zx)
−1Z

′
xW−1

x Yx (27)

and the variance-covariance matrix is obtained by Cov(β̂x|Ax) = σ2(Ax)(Z
′
xW−1

x Zx)
−1, while its

expected value is given by E[Cov(β̂x|Ax)] = E[σ2(Ax)(Z
′
xW−1

x Zx)
−1] = s2(Z

′
xW−1

x Zx)
−1.

Based on the above assumptions, the credibility estimator B̂FC
x = (B̂FC

1x , . . . , B̂FC
px )

′
of β(Ax) for the

fixed coefficients (FC) model is given by

B̂FC
x = K̂x β̂x + (I − K̂x) b̂ , (28)

where K̂x = Û[ŝ2(Z
′
xW−1

x Zx)
−1 + Û]−1 is the estimated credibility factor. Similarly, for the derivation

of (28), we refer to Bühlmann and Gisler (2005). To recapture De Vylder’s (1978) optimality, we use the
following estimators:
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ŝ2 =
1

(xk−1 − x0 + 1)(tn−1 − t0 + 1− p)

xk−1

∑
x=x0

(Yx − Zx β̂x)
′
W−1

x (Yx − Zx β̂x) , (29)

Û =
1

xk−1 − x0

xk−1

∑
x=x0

K̂x(β̂x − b̂)(β̂x − b̂)
′

, (30)

b̂ = (
xk−1

∑
x=x0

K̂x)
−1

xk−1

∑
x=x0

K̂x β̂x . (31)

Again, the estimators of Û and b̂ should be calculated iteratively, imposing (Û + Û
′
)/2 = 0 after

each iteration.

4. Extrapolation Methods for Estimating Future Mortality Rates

In this section, we fit the random coefficients (RC) and the fixed coefficients (FC) credibility
regression models to mortality rates for age x = x0, . . . , xk−1 of year t = t0, . . . , tn−1. For both models,
the fitted rates up to year tn−1 can be compactly written as Ŷx = Zx β̂x. As we noted before, design
matrix Zx could consist of various independent variables that reflect risk factors for any given age x,
but due to lack of specific data, we assume that Yxs for each given age x, depend only on the period
effects of each calendar year, i.e., Zx = Z. However, if specific data are available, for instance in case of
life insurance datasets, then more explanatory variables can be incorporated in the regression model.

Henceforth, we consider the same design matrix Z =

(
1 1 . . . 1
1 2 . . . n

)′
for all Yxs.

4.1. Standard Extrapolation Method (SEM)

Based on current fitting data of the response variable Ŷx = (Yt0,x, Yt1,x, . . . , Ytn−1,x)
′
, mortality

rates for one-year ahead are estimated by

Ŷtn−1+1,x = B̂c
1x + B̂c

2x (tn−1 − t0 + 2), where c = RC or FC. (32)

Similarly, estimates of future mortality rates for age x = x0, . . . , xk−1 are given by extrapolating
one-year ahead estimates in (32) to Ŷtn−1+h,x = B̂c

1x + B̂c
2x (tn−1 − t0 + 1 + h), for h = 2, 3, . . . , H, where

the credibility estimators B̂c
x = (B̂c

1x, B̂c
2x)

′
are obtained by (21) for the RC or (28) for the FC model.

Hence, under this method, future estimates are based on the mortality data of the initial fitting span
[t0, tn−1].

4.2. Other Extrapolation Methods

In practice, two additional methods can also be used to extrapolate mortality rates over a given
forecasting horizon h = 1, 2, . . . , H. Thus, for each one of the RC and FC models, one-year ahead
estimates Ŷtn−1+1,x can be embedded to the existing fitting span, with Yt0,x simultaneously excluded
from it, so that the fitting year span is moved forward by one year each time to [t1, tn−1 + 1], [t2, tn−1 +

2], [t3, tn−1 + 3], . . . . Then, after repeating the estimation procedure, we can consecutively obtain
Ŷtn−1+2,x, Ŷtn−1+3,x, Ŷtn−1+4,x, . . . , Ŷtn−1+H,x. Under this “moving extrapolation method (MEM)”, future
estimates are based on more recent mortality trends.

Alternatively, one-year ahead estimates Ŷtn−1+1,x can be embedded to the existing fitting span,
without removing Yt0,x, so that the fitting year span is extended by one year each time to [t0, tn−1 + 1],
[t0, tn−1 + 2], [t0, tn−1 + 3], . . . . Hence, in each estimation step, credibility regression models are fitted
on a continuously extended response variable, to obtain Ŷtn−1+2,x, Ŷtn−1+3,x, Ŷtn−1+4,x, . . . , Ŷtn−1+H,x.
Under this “extended extrapolation method (EEM)”, future mortality trends are based on both
the initial mortality rates and the recent ones that have been obtained after each estimation step.
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Similar practical approaches have also been adopted by Luan (2015). The numerical results in the
following section justify that all methods can be efficiently applied in actuarial practice.

Remark 3. Similar extrapolation methods may be used in other regression or time series contexts, but here are
customized to be used with the credibility regression models presented in Section 3.

5. Empirical Illustration

In this section, the Lee–Carter (LC), the Cairns–Blake–Dowd (CBD) and the credibility regression
models are fitted on Greek mortality data. Then, forecasting results are evaluated using the mean
absolute forecast error (MAFE) and the root mean of squared forecast error (RMSFE) measures. Greek
data have a limited number of historical mortality observations (1981–2013), which are available
on the Human Mortality Database (2017), structured by year, age and gender. Furthermore, in life
insurance datasets similar limitations frequently exist. Credibility regression can efficiently capture the
underlying data trends, especially in cases where there is limited mortality experience for a specific
age, but extensive experience for the entire age range (the case of Greek data). Of course, credibility
regression methods can also be used for larger datasets.

Mortality evolution for the period 1981–2010 in Greece is illustrated in Figures 1 and 2 for
log m(t, x) and logit q(t, x), respectively. Both mortality measures show a linearity for discrete ages
x = 40, 60, 80 of males (left panels of Figures 1 and 2) and females (middle panels of Figures 1 and 2).
In addition, for both genders, average mortality decline shows a clear downward trend over time
(right panels of Figures 1 and 2).
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Figure 1. Observed log m(t, x) of the period 1981–2010 in Greece, for males (left) and females (middle)
at the age of 40, 60 and 80. Average male and female log m(t, x) values over ages 15–84 are illustrated
in (right), where straight lines show the corresponding trends in mortality decline.
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Figure 2. Observed logit q(t, x) of the period 1981–2010 in Greece, for males (left) and females (middle)
at the age of 40, 60 and 80. Average male and female logit q(t, x) values over ages 15–84 are illustrated
in (right), where straight lines show the corresponding trends in mortality decline.
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5.1. Forecasting Results

For the numerical illustration that follows, we used the empirical age-specific mortality rates
m(t, x) from 1981 to 2010, for males and females at the ages of 15 to 84. This age span choice is in
accordance with similar studies (Tsai and Lin 2017a, 2017b) as it corresponds to the age of a young
adult up to the overall level of life expectancy in developed countries. To ensure robustness, relative
to changes in the fitting range of data, we used two age and three period spans to extract forecasts
for a 10-year (H = 10) forecasting horizon, presented in Table 1. In particular, for the FC model, we
used Wx = I as weights. The credibility regression methods, as well as the LC and the CBD mortality
models, were implemented in R (R Core Team 2017). In particular, for the Poisson LC and CBD fitting
methods, we used the “LifeMetrics” R package2.

Table 1. Selected fitting and forecasting periods.

Fitting Ages Fitting Period Forecasting Period

[x0, xk−1] [t0, tn−1] [tn−1 + 1, tn−1 + H]

[15, 84] [1981, 2000] [2001, 2010]
[15, 84] [1986, 2000] [2001, 2010]
[15, 84] [1991, 2000] [2001, 2010]

[55, 84] [1981, 2000] [2001, 2010]
[55, 84] [1986, 2000] [2001, 2010]
[55, 84] [1991, 2000] [2001, 2010]

To retain linearity over each corresponding fitting period, the logarithmic transform Yt,x =
log m(t, x) was used for the age-specific mortality rates and the logit transform Yt,x = logit q(t, x) =

log
q(t, x)

1− q(t, x)
for the one-year probabilities of death. Forecast errors were then evaluated over the

10-year forecasting horizon using MAFE and RMSFE measures3, where smaller values indicate a better
forecasting performance. Averaged (avg) MAFE and RMSFE values are obtained by using

MAFEavg =
1

H × (xk−1 − x0 + 1)

H

∑
h=1

xk−1

∑
x=x0

|m̂(tn−1 + h, x)−m(tn−1 + h, x)| × 100 (33)

and

RMSFEavg =

√√√√ 1
H × (xk−1 − x0 + 1)

H

∑
h=1

xk−1

∑
x=x0

[
m̂(tn−1 + h, x)−m(tn−1 + h, x)

]2 × 100 . (34)

Similarly, in the case of using Yt,x = logit q(t, x) as response variable, m(t, x) should be replaced
by q(t, x) in above formulas. Forecast accuracy results at percentage (%) scales are evaluated over
the period [2001, 2010]. MAFE and RMSFE values for fitting ages [15, 84], using Yt,x = log m(t, x) are
illustrated in Table 2 (a) and (b), respectively, while the corresponding values for ages [55, 84] with
Yt,x = logit q(t, x) are presented in Table 3 (a) and (b), respectively. Note that CBD model is included
only for comparisons in fitting ages [55, 84], as it has been particularly designed for higher ages.

For both genders, accuracy results in Table 2 (a), (b) for fitting ages [15, 84] and Table 3 (a), (b)
for ages [55, 84] indicate that, for each fitting period, credibility regression models outperform LC
and CBD models for both error measures. Average values over the whole period are given in the
last rows of each measure’s subtable. More precisely, for ages [15, 84], the FC-MEM and FC-SEM
produce the smallest average MAFE and RMSFE, while for ages [55, 84], RC-MEM performs better in

2 The software, which is not part of CRAN, is available from http://www.macs.hw.ac.uk/~andrewc/lifemetrics/.
3 For instance, use of MAFE is demonstrated in the modelling comparison study of Shang et al. (2011), while RMSFE in

Hansen (2013) and Van Berkum et al. (2016).

http://www.macs.hw.ac.uk/~andrewc/lifemetrics/
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average under both measures, which indicates that forecasts for higher ages are based on more recent
mortality trends. Moreover, we observe that errors are getting evidently larger, when shortening the
age fitting span to [55, 84]. This is due to the fact that both |m̂(tn−1 + h, x)−m(tn−1 + h, x)| in (33) and[
m̂(tn−1 + h, x)− m(tn−1 + h, x)

]2 in (34) are generally increasing with age x. Therefore, MAFEavg

and RMSFEavg for ages [55, 84] are larger than those for [15, 84].
We note that, for our comparison, we used the Lee–Carter (1992) and Cairns–Blake–Dowd (2006)

models, which incorporate only age and period effects. Models with cohort parameters were
intentionally excluded from our analysis to be consistent with the age-period structure of the proposed
credibility regression methods that model the period dynamics of mortality across the ages. For a
modelling comparison study on Greek data that allows for models with cohort effects, we refer to the
work of Bozikas and Pitselis (2018).

Table 2. MAFE and RMSFE values of forecast errors over the period [2001, 2010] for ages [15, 84].

(a) MAFE Values

MAFE[15,84] Lee–Carter Random Coefficients (RC) Fixed Coefficients (FC)

Fitting Period Gender LC LC-Poisson SEM MEM EEM SEM MEM EEM

[1981, 2000] Male 0.1513 0.1569 0.1338 0.1205 0.1322 0.1352 0.1256 0.1361

Female 0.0831 0.0861 0.0702 0.0740 0.0711 0.0691 0.0657 0.0690

[1986, 2000] Male 0.1684 0.1514 0.1175 0.1196 0.1158 0.1203 0.1221 0.1206

Female 0.0625 0.0799 0.0650 0.0696 0.0758 0.0608 0.0651 0.0613

[1991, 2000] Male 0.1468 0.1681 0.1275 0.1257 0.1280 0.1288 0.1289 0.1289

Female 0.0763 0.0959 0.0705 0.0678 0.0750 0.0622 0.0663 0.0669

Average 0.1147(7) 0.1231(8) 0.0974(5) 0.0962(3) 0.0997(6) 0.0961(2) 0.0956(1) 0.0971(4)

(b) RMSFE Values

RMSFE[15,84] Lee–Carter Random Coefficients (RC) Fixed Coefficients (FC)

Fitting Period Gender LC LC-Poisson SEM MEM EEM SEM MEM EEM

[1981, 2000] Male 0.3165 0.3220 0.2661 0.2349 0.2629 0.2716 0.2511 0.2745

Female 0.1791 0.1825 0.1398 0.1594 0.1457 0.1376 0.1365 0.1374

[1986, 2000] Male 0.3543 0.3200 0.2257 0.2265 0.2204 0.2362 0.2364 0.2375

Female 0.1307 0.1742 0.1410 0.1509 0.1700 0.1264 0.1385 0.1288

[1991, 2000] Male 0.3180 0.4010 0.2478 0.2457 0.2470 0.2570 0.2551 0.2516

Female 0.1694 0.2415 0.1580 0.1511 0.1707 0.1302 0.1438 0.1476

Average 0.2447(7) 0.2735(8) 0.1964(4) 0.1948(3) 0.2028(6) 0.1932(1) 0.1936(2) 0.1962(5)
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Table 3. MAFE and RMSFE values of forecast errors over the period [2001, 2010] for ages [55, 84].

(a) MAFE Values

MAFE[55,84] Mortality Models Random Coefficients (RC) Fixed Coefficients (FC)

Fitting Period Gender LC LC-Poisson CBD CBD-Poisson SEM MEM EEM SEM MEM EEM

[1981, 2000] Male 0.3191 0.3322 0.2924 0.3247 0.2885 0.2642 0.2846 0.2871 0.2673 0.2870

Female 0.1884 0.1933 0.1694 0.1884 0.1624 0.1458 0.1611 0.1629 0.1448 0.1627

[1986, 2000] Male 0.2928 0.3186 0.2682 0.2988 0.2506 0.2547 0.2494 0.2544 0.2581 0.2541

Female 0.1577 0.1769 0.1618 0.1708 0.1287 0.1377 0.1344 0.1289 0.1351 0.1288

[1991, 2000] Male 0.3091 0.3622 0.2790 0.3348 0.2483 0.2461 0.2464 0.2538 0.2493 0.2525

Female 0.1723 0.2126 0.1659 0.1868 0.1324 0.1350 0.1363 0.1363 0.1382 0.1361

Average 0.2399(8) 0.2660(10) 0.2228(7) 0.2507(9) 0.2018(3) 0.1973(1) 0.2020(4) 0.2039(6) 0.1988(2) 0.2035(5)

(b) RMSFE Values

RMSFE[55,84] Mortality Models Random Coefficients (RC) Fixed Coefficients (FC)

Fitting Period Gender LC LC-Poisson CBD CBD-Poisson SEM MEM EEM SEM MEM EEM

[1981, 2000] Male 0.4616 0.4848 0.3904 0.4467 0.4041 0.3644 0.3963 0.4065 0.3786 0.4061

Female 0.2795 0.2842 0.2221 0.2512 0.2260 0.1996 0.2213 0.2304 0.2010 0.2299

[1986, 2000] Male 0.4320 0.4872 0.3551 0.4073 0.3506 0.3522 0.3419 0.3631 0.3653 0.3618

Female 0.2340 0.2699 0.2165 0.2244 0.1805 0.1940 0.1895 0.1803 0.1897 0.1800

[1991, 2000] Male 0.4671 0.6129 0.3698 0.4625 0.3484 0.3423 0.3389 0.3660 0.3501 0.3616

Female 0.2652 0.3721 0.2202 0.2510 0.1866 0.1888 0.1912 0.1961 0.1930 0.1954

Average 0.3566(9) 0.4185(10) 0.2957(7) 0.3405(8) 0.2827(4) 0.2736(1) 0.2799(3) 0.2904(6) 0.2796(2) 0.2891(5)

Credibility Effects on Mortality Modelling

In the preceding section, we used the proposed credibility regression methods to estimate the
actual mortality trend for a specific age, by weighting the mortality trend for this age and the mean
trend over a wider group of ages that encompasses much more information. Figure 3 illustrates the
linear trend of the actual (observed) logit q(t, x) for Greek males (left panel) and females (right panel),
aged 55, 65 and 75 over the period 1981–2010. The intuition behind using credibility regression is
that the proposed methods could potentially lead us to more accurate estimates for the intercept
and the slope of the mortality curve for a given age x = x0, . . . , xk−1. To assure this, we used the
absolute forecast errors by age (AFEx) to compare the linear trend (intercept and the slope) of the
logit q(2000 + h, x), h = 1, . . . , 10 between the actual rates and the rates produced from the best
performing models for both genders over years [2001, 2010], with and without credibility, for pension
ages [65, 84], fitted for [1981, 2000]. For each model, AFEx can be obtained by

AFEx = |logit q̂(2000 + h, x)− logit q(2000 + h, x)| × 100 . (35)

Figure 4 displays the AFEx comparison results, which indicate that, almost for all ages, credibility
regression methods (dot lines) perform better than the LC (solid lines) and CBD (dashed lines) models.
An alternative way to see how close the credibility forecasts are to the the actual mortality trend,
Figure 5 illustrates the intercept and the slope of the actual rates and the forecasted ones for some
ages, under the best performing methods (based on AFEx) with credibility (FC-MEM for males and
RC-MEM for females) and without credibility (LC, CBD).

The trend lines for the RC-MEM and FC-MEM forecasts can be easily extracted using the ordinary
least squares method. Recall that, the intercept and the slope for the LC and CBD models is given
by Equations (2) and (4), respectively (Remark 1), while for the credibility method RC by (21) and
for FC by (28). The illustrated results in Figure 5 indicate that intercepts and slopes of the FC-MEM
(for males) and RC-MEM (for females) lines are closer to the actual ones, which set the best starting
point for the forecasts.
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Figure 3. Linear trend of the observed logit q(t, x) of the period 1981–2010 in Greece, for males (left)
and females (right) at the age of 55, 65 and 75.
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Figure 4. AFE values against age of logit q(2000 + h, x), h = 1, . . . , 10 between the actual rates and
the rates produced from the best performing models with and without credibility for males (left) and
females (right) over [2001, 2010], fitted to pension ages [65, 84] for years [1981, 2000].
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Figure 5. Intercept and slope estimates of logit q(2000 + h, x) for h = 1, . . . , 10 and ages x = 66 for
males and x = 67 for females, with credibility (dot-dashed lines for FC-MEM and RC-MEM) and
without credibility (dashed lines for LC and dot lines for CBD). Solid lines show the actual mortality
and its trend.
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5.2. Applying the Bühlmann Credibility Approach

Tsai and Lin (2017a) proposed a Bühlmann credibility approach to forecast mortality rates for
both genders in Japan, the United Kingdom and the United States. This model can be directly obtained

from the more general regression model, presented in Section 3.3, if we set Zx =
(

1 1 . . . 1
)′

and

Wx = I for x = x0, . . . , xk−1. Then, from (27), βx is equal to Yx and the model parameters, which are
scalars now, can be estimated by

ŝ2 =
1

(xk−1 − x0 + 1)(tn−1 − t0)

xk−1

∑
x=x0

tn−1

∑
t=t0

(
Yt,x − Yx

)
, (36)

b̂ =
1

xk−1 − x0 + 1

xk−1

∑
x=x0

Yx =
1

(xk−1 − x0 + 1)(tn−1 − t0 + 1)

xk−1

∑
x=x0

tn−1

∑
t=t0

Yt,x = Y , (37)

Û =
1

xk−1 − x0

xk−1

∑
x=x0

(
Yx −Y

)
− ŝ2

tn−1 − t0 + 1
, (38)

K̂ =
[
(tn−1 − t0 + 1) Û

] [
ŝ2 + (tn−1 − t0 + 1) Û

]−1
. (39)

The Bühlmann credibility estimates for one year ahead can be obtained by

Ŷtn−1+1,x = K̂ Yx + (1− K̂) Y, for x = x0, . . . , xk−1 . (40)

In contrast to the credibility regression approaches, which aim to capture the downward trend
of m(t, x)s over t, for the Bühlmann credibility approach to be applied, this downward trend must
be eliminated. For this reason, Tsai and Lin (2017a) applied the Bühlmann credibility model on the
time series of mortality rate changes rather than the mortality rate levels, i.e., Yt,x = log m(t, x)−
log m(t− 1, x), for t1, . . . , tn−1. Then, they proposed two strategies for estimating Yt+h,x, h = 2, . . . , H.
The first strategy expands fitting window (EW) by one year, similarly with the EEM regression method,
described in Section 4 and the second one moves fitting window (MW) by one year, similarly with
the MEM regression method. In what follows, we compare the forecasting performance between
the Bühlmann and the credibility regression methods on Greek data. To be consistent with the
Bühlmann modelling framework of Tsai and Lin (2017a), age fitting spans [21, 85] and [56, 85] were
selected and forecast errors were also evaluated under the averaged MAPFE values, which is defined

byMAPFEavg =
1

H × (xk−1 − x0 + 1)

H

∑
h=1

xk−1

∑
x=x0

|m̂(tn−1 + h, x)−m(tn−1 + h, x)|
|m(tn−1 + h, x)| × 100 .

Error values for each gender were evaluated by fitting Yt,xs on [1982, 2000], [1986, 2000], and
[1990, 2000] period spans. Comparison of averaged MAFE, RMSFE and MAPFE4 results between
Bühlmann and credibility regression methods is given for both genders in Table 4 (a)–(c) for ages
[21, 85] and Table 5 (a)–(c) for ages [56, 85].

The results indicate that credibility regression methods produce the smallest MAFE, RMSFE and
MAPFE values for the majority of the selected fitting periods for both age spans. More precisely,
the FC-MEM method has the best average performance according to MAFE and MAPFE values for
ages [21, 85], while the RC-MEM method seems to be more appropriate to capture future mortality
trends for older ages [56, 85]. We note that the smallest values in average are produced by different
regression methods, depending on which measure is used. Such inconsistencies are expected due to the
nature of MAFE, RMSFE and MAPFE formulas. That was also pointed out by (Tsai and Yang 2015, p. 9).

4 To distinguish one from the other, MAFE and RMSFE averaged error values are rounded to four decimal points, while, for
MAPFE values, two decimal points are enough.
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Table 4. MAFE, RMSFE and MAPFE values of forecast errors over the period [2001, 2010] for ages [21, 85].

(a) MAFE Values

MAFE[21,85] Bühlmann Methods Regression Methods – RC Regression Methods – FC

Fitting Period Gender EW MW SEM MEM EEM SEM MEM EEM

[1982, 2000] Male 0.2348 0.2334 0.1404 0.1287 0.1379 0.1444 0.1361 0.1460

Female 0.0930 0.0931 0.0816 0.0882 0.0843 0.0791 0.0780 0.0790

[1986, 2000] Male 0.2170 0.2294 0.1329 0.1321 0.1306 0.1364 0.1358 0.1373

Female 0.0918 0.0919 0.0782 0.0852 0.0909 0.0741 0.0805 0.0747

[1990, 2000] Male 0.2355 0.2258 0.1399 0.1392 0.1369 0.1434 0.1422 0.1423

Female 0.0954 0.0933 0.0836 0.0839 0.0879 0.0798 0.0818 0.0802

Average 0.1613(8) 0.1612(7) 0.1094(2) 0.1096(4) 0.1114(6) 0.1095(3) 0.1091(1) 0.1099(5)

(b) RMSFE Values

RMSFE[21,85] Bühlmann Methods Regression Methods – RC Regression Methods – FC

Fitting Period Gender EW MW SEM MEM EEM SEM MEM EEM

[1982, 2000] Male 0.4980 0.4948 0.2633 0.2342 0.2566 0.2756 0.2564 0.2799

Female 0.1795 0.1795 0.1613 0.1884 0.1730 0.1540 0.1581 0.1541

[1986, 2000] Male 0.4584 0.4861 0.2447 0.2387 0.2386 0.2564 0.2532 0.2591

Female 0.1767 0.1772 0.1633 0.1781 0.1999 0.1484 0.1643 0.1502

[1990, 2000] Male 0.4997 0.4765 0.2578 0.2574 0.2472 0.2704 0.2666 0.2668

Female 0.1849 0.1802 0.1640 0.1761 0.1767 0.1567 0.1674 0.1570

Average 0.3329(8) 0.3324(7) 0.2091(1) 0.2122(5) 0.2153(6) 0.2103(2) 0.2110(3) 0.2112(4)

(c) MAPFE Values

MAPFE[21,85] Bühlmann Methods Regression Methods – RC Regression Methods – FC

Fitting Period Gender EW MW SEM MEM EEM SEM MEM EEM

[1982, 2000] Male 11.90 11.86 11.97 11.24 11.80 11.95 11.43 12.00

Female 13.75 13.76 11.66 11.83 11.69 11.66 11.54 11.66

[1986, 2000] Male 11.30 11.71 12.05 10.76 11.73 11.86 10.72 11.90

Female 13.71 13.72 11.52 11.82 11.89 11.56 11.73 11.55

[1990, 2000] Male 11.93 11.60 10.81 9.81 10.60 10.57 9.71 10.52

Female 13.83 13.77 11.84 11.79 12.08 12.05 11.83 11.99

Average 12.73(7) 12.74(8) 11.64(6) 11.21(2) 11.63(5) 11.61(4) 11.16(1) 11.60(3)

Table 5. MAFE, RMSFE and MAPFE values of forecast errors over the period [2001, 2010] for ages [56, 85].

(a) MAFE Values

MAFE[56,85] Bühlmann Methods Regression Methods – RC Regression Methods – FC

Fitting Period Gender EW MW SEM MEM EEM SEM MEM EEM

[1982, 2000] Male 0.3599 0.3503 0.3272 0.3012 0.3210 0.3262 0.3036 0.3255

Female 0.1686 0.1623 0.1717 0.1633 0.1735 0.1711 0.1595 0.1709

[1986, 2000] Male 0.3233 0.3430 0.2893 0.2958 0.2886 0.2946 0.2991 0.2937

Female 0.1481 0.1539 0.1534 0.1601 0.1617 0.1495 0.1573 0.1511

[1990, 2000] Male 0.3745 0.3641 0.2958 0.2934 0.2937 0.2999 0.2954 0.2973

Female 0.1670 0.1646 0.1617 0.1616 0.1613 0.1601 0.1625 0.1615

Average 0.2569(8) 0.2564(7) 0.2332(3) 0.2293(1) 0.2333(4) 0.2336(6) 0.2296(2) 0.2334(5)
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Table 5. Cont.

(b) RMSFE Values

RMSFE[56,85] Bühlmann Methods Regression Methods – RC Regression Methods – FC

Fitting Period Gender EW MW SEM MEM EEM SEM MEM EEM

[1982, 2000] Male 0.5411 0.5261 0.4670 0.4213 0.4524 0.4700 0.4305 0.4679

Female 0.2358 0.2282 0.2368 0.2242 0.2366 0.2389 0.2202 0.2381

[1986, 2000] Male 0.4852 0.5159 0.4065 0.4138 0.3987 0.4221 0.4224 0.4185

Female 0.2120 0.2178 0.2151 0.2235 0.2271 0.2089 0.2192 0.2107

[1990, 2000] Male 0.5636 0.5472 0.4139 0.4130 0.4072 0.4291 0.4184 0.4195

Female 0.2338 0.2307 0.2243 0.2246 0.2236 0.2217 0.2257 0.2232

Average 0.3786(8) 0.3777(7) 0.3273(4) 0.3201(1) 0.3243(3) 0.3318(6) 0.3227(2) 0.3297(5)

(c) MAPFE Values

MAPFE[56,85] Bühlmann Methods Regression Methods – RC Regression Methods – FC

Fitting Period Gender EW MW SEM MEM EEM SEM MEM EEM

[1982, 2000] Male 9.53 9.34 9.48 9.17 9.54 9.29 8.97 9.31

Female 9.93 9.72 9.98 9.81 10.36 9.65 9.43 9.69

[1986, 2000] Male 8.82 9.20 8.78 8.97 8.99 8.61 8.85 8.66

Female 9.23 9.45 9.14 9.42 9.62 8.84 9.26 8.98

[1990, 2000] Male 9.82 9.61 8.85 8.74 9.00 8.62 8.74 8.78

Female 9.88 9.81 9.49 9.33 9.46 9.32 9.37 9.48

Average 9.54(8) 9.52(7) 9.29(5) 9.24(4) 9.50(6) 9.06(1) 9.10(2) 9.15(3)

5.3. Application in Insurance-Related Products

In this section, we apply the mortality forecasts obtained from the Lee–Carter, the
Cairns–Blake–Dowd and the credibility regression models to calculate life premiums, reflecting the
appropriateness of each model in pricing applications. Denote A1

tn−1+1,x:K
as the fully discrete life

insurance premium, payable at the end of the year of death, if it occurs within a term of K years and
A

tn−1+1,x:
1
K

as the pure endowment, payable at the end of K years in case of being alive. Both products

are issued to an insured aged x in year tn−1 + 1. Net premiums (NP) are obtained (see Bozikas and
Pitselis 2018) by

A1
tn−1+1,x:K

=
K−1

∑
k=0

k ptn−1+1,x . q(tn−1 + 1 + k, x + k) . (1 + i)−(k+1) , (41)

A
tn−1+1,x:

1
K
= K ptn−1+1,x . (1 + i)−K , (42)

where k ptn−1+1,x denotes the k-year survival probability for age x in year tn−1 + 1, while its estimate
is given by k p̂tn−1+1,x = p̂tn−1+1,x. . . . .p̂tn−1+1+k−1,x+k−1, k = 1, . . . , K− 1 and similarly for K p̂tn−1+1,x,
where i is the interest rate and 0 p̂tn−1+1,x = 1. In addition, to see the performance on a life annuity
product, typically used for pension applications, denote ätn−1+1,x:k as the discrete life annuity-due at
age x in year tn−1 + 1, payable annually for up to K years. Its actuarial present value (APV) can be
obtained by

ätn−1+1,x:K =
K−1

∑
k=0

k ptn−1+1,x . (1 + i)−k . (43)

Then, we apply the estimated mortality rates obtained from the LC, CBD and credibility methods,
fitted to 1981–2000 rates, to calculate the NPs and APVs for ages 55–74 with K = 10, assuming i = 4%.
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The errors between forecasted values and those produced from the observed mortality rates for the
years 2001–2010 are evaluated using MAFE and RMSFE, which are defined by

MAFEavg =
1

20

74

∑
x=55

∣∣∣∣Â1
2001,x:10

− A1
2001,x:10

∣∣∣∣× 100 , (44)

RMSFEavg =

√√√√ 1
20

74

∑
x=55

(Â1
2001,x:10

− A1
2001,x:10

)2 × 100 . (45)

Similarly, MAFE and RMSFE formulas are adjusted for pure endowment or annuity products
by replacing A1

tn−1+1,x:K
with A

tn−1+1,x:
1
K

or ätn−1+1,x:K in Equations (44) and (45). Table 6 presents the

averaged error values in ranking order for a 10 year forecasted life insurance, pure endowment and
life annuity for both genders, aged 55–74 in 2001–2010. In addition, Figure 6 illustrates the absolute
forecast error values against each corresponding age (AFEx) for the top LC, CBD, RC and FC credibility
regression methods for males and females, according to Table 6 values. For each model, AFEx is

obtained from AFEx =

∣∣∣∣Â1
x,2001:10

− A1
x,2001:10

∣∣∣∣× 100.

Table 6. MAFE and RMSFE values (ranking order in brackets) for a 10-year forecasted life insurance, a
pure endowment and a life annuity for males and females of ages 55–74 during 2001–2010.

(a) Life Insurance

MAFEavg Mortality Models Random Coefficients (RC) Fixed Coefficients (FC)

Gender LC LC-Poisson CBD CBD-Poisson SEM MEM EEM SEM MEM EEM

Male 1.6019(8) 1.5640(7) 1.7151(10) 1.6794(9) 1.5000(6) 1.4169(2) 1.4924(5) 1.4735(3) 1.3932(1) 1.4741(4)
Female 1.0264(6) 1.0269(7) 1.2141(10) 1.1079(9) 1.0262(5) 0.9317(2) 1.0346(8) 0.9898(3) 0.8840(1) 0.9910(4)

RMSFEavg Mortality Models Random Coefficients (RC) Fixed Coefficients (FC)

Gender LC LC-Poisson CBD CBD-Poisson SEM MEM EEM SEM MEM EEM

Male 1.8423(8) 1.8043(7) 1.9401(10) 1.9089(9) 1.7125(6) 1.6143(2) 1.7043(5) 1.6871(3) 1.5989(1) 1.6875(4)
Female 1.2320(8) 1.2294(7) 1.4023(10) 1.2918(9) 1.2133(5) 1.0965(2) 1.2215(6) 1.1744(3) 1.0494(1) 1.1756(4)

(b) Pure Endowment

MAFEavg Mortality Models Random Coefficients (RC) Fixed Coefficients (FC)

Gender LC LC-Poisson CBD CBD-Poisson SEM MEM EEM SEM MEM EEM

Male 1.1439(8) 1.1139(7) 1.2417(10) 1.2044(9) 1.0722(6) 1.0153(2) 1.0681(5) 1.0512(3) 0.9942(1) 1.0518(4)
Female 0.7181(7) 0.7192(8) 0.8894(10) 0.7923(9) 0.7340(5) 0.6717(2) 0.7463(6) 0.7026(3) 0.6297(1) 0.7038(4)

RMSFEavg Mortality Models Random Coefficients (RC) Fixed Coefficients (FC)

Gender LC LC-Poisson CBD CBD-Poisson SEM MEM EEM SEM MEM EEM

Male 1.3274(8) 1.2975(7) 1.4104(10) 1.3786(9) 1.2347(6) 1.1659(2) 1.2303(5) 1.2150(3) 1.1535(1) 1.2154(4)
Female 0.8745(8) 0.8717(7) 1.0310(10) 0.9319(9) 0.8774(5) 0.7968(2) 0.8889(6) 0.8440(3) 0.7552(1) 0.8451(4)

(c) Life Annuity

MAFEavg Mortality Models Random Coefficients (RC) Fixed Coefficients (FC)

Gender LC LC-Poisson CBD CBD-Poisson SEM MEM EEM SEM MEM EEM

Male 5.4466(8) 5.2602(7) 6.3032(10) 5.7857(9) 5.1642(6) 4.9260(2) 5.1561(5) 5.0331(3) 4.7893(1) 5.0369(4)
Female 2.9140(7) 2.9361(8) 4.4471(10) 3.5932(9) 3.1527(5) 2.9479(2) 3.2151(6) 2.9656(3) 2.7024(1) 2.9721(4)

RMSFEavg Mortality Models Random Coefficients (RC) Fixed Coefficients (FC)

Gender LC LC-Poisson CBD CBD-Poisson SEM MEM EEM SEM MEM EEM

Male 6.6138(7) 6.4342(8) 7.2583(10) 6.8729(9) 6.1786(6) 5.8730(2) 6.1608(5) 6.0681(3) 5.7919(1) 6.0704(4)
Female 3.7013(7) 3.7218(8) 5.1510(10) 4.3300(9) 3.9187(5) 3.6344(2) 3.9846(6) 3.7084(3) 3.3878(1) 3.7155(4)
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Figure 6. AFE values against age of life insurance and annuity products for the top LC, CBD and
credibility regression models for males (left panels) and females (right panels): (a) life insurance AFEs
for males; (b) life insurance AFEs for females; (c) pure endowment AFEs for males; (d) pure endowment
AFEs for females; (e) life annuity AFEs for males; and (f) life annuity AFEs for females.

According to MAFE and RMSFE values for both genders and insurance products in Table 6,
credibility regression models produce better insurance-related forecasts in comparison with the LC
and CBD modelling methods. We can easily observe that for each gender, error measures coincide
in the same ranking order for all insurance products. In particular, measures show that credibility
regression methods under a moving fitting span outperform LC and CBD methods in aggregate,
with FC-MEM being dominant and RC-MEM following. This fact is also evident in Figure 6, where
absolute error values against age for the MEM regression models lie on the lower levels for all the
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insurance products. Nevertheless, the FC-SEM should also be a good modelling choice for pricing
insurance-related products.

6. Concluding Remarks

Credibility regression techniques seem to be of special interest and particularly useful for mortality
datasets of a relatively short historical period of observations (limited data), as they can efficiently capture
the underlying mortality trend for a given age, using all the information gained from populations of
other ages. This paper proposes mortality modelling approaches embedded, for the first time, in a
credibility regression framework. In our illustration on Greek data, credibility regression approaches
resulted in better forecasts for both genders (in terms of MAFE and RMSFE measures), compared
to the Lee–Carter and Cairns–Blake–Dowd models, as well as the Bühlmann credibility approach
(Tsai and Lin 2017a). Finally, their performance was also evaluated on insurance-related applications.

Specifically, in Section 3, we proposed a credibility regression mortality framework with randomly
varying coefficients and a special case with fixed coefficients. To estimate future mortality rates, we
presented extrapolation methods for each credibility approach in Section 4. The applicability of our
modelling approaches was comparatively illustrated on Greek male and female data in Section 5,
accompanied with an explanation of the credibility effects in mortality modelling and a pricing
application on insurance-related products. From our analysis, we concluded that, in aggregate,
credibility modelling methods performed better than the LC and CBD methods. Forecasting accuracy
results indicate that, for the whole age fitting span, fixed coefficients credibility methods performed
better on average, while, for higher ages, the RC-MEM should also be a good choice. In addition, the
FC-MEM performed a bit better in aggregate on pricing insurance-related products.

Furthermore, we noted that FC-SEM credibility forecasts were closer to observed rates
for the same periods, when we used population exposure to risk as weights, i.e., Wx =

diag [E(t0, x), . . . , E(tn−1, x)] , for x = x0, . . . , xk−1, but weighted regression is restricted for use only
under the SEM, as E(t, x)s are practically unknown for the upcoming years. Additionally, during the
estimation procedure for the random regression models, we observed that, if we use the MINQUE
estimator (Remark 2) instead of (20), error values for all the credibility modelling methods become
even smaller for both genders.

For the sake of comparability, the Bühlmann credibility approach (Tsai and Lin 2017a) was applied
on our dataset in Section 5, where the credibility regression methods resulted to better forecasts based
on MAFE, RMSFE and MAPFE measures. In addition, credibility regression methods had a very good
forecasting performance, when we applied them to the datasets of other countries (with a relatively
small population5) for a limited selected fitting period (1980–2000), such as Belgium, Finland, Norway,
Ireland, Slovakia and New Zealand. A further forecasting comparison between datasets of other
countries has been left for future work.

Finally, we have to mention that our numerical illustration yielded results that are fully applicable
and provide encouragement that credibility modelling approaches, including those of Tsai (2017a,
2017b), could contribute to future mortality projection studies.
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