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Abstract: In stochastic claims reserving, state space models have been used for almost 40 years to
forecast loss reserves and to compute their mean squared error of prediction. Although state space
models and the associated Kalman filter learning algorithms are very powerful and flexible tools,
comparatively few articles on this topic were published during this period. Most recently, several
articles have been published which highlight the benefits of state space models in stochastic claims
reserving and may lead to a significant increase in its popularity for applications in actuarial practice.
To further emphasize the merits of these papers, this commentary highlights various additional
aspects that are useful for practical applications and offer some fruitful directions for future research.

Keywords: adaptive learning; dependence modeling; evolutionary models; insurance; Kalman filter;
machine learning; multivariate analysis; quantitative risk management; state space models; time
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In non-life insurance, loss reserves often make up a large share of the liability side
of the balance sheet, so forecasting these liabilities and quantifying their uncertainty is
a key actuarial issue. Thus, numerous loss-reserving techniques have been developed
over the last 40 years, but only a few of them are based on time series models. This is
particularly astonishing in view of the fact that the claims reserving process is a stochastic
process and claims development data correspond to time series data. In this commentary,
we deal with time series models, particularly state space models (SSMs, also referred to
as evolutionary models) and the associated Kalman filter (KF) learning algorithms. SSMs
and the KF are powerful and flexible tools, originating in the early 1960s in the field of
aerospace engineering. Since then, they have been applied to a wide range of problems,
e.g., in the field of technical process control, speech recognition, robotic motion planning,
trajectory optimization, oceanography, agriculture, and stochastic claims reserving.

Recently, some articles have been published that deal with SSMs in stochastic claims
reserving (see Avanzi et al. 2020; Costa and Pizzinga 2020; Hendrych and Cipra 2021).
The main aspects involved are multivariate SSMs, which allow for the incorporation
of claims activity dynamics and modeling of dependencies between correlated lines of
business (Avanzi et al. 2020; Hendrych and Cipra 2021), as well as the concept of row-
wise stacking the claims development data within run-off triangles to form a univariate
time series (Costa and Pizzinga 2020; Hendrych and Cipra 2021). Moreover, the authors
address issues such as calendar year reserve prediction, inclusion of tail effects (Costa and
Pizzinga 2020), a two-dimensional evolution of factors across accident and calendar years
(Avanzi et al. 2020), and a unified modeling of various common approaches (log-normal
models, Hoerl curve approaches etc) within the same kind of state space representation
(Hendrych and Cipra 2021). Especially in the today’s data-driven insurance business, the
handling of Big Data and of dependencies across a huge number of multiple business
segments (business lines and their various subsets) are crucial characteristics of claims
reserving for insurance companies. Thus, the adaptive learning approach underlying SSMs
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and the KF is a powerful tool for the improvement in handling and forecasting of claims
development data.

To further emphasize the merits of these papers, this commentary intends to highlight
various additional aspects that are useful for practical applications but were not deeply
considered in these papers. Firstly, the papers are primarily focused on the construction
of SSMs, and the powerful technique of KF learning algorithms that usually comes along
with SSMs is kept almost completely in the background. However, knowledge of this
technique makes deeper interpretations and reasonable adjustments possible. Secondly, the
papers mostly deal with a specific state space representation, but there is no comparative
discussion regarding other common approaches to construct state space representations in
stochastic claims reserving. Thus, this commentary intends to highlight the methodology
behind KF learning algorithms on the one hand, and to provide a brief discussion on
alternatives for state space modeling on the other hand. In addition, some promising
directions for future research are given.

As for achieving the KF recursions, let us consider a general multivariate SSM describ-
ing the dynamics of {Yt}t∈N and {Xt}t∈N,

Yt = GtXt + Wt (observation equation),

Xt+1 = FtXt + Vt (state equation),

where {Wt}t∈N (measurement noise), {Vt}t∈N (process noise) with E[Wt] = 0, E[Vt] = 0,

E
[
WsWT

t

]
=

{
Rt if s = t
O otherwise

and E
[
VsVT

t

]
=

{
Qt if s = t
O otherwise

,

and E
[
VsWT

t
]
= O for all s, t ∈ N. The KF recursions with initial conditions X̂1|0 and P1|0

are then given by

X̂t+1|t = FtX̂t|t−1 + FtKt

(
Yt −GtX̂t|t−1

)
(one-step prediction)

X̂t+h|t = (Ft+h−1Ft+h−2 · · · Ft+1)X̂t+1|t (h-step prediction)

X̂t|t = X̂t|t−1 + Kt

(
Yt −GtX̂t|t−1

)
(filtering)

X̂t|s = X̂t|s−1 + KS
s

(
Ys −GsX̂s|s−1

)
(fixed-point smoothing)

and

Pt+1|t = FtPt|t−1FT
t + Qt − FtKtΥ

T
t FT

t

Pt+h|t = Ft+h−1Pt+h−1|tF
T
t+h−1 + Qt+h−1

Pt|t = Pt|t−1 −KtΥ
T
t

Ps+1|s
t|t−1 = Ps|s−1

t|t−1

(
Fs − Υs∆−1
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)T

Pt|s = Pt|s−1 −KS
s

(
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s

)T

where Kt = Υt∆
−1
t , Υt = Pt|t−1GT

t , ∆t = GtPt|t−1GT
t + Rt, Ψt = Pt|tFt+1P−1

t+1|t, KS
s = ΥS

s ∆−1
s ,

ΥS
s = Ps|s−1

t|t−1 GT
s for h ≥ 2, s ≥ t (see Johannssen 2016). While the KF prediction recursions

are required to forecast future observations, the KF filtering and smoothing recursions are
useful to identify outliers and to interpolate gaps in the data (e.g., resulting from a merger).
Note that the KF can also be seen as an evolutionary credibility model (see Wüthrich and
Merz 2008).

An explicit calculation of the optimal predictor X̂t|s using observations is, in general,
impossible, unless the noise processes {Wt}t∈N, {Vt}t∈N are Gaussian or the optimal
predictor is a linear function of the observations under the restriction of a quadratic loss
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function. Due to the Hilbert projection theorem, X̂t|s is the best approximation of Xt by a
vector X̃t|s ∈ Ys, i.e.,

E
[∣∣∣∣Xt − X̂t|s

∣∣∣∣2] = min
X̃t|s∈Ys

E
[∣∣∣∣Xt − X̃t|s

∣∣∣∣2],
where Ys is a vector subspace spanned by Y1, . . . , Ys and X̂t|s is the orthogonal projection
of Xt onto Ys. Thus, the KF is generally distribution-free and provides the best linear
predictors in the sense of minimizing the mean squared error. Provided that the second
moment of Xt exists, orthogonal projection is actually identical with conditional expectation,
i.e., X̂t|s = E[Xt|Y1, . . . , Ys]. That is, X̂t|s is the best (not necessarily linear) predictor of
Xt using Y1, . . . , Ys. Since this is also achieved when using the Gaussian assumption,
which, in addition, considerably simplifies parameter estimation, the Gaussian assumption
is common in the literature on SSMs and KF in stochastic claims reserving. However,
the Gaussian assumption is not a mandatory requirement when dealing with SSMs and
KF, much less justified in any case. For instance, Hoerl curve approaches are generally
distribution-free.

There are some interesting interpretations of the system matrices and set screws
within the KF recursions that could be revealing in actuarial practice. The KF recursions
all have the same basic structure: the optimal predictor is a linear combination of the
preceding prediction and the innovation (i.e., the difference between current and predicted
observation) weighted by the Kalman gain K. The Kalman gain is a weighting matrix
that determines the weight of the innovation that is to be incorporated into the current
prediction of the state vector, i.e., it quantifies the relative importance of the most recent
observation. The Kalman gain is made up of two matrices, the cross-covariance matrix
Υ between the state to be predicted and the innovation as well as the inverse of the error
covariance matrix ∆. To depict this clearly, K can be interpreted as the "ratio" of two
covariance terms. When both matrices are real numbers, one could also state: The higher
the covariance between the state to be predicted and the innovation and/or the lower the
variance of the innovation, the higher the trust in the new observation and, therefore, the
higher the Kalman gain. Thus, the Kalman gain is also an important set screw for systematic
weighting of observations, e.g., to assign higher weights to more recent observations, lower
weights to outliers or zero-weights to missing observations (as in the h-step prediction
recursion).

Alongside the row-wise stacking approach (see Atherino et al. 2010; Costa and
Pizzinga 2020; Hendrych and Cipra 2021) there are some other approaches to construct state
space models in stochastic claims reserving. The most prevalent approach is a calendar-year-
based modeling where claims development data of different calendar years are stacked into
separate observation vectors. This approach can be found in De Jong and Zehnwirth (1983),
Verrall (1989, 1994), Taylor et al. (2003), De Jong (2006), and Li (2006). Following Chukhrova
and Johannssen (2017), the main reasons for the popularity of the calendar-year-based
approach are (1) natural modeling of the claims data, (2) appropriate embedding of cal-
endar year effects (e.g., inflation factor or changes in legislation, see also Avanzi et al.
2018; Wüthrich and Merz 2013), and (3) higher weighting of more recent observations. In
addition to the calendar-year-based approach, there are accident-year- and development-
year-based modeling approaches appearing only in Taylor et al. (2003) and De Jong and
Zehnwirth (1983), respectively. However, both approaches have no significant advantages
compared to the calendar year approach. In contrast to the row-wise stacking approach,
the above approaches have the drawback that the dimensions of the system vectors and
matrices are time-variant due to the varying numbers of observations in different calendar
years. This can complicate parameter estimation, practical handling, and the simultaneous
involvement of multiple run-off triangles considerably.

Finally, we would like to point out some promising directions for future research in
stochastic claims reserving:
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• In addition to the hitherto considered full reserve risk, one could investigate the one-
year reserve risk by quantifying the claims development result (see, e.g., Merz and
Wüthrich 2008, 2012) via SSMs and KF;

• Instead of assuming linear systems, one could consider non-linear systems, where the
extended KF is applicable (see, e.g., Julier and Uhlmann 2004);

• It is also feasible to conduct micro-level claims reserving (see, e.g., De Felice and
Moriconi 2019; Duval and Pigeon 2019) by means of SSMs and KF;

• One could consult an outlier-robust KF (see, e.g., Agamennoni et al. 2011) or an interval
KF for interval-linear systems (see, e.g., Chen et al. 1997).

Beyond the field of stochastic claims reserving, insurance companies may benefit from
using SSMs and KF in any area where time series data are available, such as investments,
expenditures, demand for insurance, and other economic processes that evolve over time.
In particular, due to the high flexibility of SSMs, they can be applied for modeling stationary
or non-stationary and univariate or multivariate time series, as well as in cases with missing
data, interventions, structural changes or other irregularities in the data. Moreover, SSMs
are able to detect the temporal dynamics of a system accurately, especially when compared
to other time series models.
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