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Abstract: Different from classical Bühlmann and Bühlmann Straub credibility models in which
independence between different risks are assumed, this paper takes dependence between risks into
consideration and extends the classical Bühlmann model by introducing a common stochastic shock
element. What is more, instead of relying on complete information of historical data, we aim to derive
the premium using quantile of the available data. By the method of linear regression, we manage
to obtain the quantile credibility premium with common effects. Our result is the generalization
of existing results in credibility theory. Both quantile credibility model proposed by Pitselis (2013)
and credibility premium for models with dependence induced by common effects obtained by
Wen et al. (2009) are special cases of our model. Numerical simulations are also presented to illustrate
the impact of quantile credibility with common effect.
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1. Introduction

Credibility theory provides a fundamental approach for pricing insurance product. It was first
introduced to actuarial science as a measure of credence to be attached to a particular body of experience
for rate making purposes. A 0 credibility means the data is too small to be of any usage and 1 refers to
the case that the data is fully credible for rate making. It is concerned with establishing measures of
credibility and standards of full credibility. The earliest paper on the standard for full credibility was
presented by Mowbray (1914), in the Proceedings of the Casualty Actuarial Society. When an estimate
is to be made using newly acquired data, an important question that classical credibility theory
answers is how to reasonably combine the data based on past experience and not fully credible
new data to decide premiums to be charged. If there is enough recent data, full credibility is
achieved; the prediction will be based on the recent data only accordingly. Otherwise, only partial
credibility is attributed to the data and the prediction depends on the manual rate too. The problem
with classical credibility is that it is based on arbitrary selection of the coverage probability and
the accuracy parameter. Besides, the assumption of loss distribution has to be imposed ahead of
time. Later on, a distribution free credibility estimation method is introduced by Bühlmann. It is
an important breakthrough in the development of credibility theory and Bühlmann uses rigorous
statistical framework of optimal prediction to study credibility premium. Specifically, let X1, X2, . . . , Xk
denote k risk groups, Θ1, Θ2, . . . , Θk denote k random variables associated with the risk groups. It is
assumed that the pair of random variables (Xj, Θj), j = 1, 2, . . . , k are independent across individuals
(independent over risks) and for each j, (Xj1, Xj2, . . . , XjN) are conditionally independent given
Θj(conditionally independence over time). For selected risk group j, each Xj has the same unknown
probability distribution for any time period, both for the experienced periods (Xj1, . . . , XjN), and for
future outcomes (Xj(N+1), Xj(N+2), . . . ). Θj is constant through time for the risk group j.
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According to Bühlmann, the average values of the mean and variance among risks are assumed
to be known. The variance of the hypothetical means for the population is available as well.
Bühlmann utilizes both the variability to be expected from observations and differences in the means
among risks in the population to determine the possible future loss of risk. The credibility premium
showed by Bühlmann is given as µ̂(Θj) = ZX̄j + (1− Z)µ, where µ is the overall mean for k risk
groups and Z is a proper weight to the sample mean X̄j of group j. The way of calculating the
weight Z is actually an optimization problem: minE[(ZX̄j + (1− Z)µ− µ(Θj))

2] in which µ(Θj) is
the mean of the risk group j for different time periods. Note that in reality, the assumptions of
independently identically distribution of random variables {Xj1, Xj2, . . . , XjN , . . . } are often violated.
Bühlmann and Straub (1970) address this issue by assuming the means of the random variables are
equal for the selected risk, but the process variances are inversely proportional to the size of the risk
during each observation period and thus develope the credibility model with weights.

Realizing that more and more empirical studies have shown that under certain scenario cases,
conditional dependence of claims on time have been observed to be more appropriate to reflect the reality,
see for example, Bolancé and Bolancé (2003); Purcaru and Denuit (2002, 2003); Frees et al. (1999, 2001)
and references therein. Under other situations, we find out that claims are dependent on risk categories.
For example, house insurance for which geographic proximity of the insureds may result in exposures to
common catastrophes. See e.g., Wu and Zhou (2006); Wang (1998); Wang et al. (1997) and the references
therein. With regard to credibility pricing, there are few scholars who have examined such problems that
claims depend on individual risks; the only available ones are Wen et al. (2009) and Yeo and Valdez (2006).

On the other hand, the application of quantile in actuarial science has drawn some scholars’
attention. The classical examples are the quantile risk measure or tail value at risk. Reference Pitt (2006)
shows the importance of modeling quantiles given the growing interest of regulators and others who
use stochastic approaches to evaluate insurance liabilities and risk margins. Reference Pitselis (2013)
examines the quantile credibility model after first introduced the idea of quantile into the framework
of credibility at Insurance: Mathematics and Economics (IME) conference in 2007. In the field
of rate-making, reference Kudryavtsev (2009) models quantile regression with safety loading and
describes the advantages of the quantile regression approach. Besides, reference Pitselis (2016) and
Pitselis (2017) discuss applications of quantile credibility in risk measure. For the credibility estimator,
in addition to the classical ordinary least-square estimation, the quantile regression is proposed by
reference Bozikas and Pitselis (2020) to address the non-normal error distributions and contaminated
data due to outlier events. Reference Pitselis (2020) studies the credibility models for regression
quantiles with hierarchical classifications.

Our interest is to study the quantile credibility model under common effects and the rest of paper
is organized as follows. Section 2 presents the problem formulation. Section 3 derives the quantile
credibility with common effects and some asymptotic behaviors are briefly discussed. In Section 4,
numerical simulations are presented to demonstrate our results. Section 5 concludes the paper with
some further remarks.

2. Formulation

In this section, we introduce the assumptions and notation we need in our model. We assume
that X = (X1, X2, . . . , Xk) denote k risk groups under observation and let Θ = (Θ1, Θ2, . . . , Θk) denote
k random variables associated with the risk groups. The k risk categories can be k individuals or
things of the same nature. In our framework, we assume that there is a type of dependence among
k individuals and this is delineated by a common effect random variable. For a given risk type
j, j = 1, 2, . . . , k, the distribution of Xj is based on the risk parameter Θj and common effect random
variable Λ. We use 1k = (1, 1, . . . , 1)′ to denote a k dimensional column vector with 1 in all of the k
entries and use Ik to denote a k× k identity matrix. In particular, ej = (0, . . . , 1, . . . , 0)′ is a standard
unit column vector with the jth component being 1 and the rest of the components being 0. For the
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sake of convenience, we also assume that for a given j, Xj = (Xj1, Xj2, . . . , Xjn)
′, that means the time

horizons for any group j are the same. Furthermore, we assume that

1. The common effect random variable Λ has known expectation E(Λ) = µΛ and variance
Var(Λ) = σ2

Λ.
2. Given Λ, the random vectors (Xj, Θj) are mutually independent and identically distributed.
3. Given risk category j, the common effect Λ and parameter Θj, the claims Xj1, Xj2, . . . , Xjn

are conditionally independent and identically distributed (i.i.d.) with distribution function
Fj(Xj|Θj, Λ).

The pth quantile of a risk variable Xj with cumulative distribution function Fj(x) is defined as
ξpj = F−1

pj = inf{x, Fj(x|Θj, Λ) ≥ p}. A moment of reflections reveals that Fj(x) ≥ p if and only if
ξpj ≤ x. Putting all the pth quantile for the k risk categories together, we have ξp = (ξp1, ξp2, . . . , ξpk)

′.
When the distribution of Xj is not specified, the natural distribution free estimator of pth quantile,
ξpj, is the empirical pth quantile, ξ̂pj. Similarly we have ξ̂p = (ξ̂p1, ξ̂p2, . . . , ξ̂pk)

′. Given a sample
Xj1, Xj2, . . . , Xjn of a continuous random variable Xj, the empirical distribution function can
be defined as

Fn(ξpj) =
∑n

i=1 1{Xji≤ξpj}

n
.

The corresponding empirical quantile function can be defined as

ξ̂pj = n(
i
n
− p)Xj(i−1) + n(p− i− 1

n
)Xj(i) for

i− 1
n
≤ p ≤ i

n
, i = 1, 2, . . . , n.

More detailed information of quantile can be referred to Herbert and Nagaraja (2003) or Parzen (1979).
To proceed, we use the following assumptions to describe the center and dispersion of the

observation ξ̂pj.

4. E[ξ̂pj|Θj, Λ] = Ξp(Θj, Λ) and Var(ξ̂pj|Θj, Λ) = σ2
p(Θj, Λ),

E[σ2
p(Θj, Λ)|Λ] = σ2

1p(Λ) and E[σ2
1p(Λ)] = σ2

1p.
Having observed the risks for n years of experience, we want to estimate Ξp(Θj, Λ), which can
be interpreted as the risk premium at pth quantile.

The structure parameters assume the following conditions:
5. E[Ξp(Θj, Λ)|Λ] = Ξp(Λ), E[Ξp(Λ)] = Ξp, Var[Ξp(Λ)] = σ2

op and
Var[Ξp(Θj, Λ)|Λ] = σ2

2p(Λ), E[σ2
2p(Λ)] = σ2

2p.

To proceed, we first present the lemma below—it is a classical result in multi-variate analysis and
more details can be found in Wen et al. (2009).

Lemma 1. Let (X′1×p, Y′1×p) be a random vector with expectation (µ′X , µ′Y) and covariance matrix

Ξ =

(
ΞXX
ΞYX

ΞXY
ΞYY

)
(1)

then,

1. E(Y− A− BX)(Y− A− BX)′ can be minimized by A = µY − ΞYXΞ−1
XXµX and B = ΞYXΞ−1

XX .
2. Assumed that µY = BµX , then E(Y− BX)(Y− BX)′ can be minimized by

B = (ΞYX +
(µY − ΞYXΞ−1

XXµX)µ
′
X

µ′XΞ−1
XXµX

)Ξ−1
XX .

Classical Bühlmann credibility theory and Bühlmann Straub credibility theory are essentially
optimization problems. Our main interest lies in the framework of quantile credibility, so we briefly
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show its derivation as below. Note that quantile credibility is a special case of our model when
assuming that Λ is a constant. Since there is no common effects we just need to consider risk groups
for derivation.

Y = Ξp(Θ), X = ξ̂p, µY = µX = Ξp1k,

and
σ2

p(Θ)Ik = Var(ξ̂p|Θ), E[σ2
p(Θ)] = σ2

1pIk, σ2
0pIk = Var(Ξp(Θ))

therefore,
ΞXX = Var(ξ̂p) = Eσ2

p(Θ) + Var(Ξp(Θ)) = (σ2
1p + σ2

0p)Ik.

and
ΞYX = Cov(Ξp(Θ), ξ̂p) = (Ξ2

p + σ2
0p − Ξ2

p)Ik = σ2
0pIk.

According to the lemma above, we just need to combine what we have shown above:

µY + ΞYXΞ−1
XX(X− µX) = Ξp1k +

σ2
0p

σ2
1p + σ2

0p
Ik(ξ̂p − Ξp1k) =

σ2
1p

σ2
1p + σ2

0p
Ξp1k +

σ2
0p

σ2
1p + σ2

0p
ξ̂p1k

and thus reproduces the result established by Pitselis (2013).

3. Credibility Models

To carry out our premium calculations, we first present a couple of lemmas below.

Lemma 2. Assume the Assumptions (1)–(5) hold, then we have the following results:

1. E[ξ̂p] = Ξp1k

2. Ξξ̂p ξ̂p
= σ2

1pIk + σ2
2pIk + σ2

0p1k1
′
k

3. Ξ−1
ξ̂p ξ̂p

= 1
σ2

1p+σ2
2p
(Ik −

σ2
0p1k1

′
k

σ2
1p+σ2

2p+kσ2
0p
)

4. Ξξ̂pj ,ξ̂p
= σ2

2pe′j + σ2
0p1
′
k

Proof. For part (1), we have

E[ξ̂p] = E[E[ξ̂p|Θ, Λ]]

= EE[(ξ̂p1, ξ̂p2, . . . , ξ̂pk)
′|Θ, Λ]

= E(Ξp(Θ1, Λ), Ξp(Θ2, Λ), . . . , Ξp(Θk, Λ))′ = (Ξp, Ξp, . . . , Ξp)
′ = Ξp1k.

(2)

Regarding part (2), realizing that

Ξξ̂p ,ξ̂p
= E[Var(ξ̂p|Θ, Λ)] + Var[E(ξ̂p|Θ, Λ)]. (3)

Var(ξ̂p|Θ, Λ)k×k =


σ2

p(Θ1, Λ)

0
. . .
0

0
σ2

p(Θ2, Λ)

. . .
0

. . .

. . .

. . .

. . .

0
0
. . .
σ2

p(Θk, Λ)

 . (4)

Therefore,
E[Var(ξ̂p|Θ, Λ)] = σ2

1pIk. (5)
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On the one hand,

Var(E(ξ̂p|Θ, Λ)) = EVar[E(ξ̂p|Θ, Λ)|Λ] + VarE[E(ξ̂p|Θ, Λ)|Λ]

= E[Var(Ξp(Θ1, Λ), Ξp(Θ2, Λ), . . . , Ξp(Θk, Λ)|Λ)]

+VarE[(Ξp(Θ1, Λ), Ξp(Θ2, Λ), . . . , Ξp(Θk, Λ)|Λ)]

= E(σ2
2p(Λ))Ik + Var(Ξp(Λ)1′k)

= σ2
2pIk + σ2

0p1k1
′
k.

(6)

Combining the results of Equations (5) and (6), we finish the proof of second part above. Based on
the result of part (2), we can easily verify that

Ξ−1
ξ̂p ξ̂p

=
1

σ2
1p + σ2

2p
(Ik −

σ2
0p1k1

′
k

σ2
1p + σ2

2p + kσ2
0p
) (7)

Last part of the lemma can be shown as follows:

Ξξ̂pj ,ξ̂p
= E[Cov(ξ̂pj, ξ̂p|Θ, Λ)] + Cov[E(ξ̂pj|Θ, Λ), E(ξ̂p|Θ, Λ)]

= Cov(Ξp(Θj, Λ), [Ξp(Θ1, Λ), Ξp(Θ2, Λ), . . . , Ξp(Θk, Λ)]′)

= E[Cov(Ξp(Θj, Λ), (Ξp(Θ1, Λ), Ξp(Θ2, Λ), . . . , Ξp(Θk, Λ))′|Λ)]

+Cov(E(Ξp(Θj, Λ)|Λ), E(Ξp(Θ1, Λ)|Λ), . . . , E(Ξp(Θk, Λ)|Λ))

= σ2
2pe′j + Cov(Ξp(Λ), Ξp(Λ)1k)

= σ2
2pe′j + σ2

0p1
′
k.

(8)

In our work, there is a common effects random variable Λ. This new feature makes the credibility
premium calculation procedures remarkably different than the previous work. To proceed, we define

ξ̃p =
∑k

j=1 ξ̂pj
k as the overall average pth quantile of claim experience of all individuals, note that we do

not use the information of average claims X̄j for a certain individual j to make our analysis, we use pth
quantile instead, this is the essential difference between our work and the previous ones on credibility
premium with common effects. With all these preparations, we can proceed with presenting the main
theory now.

Theorem 1. Under Assumptions (1)–(5), the best unbiased premium in the sense of least mean square prediction

error is ξ̂pjz1 + z2ξ̃p + z3Ξp where ξ̃p =
∑k

j=1 ξ̂pj
k . z1, z2, z3 are credibility factors satisfying z1 =

σ2
2p

σ2
1p+σ2

2p
,

z2 =
σ2

0pσ2
1pk

(σ2
1p+σ2

2p)(σ
2
1p+σ2

2p+kσ2
0p)

and z3 = 1− z1 − z2.

Proof. In the context of quantile credibility, the following objective function needs to be minimized:

E[ΞP(Θj, Λ)− c0 −
k

∑
j=1

cpj ξ̂pj]
2
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Using the results of the lemmas above, we can represent the estimate as below:

ξ̂C
pj = ĉ0 +

k

∑
j=1

ĉpj ξ̂pj

= Ξp +
σ2

2pe′j + σ2
0p1
′
k

σ2
1p + σ2

2p
[Ik −

σ2
0p1k1

′
k

σ2
1p + σ2

2p + kσ2
0p
](ξ̂p − Ξp1k)

= Ξp +
1

σ2
1p + σ2

2p
[σ2

2p(ξ̂pj − Ξp) + σ2
0pk(ξ̃p − Ξp)

−
σ2

0p(σ
2
2pk + k2σ2

0p)

σ2
1p + σ2

2p + kσ2
0p

(ξ̃p − Ξp)]

= Ξp +
1

σ2
1p + σ2

2p
[σ2

2p(ξ̂pj − Ξp) +
σ2

0pσ2
1pk

σ2
1p + σ2

2p + kσ2
0p
(ξ̃p − Ξp)]

=
σ2

2p

σ2
1p + σ2

2p
ξ̂pj +

σ2
0pσ2

1pk

(σ2
1p + σ2

2p)(σ
2
1p + kσ2

0p + σ2
2p)

ξ̃p + (1−
σ2

2p

σ2
1p + σ2

2p

−
σ2

0pσ2
1pk

(σ2
1p + σ2

2p)(σ
2
1p + kσ2

0p + σ2
2p)

)Ξp = z1ξ̂pj + z2ξ̃p + z3Ξp,

(9)

where z1 =
σ2

2p

σ2
1p+σ2

2p
, z2 =

σ2
0pσ2

1pk

(σ2
1p+σ2

2p)(σ
2
1p+kσ2

0p+σ2
2p)

and z3 = 1−
σ2

2p

σ2
1p+σ2

2p
−

σ2
0pσ2

1pk

(σ2
1p+σ2

2p)(σ
2
1p+kσ2

0p+σ2
2p)

Comparing our results with quantile credibility premium with no common effects in the work of
Pitselis (2013), the credibility premium without common effect is

ξ̂Q
pj = ξ̂pjz1 + (1− z1)Ξp,

from our calculation above, we can see that the credibility premium with common effect is

ξ̂C
pj = ξ̂pjz1 + ξ̃pz2 + (1− z1 − z2)Ξp,

where the credibility factor z1 stays the same.

Remark 1. It can be verified that

ξ̂C
pj = ξ̂Q

pj + z2(ξ̃p − Ξp), where z2 =
σ2

0pσ2
1pk

(σ2
1p + σ2

2p)(σ
2
1p + kσ2

0p + σ2
2p)

.

1. If σ2
0p = 0, ξ̂C

pj = ξ̂Q
pj, then the result of quantile credibility without common effects is a special case of our

results.
2. With the information of common effects, ξ̂C

pj is better than ξ̂pj, since its expected prediction error is smaller.

Theorem 2. Under Assumptions (1)–(5), if we have no access to the historical mean Ξp, then the best unbiased
premium in the sense of least mean square prediction error is

ξ̂C̃
pj = z1ξ̂pj + (1− z1)ξ̃p.

Proof. According to Lemma 1, when we have no knowledge of Ξp, we can simplify part (2) of
Lemma 1 and find out the estimate of Ξp as below:
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Ξ̂p =
Ξ2

p1
′
k

Ξp1
′
kΞ−1

ξ̂p ξ̂p
Ξp1k

Ξ−1
ξ̂p ξ̂p

ξ̂p

=
1
′
kΞ−1

ξ̂p ξ̂p
ξ̂p

1
′
kΞ−1

ξ̂p ξ̂p
1k

.

(10)

On the one hand,

1
′
kΞ−1

ξ̂p ξ̂p
ξ̂p = (1, 1, . . . , 1)

1
σ2

1p + σ2
2p
(Ik −

σ2
0p1k1

′
k

σ2
1p + σ2

2p + kσ2
0p
)ξ̂p

=
1

σ2
1p + σ2

2p
(1−

kσ2
0p

σ2
2p + σ2

1p + kσ2
0p
)1′k ξ̂p

=
1

σ2
1p + σ2

2p + kσ2
0p

k

∑
j=1

ξ̂pj.

(11)

On the other hand,

1
′
kΞ−1

ξ̂p ξ̂p
1k = (1, 1, . . . , 1)

1
σ2

1p + σ2
2p
(Ik −

σ2
0p1k1

′
k

σ2
1p + σ2

2p + kσ2
0p
)(1, 1, . . . , 1)′

= (1, 1, . . . , 1)
1

σ2
1p + σ2

2p
(1−

kσ2
0p

σ2
1p + σ2

2p + kσ2
0p
)1k

=
k

σ2
1p + σ2

2p
(1−

kσ2
0p

σ2
1p + σ2

2p + kσ2
0p
)

=
k

σ2
1p + σ2

2p

σ2
1p + σ2

2p

σ2
1p + σ2

2p + kσ2
0p

=
k

σ2
1p + σ2

2p + kσ2
0p

.

(12)

Putting together what we have above, we get

Ξ̂p =
∑k

j=1 ξ̂pj

k
= ξ̃p.

and therefore,
ξ̂C̃

pj = z1ξ̂pj + z2ξ̃p + (1− z1 − z2)ξ̃p = z1ξ̂pj + (1− z1)ξ̃p (13)

4. Numerical Simulations

In this section, we illustrate our results numerically. We use the assumptions the same as that
of Yeo and Valdez (2006) to compare the credibility premium. For the sake of consistency, we have
chosen the same values for parameters. We generated n = 1000 groups of 10 year paths of claims for
10 different individuals with the common effects assumptions. The same as Yeo and Valdez (2006),
we assumed that Θ and Λ are independent of each other.

Xj|Θj, Λ ∼ N(Θj + Λ, σ2
X)

where Θj ∼ N(µΘj , σ2
Θj
), µΘj = 100, σ2

Θj
= 1024 and Λ ∼ N(µΛ, σ2

Λ) with µΛ = 200 and σ2
Λ = 4096,

respectively. Table 1 is the detailed calculation of credibility premium for individuals for the first
group, where Θj varies among 10 individuals but the common effect random variable Λ stays the
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same for a given group. Descriptive statistics of the credibility premiums for ten individuals in this
given group is given in Table 2.

Table 1. Information of the credibility premium of ten periods for the ten individuals in the first group.

Group Contract Observed Θ1 observed Λ X1,1 X1,2 X1,3 . . . X1,10

1 98.80 132.12 268.71 182.69 394.92 . . . 283.68
2 175.68 132.12 296.85 347.79 370.99 . . . 374.21
3 144.48 132.12 367.35 213.87 215.27 . . . 387.67
4 143.35 132.12 337.74 443.31 332.42 . . . 371.85

1 5 80.62 132.12 309.75 338.14 221.49 . . . 244.74
6 95.73 132.12 314.40 317.58 374.51 . . . 265.73
7 72.64 132.12 265.50 409.18 394.40 . . . 340.09
8 137.50 132.12 181.41 215.33 370.74 . . . 332.11
9 69.69 132.12 322.73 388.63 306.62 . . . 384.12

10 111.81 132.12 329.49 326.14 272.04 . . . 323.35

Table 2. Descriptive statistics.

Contract Minimum Mean Median Maximum Standard Deviation

1 182.69 313.23 309.06 396.30 67.05
2 132.85 318.74 332.38 323.02 81.35
3 184.44 292.43 317.26 387.66 75.83
4 247.74 350.54 338.39 443.31 66.23
5 194.31 277.10 278.14 339.05 49.66
6 265.73 340.68 339.77 401.97 39.56
7 84.68 280.31 302.79 451.73 129.96
8 181.41 290.28 271.71 458.11 81.69
9 106.62 305.30 319.45 388.63 84.48
10 210.88 295.46 306.24 348.69 45.80

In Table 3, we compare the results of credibility premiums with common effects with the quantile
credibility models without common effects. The quantile that we use is median for the sake of
convenience. Classical credibility examines the mean of each contract regardless of the shape of the
distribution, while quantile credibility discusses the changes at different points of the distribution.
From the results in Table 3, we can see that the discrepancy between mean and median results in
different credibility premiums for the Bühlmann’s framework and the quantile credibility model.
We can see that in Bühlmann’s crediblity model with common effect, the most weight is put on
an individual’s own experience and the least weight is put on the prior beliefs. For the quantile
credibility model with common effect in which an individual’s and the rest of the group’s experience
are integrated together, prior belief is also given least weight. However, looking at them separately,
the individual’s own experience still has the most weight, but the least weight is put on the rest of
group’s experiences, which is the new feature that quantile credibility brings in. Compared with
the results in Pitselis (2013),where no common effects in embedded in quantile credibility premium,
more weight is put on individual’s experience; the same outcome also applies to our results.
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Table 3. Credibility premiums comparisons.

Contracts 1 2 3 . . . 9 10

Bühlmann credibility model with common effects Yeo and Valdez (2006)

X̄ 219.05 278.03 263.44 . . . 175.14 229.06
¯̄Xj 252.20 245.65 247.27 . . . 257.08 251.09

µ̂(Θj, Λ) 230.90 267.90 258.74 . . . 203.36 237.18
Z1 0.663 0.663 0.663 . . . 0.663 0.663
Z2 0.323 0.323 0.323 . . . 0.323 0.323
Z3 0.014 0.014 0.014 . . . 0.014 0.014

µΛ + µΘ = 300 σ2
Λ = 4096 σ2

Θ = 1024 σ2
x = 6084

Quantile (median) credibility model with common effects, p = 0.5

ξ̂p,j 309.06 332.38 317.26 . . . 319.45 306.24
ξ̃p 311.52 311.52 311.52 . . . 311.52 311.52
Z1 0.43 0.43 0.43 . . . 0.43 0.43
Z2 0.18 0.18 0.18 . . . 0.18 0.18
Z3 0.39 0.39 0.39 . . . 0.39 0.39

Ξp = 300 σ2
2,p = 836.01 σ2

1,p = 1126.77 σ2
0,p = 89.10

5. Further Remarks

To summarize, we examine the credibility theory in this work. Compared with classical Bühlmann
model and the popular hierarchical credibility, our work extends their results by taking both the
quantile of data and common effect of risk variables into consideration. To be more specific, we model
the quantile credibility in which only quantile of the payments history is required. This feature of
less dependence on the detailed data set implies a higher level of flexibility in the determination of
premium. This is different from the classical Bühlmann model, where conditional independence is
assumed, in this paper, we are interested in considering the dependence structure characterized by a
stochastic latent risk parameter and studying the premium calculation accordingly. The phenomenon
of dependence over risks have been recognized by people in both academia and industry; therefore,
it is very meaningful to study the credibility model under this assumption. Some direct applications
of our model are, for example, in certain homeowner insurance where geographic proximity of the
insured results in exposures to common catastrophes, in some auto insurance in which one accident
involves several insured and in some health insurance in which insured within the same working
place are subject to the same type of infectious disease.

One direction of our future work is to incorporate the common shock into hierarchical credibility
model in which a tree structure is embedded. We can examine the dependence of the individual risks
within a certain level of the tree. Furthermore, there is also a possibility to model the common shock
such that dependence of the risks among different levels of the tree could be examined. In addition,
research have showed that there are satisfying applications of credibility theory in mortality modeling.
For example, Bozikas and Pitselis (2020) use crossed classification credibility is applied to Lee–Carter
model. The hierarchical credibility model has also been utilized to model multi-country mortality rate
in Tsai and Di Wu (2020). Another interesting topic for future research is the application of quantile
credibility with common effect in mortality modeling.
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