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Abstract: The purpose of this paper is to survey recent developments in granular models and machine
learning models for loss reserving, and to compare the two families with a view to assessment of their
potential for future development. This is best understood against the context of the evolution of these
models from their predecessors, and the early sections recount relevant archaeological vignettes from
the history of loss reserving. However, the larger part of the paper is concerned with the granular
models and machine learning models. Their relative merits are discussed, as are the factors governing
the choice between them and the older, more primitive models. Concluding sections briefly consider
the possible further development of these models in the future.
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1. Background

The history of loss reserving models, spanning 50-odd years, displays a general trend toward
ever-increasing complexity and data-intensity. The objectives of this development have been broadly
two-fold, both drawing on increased richness of the data. One objective has been increased predictive
power; the other the enablement of modelling of the micro-mechanisms of the claim process (which may
also enhance predictive power).

Two families of model that have undergone development within this context over the past decade
are granular models (GMs) and machine learning models (MLMs). The first of these, also known as
micro-models, is aimed at the second objective above. As the complexity of model structures increases,
feature selection and parameter estimation also become more complex, time-consuming and expensive.
MLMs are sometimes seen as a suitable means of redress of these difficulties.

The purpose of the present paper is to survey the history of loss reserving models, and how that
history has led to the most recent types of model, granular forms and machine learning forms. History
has not yet resolved whether one of these forms is superior to the other, or whether they can coexist in
harmony. To some extent, therefore, they are currently in competition with each other.

Claim models may be developed for purposes other than loss reserving, with different imperatives.
For example, pricing will require differentiation between individual risks, which loss reserving may
or may not require. Here, emphasis will be placed on loss reserving applications throughout. The
performance of the models considered here might be evaluated differently in relation to other applications.

Much of the historical development of loss reserving models has been, if not driven, at least enabled
by the extraordinary increase in computing capacity that has occurred over the past 50 years or so. This
has encouraged the analysis of more extensive data and the inclusion of more features in models.

Some of the resulting innovations have been of obvious benefit. However, the advantages and
disadvantages of each historical model innovation will be discussed here, and this will create a
perspective from which one may attempt to anticipate whether one of the two model forms is likely to
gain ascendancy over the other in the near future.
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Sections 3–6 proceed through the archaeology of loss reserving models. Archaeological ages
are identified, marking fundamental breaks in model evolution. These sections proceed roughly
chronologically, discussing many of the families of models contained in the literature, identifying their
relative advantages and disadvantages.

These historical perspectives sharpen one’s perspective on the issues associated with the more
modern GMs and MLMs. They expose the strengths and weaknesses of earlier models, and place in
focus those areas where the GMs and MLMs might have potential for improved methodology.

Against this background, Section 7 discusses the criteria for model selection, and Section 8 concentrates
on the predictive efficiency of GMs and MLMs. Section 8 also discusses one or two aspects of MLMs that
probably require resolution before those models will be widely accepted, and Sections 9 and 10 draw the
discussion of the previous sections together to reach some conclusions and conjectures about the future.

It is not the purpose of this paper to provide a summary of an existing methodology. This is
provided by various texts. The real purpose is set out in the preceding paragraph, and the discussion
of historical model forms other than GMs or MLMs is introduced only to provide relevant context to
the GM–MLM comparison.

Thus, a number of models will be introduced without, or with only brief, description. It is assumed
that the reader is either familiar with the relevant detail or can obtain it from the cited reference.

2. Notation and Terminology

This paper will consider numerous models, with differing data requirements. The present section
will establish a relatively general data framework that will serve for most of these models. All but the
most modern of these are covered to some degree in the standard loss reserving texts, Taylor (1986,
2000) and Wüthrich and Merz (2008).

Claim data may relate to individual or aggregate claims, but will often be labelled by accident
period and development period. These periods are not assumed to be years, but it is assumed that
they are all of equal duration, e.g., accident quarter and development quarter. Other cases are possible,
e.g., accident year and development quarter, but add to the notational complexity while adding little
insight to the discussion.

Let Y[n]
i j denote claim payments in development period j in respect of claim n, which was incurred

in accident period i. The couple (i, j) will be referred to as a cell. Also, define the total claim payments
associated with the (i, j) cell as

Yi j =
∑

n
Y[n]

i j

Usually, Y[n]
i j will be considered to be a random variable, and a realization of it will be denoted by y[n]i j .

Likewise, a realisation of Yi j will be denoted by yi j. As a matter of notation, E
[
Y[n]

i j

]
= µ

[n]
i j , Var

[
Y[n]

i j

]
=

σ
2[n]
i j and E

[
Yi j

]
= µi j, Var

[
Yi j

]
= σ2

i j.
Many simple claim models use the conventional data triangle, in which cells exist for i = 1, 2, . . . , I

and j = 1, 2, . . . , I − i + 1, which may be represented in triangular form with i and j indexing rows and
columns, respectively, as illustrated in Figure 1.

It is useful to note at this early stage that the (i, j) cell falls on the (i + j− 1)-th diagonal of the
triangle. Payments occurring anywhere along this diagonal are made in the same calendar period, and
accordingly diagonals are referred to as calendar periods or payment periods.

It will be useful, for some purposes, to define cumulative claim payments. For claim n, from
accident period i, the cumulative claim payments to the end of development period j are defined as

X[n]
i j =

j∑
k=1

Y[n]
ik
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and the definition is extended in the obvious way to Xi j, the aggregate, for all claims incurred in
accident period i, of cumulative claim payments to the end of development period j.

A quantity of interest later is the operational time (OT) at the finalisation of a claim. OT was
introduced to the loss reserving literature by Reid (1978), and is discussed by Taylor (2000) and Taylor
and McGuire (2016).

Let the OT for claim n be denoted τ[n], defined as follows. Suppose that claim n belongs to
accident period i[n], and that N̂i[n] is an estimator of the number of claims incurred in this accident

period. Let F[n]
i[n]

denote the number of claims from the accident period finalised up to and including

claim n. Then τ[n] = F[n]
i[n]

/N̂i[n] . In other words, τ[n] is the proportion of claims from the same accident
period as claim n that are finalised up to and including claim n.
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3. The Jurassic Period

The earliest models date generally from the late 1960s. These include the chain ladder and the
separation method, and all their derivatives, such as Bornhuetter–Ferguson and Cape Cod. They are
discussed in Taylor (1986, 2000) and Wüthrich and Merz (2008). The chain ladder’s provenance seems
unclear, but it may well have preceded the 1960s.

These models were based on the notion of “development” of an aggregate of claims over time, i.e.,
the tendency for the total payments made in respect of those claims to increase over time in accordance
with some recognisable pattern. They therefore fall squarely in the class of phenomenological, or
non-causal, models, in which attention is given to only mathematical patterns in the data rather than
the mechanics of the claim process or any causal factors.

Figure 2 is a slightly enhanced version of Figure 1, illustrating the workings of the chain ladder. It
is assumed that a cell (i, j) develops to its successor (i, j + 1) in accordance with the rule

xi, j+1 = f jxi j, (1)

where f j is a parameter describing development, and referred to as a development factor or an
age-to-age factor.

Forecasts are made according to this rule. The trick is to estimate factors f j from past experience,
and in practice they were typically estimated by some kind of averaging of past observations on these
factors, i.e., observed values of xi, j+1/xi j.

Models of this type are very simple, but their most interesting quality is that they are not, in
fact, models at all. The original versions of these models were not stochastic, as is apparent from (1).
Nor is (1) even true over the totality of past experience; it is not the case for a typical data set that
xi, j+1/xi j = f j, constant for fixed j, but varying i. So, the “models” in this group are actually algorithms
rather than models in the true sense.
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Of course, this fault has been rectified over the subsequent years, with (1) replaced by the genuine
model defined by the following conditions:

(a) Each row of the triangle is a Markov chain.
(b) Distinct rows of the triangle are stochastically independent.

(c) Xi, j+1|Xi j is subject to some defined distribution for which E
[
Xi, j+1|Xi j

]
= f jXi j, where f j is a

parameter to be estimated from data.

A model of this sort was proposed by Mack (1993) (“the Mack model”), and much development
of it has followed, though the earliest stochastic formulation of the chain ladder (Hachemeister and
Stanard 1975) should also be credited.

While the formulation of a genuine chain ladder model was immensely useful, the fundamental
structure of the model retains some shortcomings. First, in statistical parlance, it is a multiplicative
row-and-column effect model. This is a very simple structure, in which all rows are just, in expectation,
scalar multiples of one another. This lacks the complexity to match much real-life claim experience.

For example, a diagonal effect might be present, e.g., E
[
Xi, j+1|Xi j

]
= f jgi+ j−1Xi j, in (c), where

gi+ j−1 is a parameter specific to diagonal i + j − 1. A variable inflationary effect would appear in
this form, but cannot be accommodated in the chain ladder model formulated immediately above.
One can add such parameters to the model, but this will exacerbate the over-parameterisation problem
described in the next main dot point.

Rates of claim settlement might vary from one row to another, causing variation in the factors f j
(Fisher and Lange 1973). Again, one can include additional effects in the models, but at the expense of
additional parameters.

Second, even with this simple form, it is at risk of over-parameterisation. The model
of an n × n triangle and the associated forecast are characterised by 2(n− 1) parameters,
f1, . . . , fI−1, Y2,I−1, X3,I−2, . . . , XI1 (actually, the last n − 1 of these are conditioning observations but
function essentially as parameters in the forecast). For example, a 10× 10 triangle would contain 55
observations, would forecast 45 cells, and would require 18 parameters. Over-parameterisation can
increase forecast error.

The Jurassic continued through the 1970s and into the 1980s, during which time it spawned mainly
non-stochastic models. It did, however, produce some notably advanced creatures. Hachemeister and
Stanard (1975) has already been mentioned. A stochastic model of claim development essentially by
curve fitting was introduced by Reid (1978), and Hachemeister (1978, 1980) constructed a stochastic
model of individual claim development.
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4. The Cretaceous Period—Seed-Bearing Organisms Appear

The so-called models of the Jurassic period assumed the general form:

Yi j = g(Y,α) (2)

where g is some real-valued function, Y is the vector containing the entire set of observations as its
components, and α is some set of parameters, either exogenous or estimated from Y. The case of the
chain ladder represented by (1) is an example in which α = {f1, . . . , fI−1}.

Although (2) is not a stochastic model, it may be converted to one by the simple addition of a
stochastic error εij:

Yi j = g(Y,α) + εi j,E
[
εi j

]
= 0 (3)

Note that the Mack model of Section 3 is an example. In addition, with some limitation of g and
εij, (3) becomes a Generalised Linear Model (GLM) (McCullagh and Nelder 1989), specified as follows:

(a) Yi j ∼ F
(
µi j,ϕ/wi j

)
where µi j = E

[
Yi j

]
and F is a distribution contained in the exponential

dispersion family (EDF) (Nelder and Wedderburn 1972) with dispersion parameter ϕ and weights
wi j;

(b) µi j takes the parametric form h
(
µi j

)
= xT

ijβ for some one–one function h (called the link function),
and where xi j is a vector of covariates associated with the (i, j) cell and β the corresponding
parameter vector.

Again, the chain ladder provides an example. The choices h = ln, xT
i, j+1 =

[
0, . . . 0, Xi, j, 0 . . . 0

]
, β =

[ f1, f2, . . .]T yield the Mack model of Section 3.
The Cretaceous period consisted of such models. The history of actuarial GLMs is longer than is

sometimes realised. Its chronology is as follows:

• in 1972, the concept was introduced by Nelder and Wedderburn;
• in 1977, modelling software called GLIM was introduced;
• in 1984, the Tweedie family of distributions was introduced (Tweedie 1984), simplifying the

modelling software;
• in 1990 and later, seminal actuarial papers (Wright 1990; Brockman and Wright 1992) appeared.

GLMs were not widely used in an actuarial context until 1990, and to some extent this reflected
the limitations of earlier years’ computing power. It should be noted that their actuarial introduction
to domestic lines pricing occurred as early as 1979 (Baxter et al. 1980). I might be permitted to add here
a personal note that they were heavily used for loss reserving in all the consultancies with which I was
associated from the early 1980s.

The range of GLM loss reserving applications has expanded considerably since 1990. A few
examples are:

• analysis of an Auto Liability (relatively long-tailed) portfolio (Taylor and McGuire 2004) with:

# rates of claim settlement that varied over time;
# superimposed inflation (SI) (a diagonal effect) that varied dramatically over time and also

over OT (defined in Section 2);
# a change of legislation affecting claim sizes (a row effect);

• analysis of a mortgage insurance portfolio (Taylor and Mulquiney 2007), using a cascade of GLM
sub-models of experience in different policy states, viz.

# healthy policies;



Risks 2019, 7, 82 6 of 18

# policies in arrears;
# policies in respect of properties that have been taken into possession; and
# policies in respect of which claims have been submitted;

• analysis of a medical malpractice portfolio (Taylor et al. 2008), modelling the development of
individual claims, both payments and case reserves, taking account of a number of claim covariates,
such as medical specialty and geographic area of practice; and

• a monograph on GLM reserving (Taylor and McGuire 2016).

It is of note that chain ladder model structures may be regarded as special cases of the GLM.
Indeed, these chain ladder formulations may be found in the literature (Taylor 2011; Taylor and
McGuire 2016; Wüthrich and Merz 2008). However, these form a small subset of all GLM claim models.

5. The Paleogene—Increased Diversity in the Higher Forms

5.1. Adaptation of Species—Evolutionary Models

Recall the general form of GLM set out in Section 4, and note that the parameter vector β is
constant over time. It is possible, of course, that it might change.

Consider, for example, the Mack model of Section 3. One might wish to adopt such a model but
with parameters f 1, . . . , fI−1 varying stochastically from one row to the next. This type of modelling
can be achieved by a simple extension of the GLM framework defined in Section 4. The resulting
model is the following.

Evolutionary (or adaptive) GLM. For brevity here, adopt the notation t = i+ j− 1, so that t indexes
payment period. Let the observations Yi j satisfy the conditions:

(a) Yi j ∼ F
(
µ
(t)
i j ,ϕ/wi j

)
where µ

(t)
i j = E

[
Yi j

]
;

(b) µ
(t)
i j takes the parametric form h

(
µ
(t)
i j

)
= xT

ijβ
(t), where the parameter vector is now β(t) in payment

period t; and
(c) The vector β(t) is now random: β(t) ∼ P

(
.; β(t−1),ψ

)
, which is a distribution that is a natural

conjugate of F(., .) with its own dispersion parameter ψ.

If this is compared with the static GLM of Section 4, then the earlier model can be seen to have
been adjusted in the following ways:

• all parameters have been superscripted with a time index;

• the fundamental parameter vector β(t) is now randomised, with a prior distribution that is
conditioned by β(t−1), the parameter vector at the preceding epoch.

The model parameters evolve thus through time, allowing for the model to adapt to changing
data trends. A specific example of the evolution (c) would be a stationary random walk in which
β(t) = β(t−1) + η(t) with η(t) ∼ P∗(.;ψ), with P∗ now a prior on η(t) and subject to E

[
η(t)

]
= 0.

The mathematics of evolutionary models were investigated by Taylor (2008) and numerical
applications given by Taylor and McGuire (2009). Their structure is reminiscent of the Kalman filter
(Harvey 1989) but with the following important difference that the Kalman filter is the evolutionary
form of a general linear model, whereas the model described here is the evolutionary form of a GLM.

Specifically,

• the Kalman filter requires a linear relation between observation means and parameter vectors,
whereas the present model admits nonlinearity through the link function;

• the Kalman filter requires Gaussian error terms in respect of both observations and priors, whereas
the present model admits non-Gaussian within the EDF.
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One difficulty arising within this type of model is that the admission of nonlinearity often causes the
posterior of β(t) in (c) to lie outside the family of conjugate priors of F at the next step of the evolution,
where β(t) evolves to β(t+1). This adds greatly to the complexity of its implementation.

The references cited earlier (Taylor 2008; Taylor and McGuire 2009) proceed by replacing the
posterior for β(t), which forms the prior for β(t+1), by the natural conjugate of F that has the same mean
and covariance structure as the actual posterior. This is reported to work reasonably well, though with
occasional stability problems in the conversion of iterates to parameter estimates.

5.2. Miniaturisation of Species—Parameter Reduction

The Jurassic models were lumbering, with overblown parameter sets. The GLMs of Section 4
were more efficient in limiting the size of the parameter set, but without much systematic attention
to the issue. A more recent approach that brings the issue into focus is regularised regression, and
specifically the least absolute shrinkage and selection operator (LASSO) model (Tibshirani 1996).

Consider the GLM defined by (a) and (4) in Section 4. At this point, let the data set be quite
general in form. It might consist of the Yi j, as in (3); or of the Y[n]

i j defined in Section 2; or, indeed, of
any other observations capable of forming the independent variable of a GLM. Let this general data set
be denoted byY.

The parameter vector β of the GLM is typically estimated by maximum likelihood estimation. For
this purpose, the negative log-likelihood (actually, negative log-quasi-likelihood) of the observations
Y given β is calculated. This is otherwise known as the scaled deviance, and will be denoted D(Y; β).
The estimate of β is then

β̂ = argmin
β

D(Y; β). (4)

Here, the deviance operates as a loss function. Consider the following extension of this loss function:

L(Y; β) = D(Y; β) + λ||β||p (5)

where || ||p denotes the Lp norm and λ > 0 is a constant, to be discussed further below.
This inclusion of the additional member in (5) converts the earlier GLM to a regularised GLM. In

parallel with (4), its estimate of β is
β̂ = argmin

β
L(Y; β). (6)

Certain special cases of regularised regression are common in the literature, as summarised in
Table 1.

Table 1. Special cases of regularised regression.

λ p Special Case

0 - GLM
>0 1 Lasso
>0 2 Ridge regression

The case of particular interest here is the lasso. According to (5), the loss function is

L(Y; β) = D(Y; β) + λ||β||1 = D(Y; β) + λ
∑

k

|βk| (7)

where the βk are the components of β.
A property of this form of loss function is that it can force many components of β̂ to zero, rendering

the lasso an effective tool for elimination of covariates from a large set of candidates.
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The term λ||β||1 in (7) may be viewed as a penalty for every parameter included in the model.
Evidently, the penalty increases with increasing λ, with the two extreme cases recognisable:

• λ→ 0 : no elimination of covariates (ordinary GLM—see also Table 1);
• λ→∞ : elimination of all covariates (trivial regression).

Thus, the application of the lasso may consist of defining a GLM in terms of a very large number
of candidate covariates, and then calibrating by means of the lasso, which has the effect of selecting a
subset of these candidates for inclusion in the model.

The prediction accuracy of any model produced by the lasso is evaluated by cross-validation,
which consists of the following steps:

(a) Randomly delete one n-th of the data set, as a test sample;
(b) Fit the model to the remainder of the data set (the training set);
(c) Generate fitted values for the test sample;
(d) Compute a defined measure of error (e.g., the sum of squared differences) between the test sample

and the values fitted to it;
(e) Repeat steps (a) to (d) a large number of times, and take the average of the error measures, calling

this the cross-validation error (CV error).

The process just described pre-supposes a data set sufficiently large for dissection into a training
set and a test sample. Small claim triangles (e.g., a 10 × 10 triangle contains only 55 observations) are
not adapted to this. So, cross-validation is a model performance measure suited to large data sets, such
as are analysed by GMs and MLMs.

One possible form of calibration (e.g., McGuire et al. (2018)) proceeds as follows. A sequence of
models is examined with increasing λ, and therefore with the number of covariates decreasing. The
models with small λ tend to be over-parameterised, leading to poor predictive performance; those with
large λ tend to be under-parameterised, again leading to poor predictive performance. The optimal
model is chosen to minimise CV error.

It is evident that, by the nature of this calibration, the lasso will be expected to lead to high
forecast efficiency.

Figure 3 provides a numerical example of the variation of CV error with the number of parameters
used to model a particular data set.
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The lasso is a relatively recent addition to the actuarial literature, but a number of applications
have already been made. Li et al. (2017) and Venter and Şahın (2018) used it to model mortality. Gao
and Meng (2018) constructed a loss reserving lasso, modelling a 10 × 10 aggregate claim triangle
and using a model broadly related to the chain ladder. McGuire et al. (2018) also constructed a loss
reserving lasso, but modelling a large data set of individual claims containing a number of complex
data features, some of which will be described in Section 6.

5.3. Granular (or Micro-) Models

Granular models, sometimes referred to as micro-models, are not especially well-defined.
The general idea is that they endeavour to extend modelling into some of the detail that underlies the
aggregate data in a claim triangle. For example, a granular model may endeavour to model individual
claims in terms of the detail of the claim process.

Hachemeister’s (1978, 1980) individual claim model has already been mentioned. The early
statistical case estimation models used in industry were also granular. See, for example, Taylor and
Campbell (2002) for a model of workers compensation claims in which claimants move between
“active” and “incapacitated” states, receiving benefits for incapacity and other associated benefits, such
as medical costs.

The history of granular models is generally regarded as having commenced with the papers of
Norberg (1993, 1999) and Hesselager (1994). These authors represented individual claims by a model
that tracked a claim process through a sequence of key dates, namely accident date, notification date,
partial payment date, . . . , partial payment date, final payment date, and closure date. The process is a
marked process in the sense that each payment date is tagged with a payment amount (or mark).

This type of model has been implemented by Pigeon et al. (2013, 2014) and Antonio and Plat
(2014). Comment will be made on the performance of these models in Section 8.2.

Distinction is sometimes made between aggregate and granular models, but it is debatable. The literature
contains models with more extensive data inputs than just claim payment triangles. For example, the
payment triangle might be supplemented by a claim count triangle, as in the Payments per Claim Incurred
model described in Taylor (2000), or in the Double Chain Ladder of Miranda et al. (2013).

These models certainly use more extensive data than a simple claim amount triangle, but the data
are still aggregated. It is more appropriate to regard claim models as forming a spectrum that varies
from a small amount of conditioning data at one end (e.g., a chain ladder) to a very large amount at the
other (e.g., the individual claim models of Pigeon, Antonio and Denuit).

6. The Anthropocene—Intelligent Beings Intervene

6.1. Artificial Neural Networks in General

By implication, the present section will be concerned with the application of machine learning
(ML) to loss reserving. Once again, the classification of specific models as MLMs or not may be
ambiguous. If ML is regarded as algorithmic investigation of patterns and structure in data with
minimal human intervention, then the lasso of Section 5.2 might be regarded as an MLM.

There are other contenders, such as regression trees, random forests, support vector machines,
and clustering (Wüthrich and Buser 2017), but the form of ML that has found greatest application to
loss reserving is the artificial neural network (ANN), and this section will concentrate on these.

Just a brief word on the architecture of a (feed-forward) ANN, since it will be relevant to the
discussion in Section 8.3. Using the notation of Kuo (2018), let the ANN input be a vector x. Suppose
there are L− 1 (≥ 1) hidden layers of neurons, each layer a vector, with values denoted by h[1], . . . , h[L−1];
a vector output layer, with a value denoted by h[L]; and a vector prediction ŷ of some target quantity y.
Let the components of h[`] be denoted by h[`]j .

The relevant computational relations are
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h[`]j = g[`]
(
z[`]j

)
, ` = 1, 2, . . . , L (8)

z[`] =
(
w[`]

)T(
h[`−1]

)
+ b[`], ` = 1, 2, . . . , L with the convention h[0] = x (9)

ŷ = h[L] (10)

where z[`] is a vector with components z[`]j , the g[`] are prescribed activation functions, the h[`]j are called

activations, w[`] is a vector of weights, and b[`] is a vector of biases. The weights and biases are selected
by the ANN to maximise the accuracy of the prediction.

The hidden layers need not be of equal length. The activation functions will usually be nonlinear.
An early application of an ANN was given by Mulquiney (2006), who modelled an earlier version

of the data set used by McGuire et al. (2018) in Section 5.2. This consisted of a unit record file in
respect of about 60,000 Auto Bodily Injury finalised claims, each tagged with its accident quarter,
development quarter of finalisation, calendar quarter of finalisation, OT at finalisation and season of
finalisation (quarter).

Prior GLM analysis of the data set over an extended period had been carried out by Taylor
and McGuire (2004), as described in Section 4, and they found that claim costs were affected in a
complex manner by the factors listed there. The ANN was able to identify these effects. For example, it
identified:

• an accident quarter effect corresponding to the legislative change that occurred in the midst of the
data; and

• SI that varied with both finalisation quarter and OT.

Although the ANN and GLM produced similar models, the ANN’s goodness-of-fit was somewhat
superior to that of the GLM.

Interest in and experimentation with ANNs has accelerated in recent years. Harej et al. (2017)
reported on an International Actuarial Association Working Group on individual claim development
with machine learning. Their model was a somewhat “under-powered” ANN that assumed separate
chain ladder models for paid and incurred costs, respectively, for individual claims, and simply
estimated the age-to-age factors.

However, since both paid and incurred amounts were included as input information in both
models, they managed to differentiate age-to-age factors for different claims, e.g., claims with small
amounts paid but large amounts incurred showed higher development of payments.

A follow-up study, with a similar restriction of ANN form, namely pre-supposed chain ladder
structure, was published by Jamal et al. (2018).

Kuo (2018) carried out reserving with deep learning ANN, i.e., with multiple hidden layers. In
this case, no model structure was pre-supposed. The ANN was applied to 200 claim triangles (50
insurers, each four lines of business) by Meyers and Shi (2011), and its results compared with those
generated by five other models, including chain ladder and several from Meyers (2015).

The ANN out-performed all contenders most of the time and, in other cases, was only slightly
inferior to them. This is an encouraging demonstration of the power of the ANN, but the small triangles
of aggregate data do not exploit the potential of the ANN, which can be expected to perform well on
large data sets that conceal complex structures.

The pace of development has picked up over the past couple of years. Wüthrich (2018a, 2018b)
has been active. Other contributions include Ahlgren (2018) and Gabrielli (2019).

6.2. The Interpretability Problem

GMs and MLMs can greatly improve modelling power in cases of data containing complex
patterns. GMs can delve deeply into the data and provide valuable detail of the claim process. Their
formulation can, however, be subject to great, even unsurmountable, difficulties. MLMs, on the
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other hand, for the large part provide little understanding, but may be able to bypass the difficulties
encountered by GMs. They may also be cost-effective in shifting modelling effort from the actuary to
the algorithm (e.g., lasso).

MLMs’ greatest obstacle to useful implementation is the interpretability problem. Some recent
applications of ANNs have sought to address this. For example, Vaughan et al. (2018) introduce their
explainable neural network (xNN), in which the ANN architecture (8) to (10) is restricted in such a
way that

ŷ = µ+
K∑

k=1

γk fk
(
βT

k x
)

for scalar constants µ, γ1, . . . , γK, vector constants β1, . . . , βK, and real-valued functions fk.
This formulation is an attempt to bring known structure to the prediction ŷ. It is similar to the use

of basis functions in the lasso implementation of McGuire et al. (2018). The use of xNNs is as yet in its
infancy but offers promise.

7. Model Assessment

The assessment of a specific loss reserving model needs to consider two main factors:

• the model’s predictive efficiency; and
• its fitness for purpose.

7.1. Adaptation of Species—Evolutionary Models

Let R denote the quantum of total liability represented by the loss reserve, and R̂ the statistical
estimate of it. Both quantities are viewed as random variables, and the forecast error is R− R̂, also a
random variable.

Loss reserving requires some knowledge of the statistical properties of R̂. Obviously, the mean
E
[
R̂
]

is required as the central estimate. Depending on the purpose of the reserving exercise, one may
also require certain quantiles of R̂ for the establishment of risk margins and/or capital margins, but an
important statistic will be the estimate of forecast error.

One such estimate is the mean square error of prediction (MSEP), defined as

MSEP
[
R− R̂

]
= E

[
R− R̂

]2
. (11)

The smaller the MSEP, the greater the predictive efficiency of R̂, so a reasonable choice of model
would often be that which minimises the MSEP (maximises prediction efficiency). As long as one is
not concerned with quantiles other than moderate, e.g., 75%, this conclusion will hold. If there is a
major focus on extreme quantiles, e.g., 99%, the criterion for model selection might shift to the tail
properties of the distribution of R̂.

It may often be assumed that R̂ is unbiased, i.e., E
[
R− R̂

]
= 0, but (11) may remain a reasonable

measure of forecast error in the absence of this condition.
The structure of MSEP is discussed at some length in Taylor (2000, sec. 6.6) and Taylor and

McGuire (2016, chp. 4). Suffice to say here that it consists of three additive components, identified as:

• parameter error;
• process error; and
• model error.

As discussed in the cited references, model error is often problematic and, for the purpose of the
present subsection, MSEP will be taken to be the sum of just parameter and process errors.

In one or two cases, MSEP may be obtained analytically, most notably in the case of the Mack
model, as set out in detail in Mack (1993). The MSEP of a GLM forecast may be approximated by the
delta method, discussed in Taylor and McGuire (2016, sec. 5.2).
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However, generally, for non-approximative estimates, two methods are available, namely:

• the bootstrap (Taylor and McGuire 2016, sec. 5.3); and
• (in the case of Bayesian models) Markov Chain Monte Carlo (MCMC) (Meyers 2015).

7.2. Fitness for Purpose

In certain circumstances, forecasts of ultimate claim cost may be required at an individual level.
Suppose, for example, a self-insurer adopts a system of devolving claim cost to cost centres, but has
not the wherewithal to formulate physical estimates of those costs. Then, a GM or MLM at the level of
individual claims will be required.

If a loss reserving model is required not only for the simple purpose of entering a loss reserve
in a corporate account, but also to provide some understanding of the claims experience that might
be helpful to operations, then a more elaborate model than the simplest, such as chain ladder, would
be justified.

Such considerations will determine the subset of all available models that are fit for purpose. Within
this subset, one would, in principle, still usually choose that with the maximum predictive efficiency.

8. Predictive Efficiency

The purpose of the present section is to consider the predictive efficiency of GMs and MLMs.
It will be helpful to preface this discussion with a discussion of cascaded models.

8.1. Cascaded Models

A cascaded model consists of a number of sub-models with the output of at least one of these
providing input to another. An example is the Payments per Claim Finalized model discussed by
Taylor (2000). This consists of three sub-models, as follows:

• claim notification counts;
• claim finalisation counts; and
• claim finalisation amounts.

The sub-models are configured as in Figure 4.
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By contrast, the chain ladder consists of just a single model of claim amounts.
It is evident that increasing the number of sub-models within a model must add to the number of

parameters, and it is well-known that, although too few parameters will lead to a poor model due to
bias in forecasts, an increase in the number of parameters beyond a certain threshold will lead to poor
predictive efficiency (over-parameterisation).

A cascaded model of n sub-models would typically generate less biased forecasts than one of n− 1
sub-models. However, the increased number of parameters might degrade predictive efficiency to the
point where the more parsimonious model, even with its increased bias, is to be preferred.

It follows that the addition of a further sub-model will be justified only if the bias arising from its
exclusion is sufficiently severe. This is illustrated in the empirical study by Taylor and Xu (2016) of
many triangles from the data set of Meyers and Shi (2011).

They find that many of them are consistent with the assumptions of the chain ladder, in which
case that model out-performs more elaborate cascaded models. However, there are also cases in which
the chain ladder is a poor representation of the data, calling for a more elaborate model. In such cases,
the cascaded models produce the superior performance.

8.2. Granular Models

The discussion of Section 8.1 perhaps sounds a cautionary note in relation to GMs. These are, by
their nature, cascaded, e.g., a sub-model for the notification process, a sub-model for the partial payment
process, etc. They may, in fact, be very elaborate, in which case the possibility of over-parameterisation
becomes a concern.

A salutary remark in the consideration of GMs is that the (aggregate) chain ladder has minimum
variance for over-dispersed Poisson observations (Taylor 2011). So, regardless of how one expands the
scope of the input data (e.g., more precise accident and notification dates, individual claim data, etc.), the
forecast of future claim counts will not be improved as long as the chain ladder assumptions are valid.

The GM literature is rather bereft of demonstration that a GM has out-performed less elaborate
contenders. It is true that Huang et al. (2016) make this claim in relation to the data considered by
them. However, a closer inspection reveals that their GM is essentially none other than the Payments
per Claim Finalized model discussed in Section 8.1.

The model posits individual claim data, and generates individual claim loss reserves. However,
the parameters controlling these individual reserves are not individual-claim-specific. So, the model
appears to lie somewhere between an individual claim model and an aggregate model.

This does not appear to be a case of a GM producing predictive efficiency superior to that of
an aggregate model. Rather, it is a case of a cascaded model producing efficiency superior to that of
uncascaded models.

There is one other major characteristic of GMs that requires consideration. A couple of
examples illustrate.

Example 1. Recall Antonio and Plat (2014), whose model is of the type mentioned in Section 5.3, tracing
individual claims through the process of occurrence, notification, partial payments and closure. Claim payments
occur according to a distribution of delays from notification but, conditional on these, the severities of individual
payments in respect of an individual claim are equi-distributed and stochastically independent.

In some lines of business, perhaps most but especially in Liability lines, this assumption will not withstand
scrutiny. The payments of a medium-to-large claim typically tend to resemble the following profile: a series of
relatively small payments (fees for incident reports, preliminary medical expenses), a payment of dominant size
(settlement of agreed liability), followed possibly by a smaller final payment (completion of legal expenses).

Consequently, if a large payment (say $500 K) is made, the probability of another of anywhere near the
same magnitude is remote. In other words, the model requires recognition of dependency between payments.
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Example 2. (From Taylor et al. (2008)). Consider a GM of development of case estimates over time. Suppose an
estimate of ultimate liability in respect of an individual claim increases 10-fold, from $5 K to $50 K, over a particular
period. Then, typically, the probability of a further 10-fold increase, from $50 K to $500 K, in the next period will be low.

The reason is that the first increase signifies the emergence of information critical to the quantum of the claim, and
it is unusual that further information of the same importance would emerge separately in the following period. Again,
the random variables describing the development of a claim cannot be assumed to be stochastically independent.

Taylor et al. (2008) suggest an estimation procedure that allows for any such dependency without
the need for its explicit measurement.

The essential point to emerge from this discussion is that the detail of a claim process usually
involves a number of intricate dependencies. One ignores these at one’s peril, but taking account of them
may well be problematic, since it opens the way to a hideously complex model with many dependency
parameters. This, in turn, raises the spectre of over-parameterisation, and its attendant degradation of
predictive efficiency, not to mention possible difficulty in the estimation of the dependency parameters.

This by no means condemns GMs, but it appears to me that the jury is still out on them; they have
yet to prove their case.

8.3. Artificial Neural Networks

ANNs are effective tools for taking account of obscure or complex data structures. Recall the
data set used by Mulquiney’s (2006) ANN in Section 6, which had been previously modelled with a
GLM. It is evident from the description of the results that the GLM would have required a number of
interactions:

• for the legislative effect, interaction between accident quarter and OT;
• for SI, interaction between finalisation quarter and OT.

The seeking out of such effects in GLM modelling (feature selection) can be difficult,
time-consuming and expensive. This point is made by McGuire et al. (2018) in favour of the
lasso, which is intended to automate feature selection.

The ANN is an alternative form of automation. As can be seen from the model form set out in (8)
to (10), no explicit feature selection is attempted. The modelling is essentially an exercise in nonlinear
curve-fitting, the nonlinearity arising from the activation functions. The number of parameters in the
model can be controlled by cross-validation, as described in Section 5.2.

To some extent ANNs provide a rejoinder to the dependency issues raised in Section 8.2. Identification
of dependencies becomes a mere special case of feature selection, and is captured obscurely by (8) to (10).

On the other hand, the abstract curve-fitting nature of ANNs renders them dangerously susceptible
to extrapolation errors. Consider SI, for example. In the forecast of a loss reserve, one needs to make
some assumption for the future. A GLM will have estimated past SI, and while this might not be
blindly extrapolated into the future, it can provide valuable information, perhaps to be merged with
collateral information, leading to a reasoned forecast.

In the case of an ANN, any past SI will have been “modelled” in the sense that the model may
include one or more functions that vary over calendar quarter, but these curves may interact with
other covariates, as mentioned above, and the extraction of all this information in an organised and
comprehensible form may present difficulties. Mulquiney (2006) alludes to this issue.

All actuaries are familiar with text-book examples of curves (e.g., polynomials) that fit well to past
data points, but produce wild extrapolations into the future. Blind extrapolation of ANNs can, on occasion,
produce such howlers. Suffice to say that care and, possibly, skill is required in their use for forecasting.

9. The Watchmaker and the Oracle

The tendency of GMs (watchmaking) is to increase the number of cascaded models (relative
to aggregate models), first to individual claim modelling, then perhaps to individual transaction
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modelling, to dissect the available data in ever greater detail, to increase the number of model
components and the complexity of their connections, and then assemble an integrated model from all
the tiny parts.

If this can be achieved, it will provide powerful understanding of the claim process in question.
However, as indicated in Section 8.2, the process is fraught with difficulty. The final model may be
over-simplified and over-parameterised, with unfavourable implications for predictive efficiency. In
addition, the issue of modelling complex stochastic dependencies may be difficult, or even impossible,
to surmount.

One may even discover that all sub-models pass goodness-of-fit tests, and yet the integrated
model, when assembled, does not. This can arise because of inappropriate connections between the
sub-models or overlooked dependencies.

An example of this can occur in the workers compensation framework mentioned in Section 5.3.
One might successfully model persistence in the active state as a survival process, and persistence in
the incapacitated state as a separate survival process, and then combine the two to forecast a worker’s
future incapacity experience.

However, the active survival intensities may not be independent of the worker’s history. A claim
recently recovered from incapacity may be less likely to return to it over the following few days than a
worker who has never been incapacitated. Failure to allow for this dependency (and possibly other
similar ones) will lead to unrealistic forecasts of future experience.

The behaviour of the ANN is Oracle-like. It is presented with a question. It surveys the available
information, taking account of all its complexities, and delivers an answer, with little trace of reasoning.

It confers the benefit of bypassing many of the challenges of granular modelling, but the price
to be paid for this is an opaque model. This is the interpretability problem. Individual data features
remain hidden within the model. They may also be sometimes poorly measured without the human
assistance given to more structured models. For example, diagonal effects might be inaccurately
measured, but compensated for by measured, but actually nonexistent, row effects. Similar criticisms
can be levelled at some other MLMs, e.g., lasso.

The ANN might be difficult to validate. Cross-validation might ensure a suitably small MSEP
overall. However, if a poor fit is found in relation to some subset of the data, one’s recourse is unclear.
The abstract nature of the model does not lend itself easily to spot-correction.

10. Conclusions

Aggregate models have a long track record. They are demonstrably adequate in some situations,
and dubious to unsuitable in others. Cases may easily be identified in which a model as simple as the
chain ladder works perfectly, and no other approach is likely to improve forecasting with respect to
either bias or precision.

However, these simple models are characterised by very simple assumptions and, when a data
set does not conform to these assumptions, the performance of the simple models may be seriously
disrupted. Archetypal deviations from the simple model structures are the existence of variable
SI, structural breaks in the sequence of average claim sizes over accident periods, or variable claim
settlement rates (see e.g., Section 4).

When disturbances of this sort occur, great flexibility in model structure may be required. For a
few decades, GLMs have provided this (see Section 4). GLMs continue to be applicable and useful.
However, the fitting of these models requires considerable time and skill, and is therefore laborious
and costly.

One possible response to this is the use of regularised regression, and the lasso in particular
(Section 5.2). This latter model may be viewed as a form of MLM in that it automates model selection.
This retains all the advantages of a GLM’s flexibility, but with the reduced time and cost of calibration
flowing from automation, and also provides a powerful guard against over-parameterisation.
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The GMs of Section 5.3 are not a competitor of the GLM. Rather, they attempt to deconstruct the
claim process into a number of components and model each of these. GLMs may well be used for the
component modelling.

This approach may extract valuable information about the claim process that would otherwise
be unavailable. However, as pointed out in Section 8.2, there will often be considerable difficulty in
modelling some dependencies in the data, and failure to do so may be calamitous for predictive accuracy.

Most GMs are also cascaded models and, indeed, some are extreme cases of these. Section 8.1
points out that the complexity of cascaded models, largely reflected in the number of sub-models,
comes with a cost in terms of enlarged predictive error (MSEP). They are therefore useful only when
the failure to consider sub-models would cause the introduction of prediction bias worse than the
increase in prediction error caused by their inclusion.

The increased computing power of recent years has enabled the recruitment of larger data sets,
with a greater number of explanatory variables for loss reserving, or lower-level, such as individual
claim, data. This can create difficulties for GMs and GLMs. The greater volume of data may suggest
greater model complexity. It may, for example, necessitate an increase in the number of sub-models
within a GLM.

If a manually constructed GLM were to be used, the challenges of model design would be
increased. It is true, as noted above, that these are mitigated by the use of a lasso (or possibly other
regularisation), but not eliminated.

Automation of such a model requires a selection of the basis functions mentioned in Section 6.2.
It is necessary that the choice allow for interactions of all orders to be recognised in the model. As
the number of potential covariates if the model increases, the number of interactions can mount
very rapidly, possibly to the point of unworkability. This will sometimes necessitate the selection of
interaction basis functions by the modeler, at which point erosion of the benefits of automated model
design begins.

ANNs endeavour to address this situation. Their very general structure (see (8) to (10)) renders
them sufficiently flexible to fit a data set usually as well as a GLM, and to identify and model
dependencies in the data. They represent the ultimate in automation, since the user has little
opportunity to intervene in feature selection.

However, this flexibility comes at a price. The output function of the ANN, from which the model
values are fitted to data points, becomes abstract and inscrutable. While providing a forecast, the
ANN may provide the user with little or no understanding of the data. This can be dangerous, as
the user may lack control over extrapolation into the future (outside the span of the data) required
for prediction.

The literature contains some recent attempts to improve on this situation with xNNs, which
endeavor to provide some shape for the network’s output function, and so render it physically
meaningful. For example, the output function may be expressed in terms of basis functions parallel to
those used for a lasso. However, experience with this form of lasso indicates that effort may still be
required for interpretation of the model output expressed in this form.

In summary, the case is still to be made for both GMs and MLMs. Particular difficulties are
embedded in GMs that may prove insurmountable. MLMs hold great promise but possibly require
further development if they are to be fully domesticated and realise their loss-reserving potential.

A tantalising prospect is the combination of GMs and ANNs to yield the best of both worlds.
To the author’s knowledge, no such model has yet been formulated, but the vision might be the
definition of a cascaded GM with one or more ANNs used to fit the sub-models or the connections
between them, or both.
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