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Abstract: Predictive analytics using electronic health record (EHR) data have rapidly advanced
over the last decade. While model performance metrics have improved considerably, best practices
for implementing predictive models into clinical settings for point-of-care risk stratification are
still evolving. Here, we conducted a systematic review of articles describing predictive models
integrated into EHR systems and implemented in clinical practice. We conducted an exhaustive
database search and extracted data encompassing multiple facets of implementation. We assessed
study quality and level of evidence. We obtained an initial 3393 articles for screening, from which
a final set of 44 articles was included for data extraction and analysis. The most common clinical
domains of implemented predictive models were related to thrombotic disorders/anticoagulation
(25%) and sepsis (16%). The majority of studies were conducted in inpatient academic settings.
Implementation challenges included alert fatigue, lack of training, and increased work burden on
the care team. Of 32 studies that reported effects on clinical outcomes, 22 (69%) demonstrated
improvement after model implementation. Overall, EHR-based predictive models offer promising
results for improving clinical outcomes, although several gaps in the literature remain, and most study
designs were observational. Future studies using randomized controlled trials may help improve the
generalizability of findings.

Keywords: electronic health records; predictive models; predictive analytics; risk prediction;
clinical prediction model; precision medicine; clinical informatics; clinical decision support;
artificial intelligence

1. Introduction

Predictive analytics is a rapidly expanding area of health care [1]. With widespread electronic
health record (EHR) adoption [2–4], vast quantities of clinical data are available. EHR data have been
employed to develop predictive models in a wide range of clinical applications, such as predicting major
post-surgical complications [5–7], sepsis [8], readmission [9–11], heart failure [12], substance abuse [13],
and death [9,14,15]. Computational advancements have enabled machine learning techniques to
effectively use EHR data for medical diagnosis [16–18]. The stated promise of these predictive models
is to improve identification and risk stratification of patients, thereby facilitating targeted interventions
to improve patient outcomes. Embedding these models within EHR systems as components of clinical
decision support (CDS) interventions may allow real-time risk prediction. As stated by Agrawal

Informatics 2020, 7, 25; doi:10.3390/informatics7030025 www.mdpi.com/journal/informatics

http://www.mdpi.com/journal/informatics
http://www.mdpi.com
https://orcid.org/0000-0001-8560-250X
https://orcid.org/0000-0001-7622-093X
https://orcid.org/0000-0002-5271-7690
http://dx.doi.org/10.3390/informatics7030025
http://www.mdpi.com/journal/informatics
https://www.mdpi.com/2227-9709/7/3/25?type=check_update&version=2


Informatics 2020, 7, 25 2 of 18

and colleagues [19], this “prediction technology” is core to the anticipated applications of artificial
intelligence (AI) for improving health care.

However, the implementation of predictive models into EHR systems for clinical practice is
not straightforward. This is an emerging area of investigation where best practices are not yet
well established. Although CDS interventions have been employed in EHR systems for many years,
the emergence of more advanced computational models, such as the use of machine learning approaches,
presents some key challenges and unique considerations. Described in previously published
frameworks, such as those by Shaw et al. [20] and He et al. [21], these include explainability and
transparency of algorithms, computational resources, scalability, data standardization, and integration
into clinical workflows as meaningful decision support.

Although these prior articles have outlined key implementation issues around EHR-based predictive
models, they examined only a limited set of use cases. A systematic review by Goldstein et al. [17]
examined risk prediction models utilizing EHR data, but focused on model development and validation
rather than implementation in clinical settings. Another systematic review by Kruse et al. [18] regarding
the challenges of opportunities of big data in health care also included discussion of predictive models,
but its search encompassed articles only up to 2015. The rapid growth of this field in recent years
offered us an opportunity to provide an updated review, with a focus on implementation issues.

Here, we engaged in a systematic review of EHR-based models that have been implemented
in clinical practice using a rigorous search methodology. The objectives of our study were to
review published peer-reviewed articles describing predictive models that have been implemented in
real-world clinical practice, summarize their findings, and highlight lessons learned to further inform
the literature regarding implementation of these emerging technologies in health care settings.

2. Materials and Methods

We utilized the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
Statement for reporting our systematic review [22,23]. The PRISMA reporting checklist can be found
in Supplementary Table S1.

2.1. Eligibility Criteria

We limited our systematic review to peer-reviewed journal articles published in English between
1 January 2010 and 31 July 2019 with available full text. We chose 2010 as the start date given the
passage of the Health Information Technology for Economic and Clinical Health (HITECH) Act
in 2009 [24], which was aimed at promoting adoption and meaningful use of health information
technology, including EHRs. Prior to the HITECH Act, EHR adoption was relatively limited and
implementation of EHR-based predictive models was uncommon. Furthermore, we wanted to focus
on predictive models implemented within the last decade to provide a more recent perspective.

Our primary eligibility criteria focused on identifying articles with the following: description of
a model predicting a clinical outcome (e.g., not financial outcomes), use of EHR data for modeling,
automated data extraction for modeling (e.g., not manual data entry or manual data calculation
by providers), integration of the model into the EHR system, and implementation into clinical use.
This last criterion was critical given the emphasis of our review on implementation, rather than on
model development, training, or validation. We did not restrict studies to specific types of models—
for instance, models using linear regression, logistic regression, random forests, and various neural
network architectures were all eligible. However, our definition of “model” did require that there be
some sort of mathematical calculation involving predictors based on EHR data. Therefore, CDS
interventions with simply rule-based or criteria-based logic were not included. This allowed
us to specifically focus on predictive analytics. To provide a broad overview of implemented
EHR-based predictive models, we did not have any restrictions on clinical domains, patient populations,
or study designs.
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2.2. Information Sources and Searches

We conducted searches in the following six databases to reflect the interdisciplinary approach in
predictive modeling: PubMed, Web of Science, Embase, Cochrane Library, CINAHL, and Business
Source Complete. For our search strategy, we identified three primary concepts related to our
study question: (1) electronic health records; (2) predictive models; and (3) implementation.
For the first concept, we included terms related to electronic health records, electronic medical
records, and computerized patient records. For the second concept, we included terms related to
predictive models, algorithms, artificial intelligence, machine learning, informatics, risk prediction,
statistical models, and clinical decision support. For the final concept, we included terms related
to implementation, implementation science, and real-world or applied/practical trials. Within our
searches, we employed structured vocabulary terms (if applicable to the given database), synonyms,
and free-text title/abstract searches. We included filters for English-language and full-text articles only
that were published within the specified date range. We included truncation and wildcards to allow
the search to include articles with minor spelling variations to the indicated search terms. The search
strategy was iteratively refined with the assistance of a university librarian with extensive experience
in systematic review methodology. To illustrate, the detailed PubMed search strategy which includes
all search terms can be found in Appendix A. In addition to database searches, we also identified
potential articles via reviews of bibliographies in articles identified from the database searches, expert
recommendations, and manual/hand searching.

2.3. Study Selection

The articles resulting from all search methods described above were collated and screened.
First, we removed any duplicates and any articles that had been retracted. The remaining articles
underwent title/abstract review by two independent reviewers (T.C.L. and N.U.S.). Discrepancies were
resolved by a third reviewer (S.L.B.) to generate a list of articles for full-text review. Four reviewers
(T.C.L., N.U.S., A.H., and S.L.B.) conducted full-text article review, each beginning with an initial
review of a portion of the studies for eligibility. Studies marked as not meeting eligibility criteria were
reviewed by two reviewers (S.L.B. and T.C.L.) for confirmation. This generated the final set of full-text
articles for data extraction and inclusion for qualitative analysis.

2.4. Data Collection and Quality Assessment

Full-text articles were divided among four reviewers (T.C.L., N.U.S., A.H., and S.L.B.) for data
extraction. A spreadsheet was used to standardize data collection. The following items were extracted:
publication year, first author’s name, title, journal, location of study (city, state, country), health
system setting (inpatient/outpatient, academic/community, number of clinical sites), clinical outcome
for predictive model, study design (e.g., randomized trial, pre–post analysis), patient population,
control/comparison group (if applicable), study period (dates), sample size, EHR vendor, intended
users of model (e.g., physicians, nurses, care coordinators), method of modeling (e.g., regression-based
methods vs. non-regression based methods that tend to be more computationally intensive such
as random forests, gradient-boosted trees, or neural networks), custom model developed by study
authors or “off-the-shelf” model from EHR vendor or other source, method of risk score presentation to
end users (e.g., dashboard, alert or best practice advisory; interruptive vs. non-interruptive), mention
of alert fatigue, stand-alone intervention vs. component of broader intervention, measured effect(s) of
predictive model, study quality rating, overall change in clinical outcomes, and key insights regarding
model implementation. The risk of bias in individual studies was guided by the Downs and Black
checklist [25], which reviewers referred to when making quality assessments. Due to the heterogeneity
of clinical domains and studies included in the review, qualitative summaries of quality assessments
were made in lieu of quantitative comparisons. Risk of bias across studies was mitigated via searching
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multiple databases, which increased the number of available records and expanded the search across
multiple disciplines.

2.5. Synthesis and Analysis of Results

Because the review included studies regarding a range of different clinical outcomes, we did not
calculate quantitative summary measures such as risk ratios or conduct meta-analyses. We performed
a qualitative synthesis of the included studies. All reviewers convened as a group to identify key
findings based on the previously described data extraction. Each reviewer then returned to their
assigned full-text articles to identify and categorize relevant articles by key themes (e.g., abbreviated
study design, custom model vs. “off-the-shelf” model, interruptive vs. non-interruptive vs. not
reported alerts, mention of alert fatigue, and overall change in outcome). Each reviewer was then
assigned a random sample of articles reviewed by others to verify coding. Any discrepancies were
resolved by consensus from the entire group of reviewers.

3. Results

3.1. Study Selection

Based on our aforementioned search strategies, we obtained an initial set of 3393 articles for
screening. Distribution of articles by database is depicted in Supplementary Figure S1. We conducted
a title/abstract review and excluded studies based on the established eligibility criteria, resulting in
80 articles for full-text review. After full-text review, a final set of 44 articles was included for data
extraction and qualitative analysis. Figure 1 depicts a detailed PRISMA flow diagram describing
study selection.
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We excluded articles during title/abstract review and during full-text review for a myriad of
reasons. We excluded studies that were only conference or meeting abstracts without full-text journal
articles available. Our intended focus was on implementation, so we excluded studies focused solely
on model development (even if there was an external validation cohort) if there was no evidence of
real-world clinical implementation. We excluded studies describing prescribing error notifications,
dosing guides/recommendations, and studies focused on antimicrobial stewardship, as these generally
used rule-based or criteria-based logic, whereas we were interested in predictive models requiring
some extent of mathematical computation of risk. We also excluded studies focused on computerized
physician order entry (CPOE) using order sets without risk prediction, studies describing a model
prototype but no implementation, studies describing work related to health IT infrastructure but
not a specific model, studies involving external software applications (e.g., mobile health devices) or
web-based tools that did not have any links back into EHR systems, studies involving manual data
collection and calculation, studies describing tools to assist with guideline adherence but without any
risk calculation, studies involving tools based on rule- or criteria-based logic without any modeling
or calculation, studies outlining rationale and design of proposed clinical trials but without actual
results reporting, studies describing alerts of recently placed similar orders or of general reminders
but without modeling or risk prediction, and studies asking physicians to manually document their
personal risk assessment instead of a prediction based on EHR data modeling. In addition, we were
focused on medical settings for humans, so we excluded studies from dental and veterinary settings.

3.2. Study Characteristics: Study Settings, Study Design, and Clinical Domains

Table 1 provides an overview of the studies that were included in the review. The most common
clinical domains for predictive models embedded in EHRs and implemented in clinical practice
were models related to thrombotic disorders/anticoagulation (11/44 studies, 25.0%) and sepsis
(7/44, 15.9%) (Figure 2). Other domains included kidney injury, ventilation injury, delirium, readmissions,
and deterioration/death. The remaining studies (grouped together as “other” in Figure 2) consisted
of miscellaneous clinical entities, such as back pain, pressure ulcers, hypertension, perioperative
risk, and triage time, among others. The majority (36/44, 81.8%) of studies were conducted in the
United States.
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The majority (28/44, 63.6%) of studies were centered on inpatient populations, while 16/44 (36.4%)
studies concerned clinical predictions in outpatient settings. Additionally, 21 (47.8%) studies were
conducted in an academic setting, 7 (15.9%) studies were conducted in a community setting, and 3 (6.8%)
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studies were conducted in a mix of both academic and community settings. The remaining 13 (29.5%)
studies did not report a study setting that could be clearly classified as “academic” or “community”.

Table 1. Overview of included studies pertaining to predictive models embedded in electronic health
record (EHR) systems implemented in clinical settings. * Quasi-experimental study design refers to
other non-randomized clinical trials that did not qualify as pre–post studies.

Author Year Location Study Design Sample Size Clinical Outcome(s)

Maynard et al. [26] 2010 California, USA Retrospective cohort 748 Venous thromboembolism
Novis et al. [27] 2010 Illinois, USA Pre–post 400 Deep vein thrombosis

Fossum et al. [28] 2011 Norway Quasi-experimental * 971 Pressure ulcers, malnutrition
Herasevich et al. [29] 2011 Minnesota, USA Pre–post 1159 Ventilator-induced lung injury

Nelson et al. [30] 2011 Michigan, USA Pre–post 33,460 Sepsis
Umscheid et al. [31] 2012 Pennsylvania, USA Pre–post 223,062 Venous thromboembolism

Baillie et al. [32] 2013 Pennsylvania, USA Pre–post 120,396 Readmission
Amarasingham et al. [33] 2013 Texas, USA Pre–post 1726 Readmission

Litvin et al. [34] 2013 South Carolina, USA Prospective cohort 38,983 Chronic kidney disease
Oh et al. [35] 2014 South Korea Pre–post 1111 Delirium

Resetar et al. [36] 2014 Missouri, USA Prospective cohort 3691 Ventilator-associated events
Amland et al. [37] 2015 Missouri, USA Pre–post 45,046 Venous thromboembolism

Faerber et al. [38] 2015 New Hampshire,
USA Pre–post 297 Mortality

Hao et al. [39] 2015 Maine, USA Prospective cohort 118,951 Readmission
Kharbanda et al. [40] 2015 Minnesota, USA Prospective cohort 735 Hypertension

Lustig et al. [41] 2015 Canada Prospective cohort 580 Venous thromboembolism
Umscheid et al. [42] 2015 Pennsylvania, USA Pre–post 15,526 Sepsis, deterioration
Depinet et al. [43] 2016 Ohio, USA Pre–post 1886 Appendicitis

Narayanan et al. [44] 2016 California, USA Pre–post 103 Sepsis
Vinson et al. [45] 2016 California, USA Pre–post 893 Pulmonary embolism

Aakre et al. [46] 2017 Minnesota and
Florida, USA Prospective cohort 242 Sepsis

Arts et al. [47] 2017 Netherlands Randomized
controlled trial 781 Stroke

Bookman et al. [48] 2017 Colorado, USA Pre–post 120 Use of imaging
Jin et al. [49] 2017 South Korea Case-control 1231 Pressure injury

Samal et al. [50] 2017 Massachusetts, USA Prospective cohort 569,533 Kidney failure
Shimabukuro et al. [51] 2017 California, USA Case-control 67 Sepsis
Chaturvedi et al. [52] 2018 Florida, USA Prospective cohort 309 Anticoagulant therapy

Cherkin et al. [53] 2018 Washington, USA Randomized
controlled trial 4709 Physical function and pain

Ebinger et al. [54] 2018 Minnesota, USA Prospective cohort 549 Complications, mortality,
length of stay, and cost

Hebert et al. [55] 2018 Ohio, USA Prospective cohort 129 Ventilator-associated events
Jung et al. [56] 2018 Ohio, USA Pre–post 232 Sepsis, mortality
Kang et al. [57] 2018 South Korea Case-control 8621 Medical errors

Karlsson et al. [58] 2018 Sweden Randomized
controlled trial 444,347 Anticoagulant therapy

Moon et al. [59] 2018 South Korea Retrospective cohort 4303 Delirium
Ridgway et al. [60] 2018 Illinois, USA Prospective cohort 180 HIV

Turrentine et al. [61] 2018 Virginia, USA Pre–post 1864 Venous thromboembolism
Villa et al. [62] 2018 California, USA Pre–post 33,032 Triage time

Vinson et al. [63] 2018 California, USA Pre–post 881 Pulmonary embolism
Bedoya et al. [64] 2019 North Carolina, USA Retrospective cohort 85,322 Deterioration
Brennan et al. [65] 2019 Florida, USA Quasi-experimental * 20 Preoperative risk assessment

Ekstrom et al. [66] 2019 California and Upper
Midwest, USA Prospective cohort Not stated Appendicitis

Giannini et al. [67] 2019 Pennsylvania, USA Randomized
controlled trial 54,464 Sepsis

Khoong et al. [68] 2019 California, USA Randomized
controlled trial 524 Chronic kidney disease

Ogunwole et al. [69] 2019 Texas, USA Pre–post 204 Readmission, Heart failure

3.3. Predictive Models

Of the 44 studies, 30 (68.2%) utilized custom models, defined as a model developed by the authors
or a previously validated model modified by authors to meet site-specific implementation needs,
while 14 (31.8%) studies utilized “off-the-shelf” models, defined as a model previously developed
and validated and implemented without site-specific modifications. Out of the 30 studies describing
custom models, 17 (56.7%) were based on regression modeling, while 3 (10%) were developed using
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machine learning or deep learning. The remaining 10/30 studies (33.3%) did not report specific
modeling methods.

3.4. Integration into EHR Clinical Decision Support Tools and Implementation Challenges

We categorized studies based on whether interruptive alerts or non-interruptive alerts
(e.g., dashboards) were used during implementation to present risk scores or results of the predictive
models to end users. Half of the studies (22/44, 50.0%) reported using non-interruptive alerts at
intervention sites (22/44, 50%), while 18/44 studies (40.9%) incorporated interruptive alerts. Four (9.1%)
studies either did not report the risk score presentation to end users or were unable to be classified as
interruptive or non-interruptive (Figure 3).
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Figure 3. Distribution of risk score presentation from predictive models within electronic health record
(EHR) systems when classified as interruptive or non-interruptive.

One common theme we observed was the mention of alert fatigue, defined as an inadequate
response to a clinical decision support alert due to the frequency and increased burden on health
care providers [70]. Alert fatigue was discussed in 14 of the 44 studies (31.8%). Of these 14 studies
in which alert fatigue was mentioned, 11 (78.6%) utilized interruptive alerts, defined as alerts that
either required action to dismiss the alert or alerts that significantly diverted the provider’s attention
(e.g., text paging, calls). Three (21.4%) utilized non-interruptive alerts, defined as passive displays and
notifications (e.g., sidebars, dashboards, or floating windows) that did not require specific action or
divert the provider’s attention. However, six of these studies mentioned alert fatigue briefly but did
not elaborate with any significant detail. We selected the remaining eight of these studies to further
examine the specific description of risk score presentation and extracted representative quotations to
gain insight on the role of alert fatigue in predictive model implementation (Table 2).

Other than alert fatigue, other implementation challenges were also noted. Several studies reported
intrinsic challenges, which we defined as issues that arose from model design and development.
These challenges include limitations in the predictive model’s user functionality, overconsumption
of resources, and requiring access to costly data [36,47,53]. Arts et al. also cited non-interruptive
risk score presentation as a reason for low usage, thus affecting the performance of the predictive
model [47]. Other studies noted that some barriers of implementation may be linked to the preliminary
development of predictive models, such as in mapping the correct EHR fields for the desired data
elements [55].
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Table 2. Classification and method of risk score presentation of studies that discussed alert fatigue in
relation to implementation of predictive models within electronic health record systems.

Author Interruptive vs.
Non-Interruptive

Description of Risk
Score Presentation Quotation Regarding Alert Fatigue

Arts et al. [47] Non-Interruptive Floating notification
window

“Too many alerts will tend to result in all alerts being
ignored, a phenomenon known as ‘alert fatigue.’

Given the possible adverse effects of ‘alert fatigue’ and
interruption, we considered the optimal interface to be

one which minimized these effects.”

Bedoya et al. [64] Interruptive

Best practice
advisory (BPA)

triggered requiring
response from care

nurse

“The majority of BPAs were ignored by care nurses.
Furthermore, because nurses were ignoring the BPA,
the logic in the background would cause the BPA to

repeatedly fire on the same patient. This in turn created
a large quantity of alerts that required no intervention

by clinicians and led to alert fatigue in frontline
nursing staff. Anecdotal feedback from nurses

confirmed the constant burden of alerts repeatedly
firing on individual patients. Furthermore, alert

fatigue begets more alert fatigue and the downstream
consequences of alert fatigue can include missed alerts,

delay in treatment or diagnosis, or impaired
decision-making when responding to future alerts.”

Depinet et al. [43] Interruptive
Alert, data collection
screen and feedback

interface

“The firing of the CDS tool each time there was a chief
complaint related to appendicitis may have led to alert
fatigue. Overall, more work is needed to introduce a
culture of standardized care in which such a decision

support tool could work optimally.”

Herasevich et al. [29] Interruptive Bedside alert via text
paging

“Because the majority of patients are treated with
appropriate ventilator settings, unnecessary

interruptions with new alert paradigms could have a
detrimental effect on performance. It is therefore

critical to incorporate contextual stop rules within
decision support systems to prevent false positive

alerts. Interruptions are often seen as distracting or
sometimes devastating elements that need to be

minimized or eliminated.”

Jin et al. [49] Non-Interruptive Display on nursing
record screen

“Most computerized risk assessment tools require that
nurses measure each score for each item in the scale.
Thus, risk assessment scores are obtained only if all

item scores are entered into the EHR system.
Hence, as reported in a previous study, nurses have

experienced work overload and fatigue and expressed
their preference to use the paper charts. In addition,

nurses felt a lot of time pressure.”

Kharbanda et al. [40] Interruptive Alert and dashboard
display

“Four of eight (50 percent) rooming staff respondents
reported that alerts to remeasure a BP [blood pressure]
‘sometimes’ interfered with their workflow, and the

remaining responded that the alerts ‘rarely
interfered.’”

Oh et al. [35] Non-Interruptive

Pop-up window
displayed on primary

electronic medical
record screen

“Most of the nurses did not recognize the urgent need
for delirium care and did not consider it part of their

regular routine. Therefore, nurses considered the
additional care indicated by the system as extra work.”

Shimabukuro et al. [51] Interruptive Alert via phone call
to charge nurse

“Systems that use these scores deliver many false
alarms, which could impact a clinician’s willingness to

use the sepsis classification tool.”

Several studies also reported extrinsic challenges, which we defined as issues that were introduced
in the clinical setting (e.g., disruption of workflow). Issues such as lack of training or lack of familiarity
by rotating trainees, increased work burden on the care team, and the introduction of extra work
discouraged use of several predictive models [28,43,55]. One predictive model that risk stratified
Pediatric Appendicitis Scores (PAS) was deemed irrelevant, as clinicians believed that PAS guidelines
could be easily memorized and thus did not require decision support [43]. Another extrinsic challenge
included “evolving clinical profiles,” as described by Hao et al. [39] in the performance of a 30 day
readmission risk assessment tool.
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Of note, Khoong et al. [68] illustrated a theory-based strategy to encourage provider uptake of
predictive models. The capability, opportunity, motivation, behavior framework (COM-B) asserts
that capability, opportunity, and motivation are essential conditions that impact behavior. In their
study, Khoong et al. [68] addressed implementation barriers by educating providers about the model
(capability barriers), fitting the model to physician workflow by streamlining patient education and
orders (opportunity barrier), and providing incentives and reminders to encourage use of the model
(motivation barrier).

3.5. Impacts on Clinical Outcomes

We evaluated the included studies for results describing whether the implementation of a
predictive model yielded improved clinical outcomes. Of the 44 studies evaluated, 12/44 (27.3%)
did not include an evaluation of clinical outcomes. Often, these focused on performance metrics
(e.g., positive predictive value, negative predictive value) of the model itself rather than on effects
on clinical outcomes. For example, Moon et al. [59] reported high levels of predictive validity for an
automated delirium risk assessment system; however, the authors did not report changes in clinically
diagnosed delirium. Other studies that did not evaluate clinical outcomes showed changes in other
clinical aspects such as improved time savings [55].

Twenty-two (50.0%) studies evaluated clinical outcomes and showed an improvement in clinical
outcomes, while 10 (22.7%) evaluated clinical outcomes and showed no improvement or change
(Figure 4). Clinical outcomes were not evaluated in 12 (27.3%) studies. Similar to studies that did not
evaluate clinical outcomes at all, studies that showed no improvements in clinical outcomes often
reported secondary benefits. For instance, Oh et al. [35] reported no changes in the incidence of delirium
with an automatic delirium prediction system; however, a significant decrease in number and duration
of analgesic narcotic therapies was observed. Other studies reported partial improvement; however,
these studies often did not have a direct improvement on the specified clinical outcome [30,34].Informatics 2020, 7, x 11 of 19 
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Figure 4. Distribution of studies regarding effects on clinical outcomes after implementation of
EHR-based predictive models.

We also examined the effect of model source (i.e., custom versus “off-the-shelf” model) on clinical
outcomes. Overall, there was a trend of custom predictive models being associated with greater
likelihood of improved clinical outcomes. Eleven of the studies that implemented custom models
and one of the studies that implemented “off-the-shelf” models did not report the effects of model
implementation on clinical outcomes. Of the 19 studies that implemented custom models and evaluated
clinical outcomes, 16 (84.2%) studies showed an improvement in clinical outcomes while 3 (15.8%)
studies reported no improvement in outcomes. Of the 13 studies that implemented “off-the-shelf”



Informatics 2020, 7, 25 10 of 18

models and evaluated clinical outcomes, 6 (46.2%) showed an improvement in clinical outcomes,
while 7 (53.8%) reported no improvement in outcomes (Table 3).

Table 3. Distribution of studies regarding source of predictive model and improvement in clinical outcomes
after implementation. Only studies that reported evaluations of effects of model implementation on
clinical outcomes are included in the table.

Custom Model (n = 19) “Off-the-Shelf” Model (n = 13)

Improved clinical outcomes 16 (84.2%) 6 (46.2%)
No improvements in outcomes 3 (15.8%) 7 (53.8%)

Additionally, we classified the included studies by intended end users of the model. Several
studies did not report evaluation of effects of model implementation on clinical outcomes (six studies
with physicians as primary intended users, three studies with nurses as primary intended users,
and three studies where intended users were other health care workers). Of the 22 studies that
evaluated clinical outcomes when physicians were the primary intended users of the model, 15 (68.2%)
showed an improvement in clinical outcomes. Of the eight studies that evaluated clinical outcomes
when only nurses were the intended users of the model, five studies (62.5%) reported improved
outcomes after model implementation (Table 4). Therefore, there did not appear to be substantial
differences in effect on clinical outcomes based on types of end users intended for the model.

Table 4. Distribution of studies regarding intended users of EHR-based predictive models and
improvement in clinical outcomes after implementation. Only studies that reported evaluations of
effects of model implementation on clinical outcomes are included in the table.

Physicians as Primary
Intended Users (n = 22)

Nurses as Primary
Intended Users (n = 8)

Other Intended Users 1

(n = 2)

Improved clinical outcomes 15 (68.2%) 5 (62.5%) 2 (100%)
No improvements in outcomes 7 (31.8%) 3 (37.5%) 0 (0%)

1 Other intended users include all cases where physicians and/or nurses were not the intended primary end users,
including but not limited to respiratory therapists, rapid response coordinators, counselors, or unreported users.

3.6. Quality Assessment

The greatest proportion of studies were pre–post studies (19/44, 43.2%), followed by prospective
cohort or validation studies (12/44, 27.3%). Studies with higher levels of evidence such as randomized
controlled trials (5/44, 11.4%) comprised the minority of studies. Qualitative assessments guided
by criteria detailed in the Downs and Black checklist [25] revealed that the study quality ranged
widely from “limited” to “strong” ratings, with the majority demonstrating sufficient internal validity.
However, because pre–post studies can be affected by general temporal trends, and observational
study designs are less generalizable (i.e., less external validity), and furthermore most studies lacked
control groups, we rated the overall quality of evidence from the included studies as low to moderate
strength. The risk of bias across studies was reduced by searching multiple databases and using
diverse and exhaustive search terms. Although publication and reporting bias may still exist, the use
of multiple databases and exhaustive search terms increased the number of available records and
expanded the search across multiple disciplines. In addition, only half of the included studies reported
improvements in clinical outcomes, which suggests there is likely not a strong publication bias toward
representing only positive findings.
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4. Discussion

4.1. Summary of Evidence and Key Findings

In this systematic review, we observed several trends in the current literature published about
the clinical implementation of predictive models embedded in EHR systems. Although predictive
modeling has surged in the last decade, there is a paucity of research describing the integration
of predictive models into EHR systems and implementation of those models into clinical usage in
real-world settings.

To emphasize our focus on clinical implementation, we analyzed several factors of predictive
models to examine their effect on clinical outcome. For instance, our results suggest that implementing
custom models was more likely to improve clinical outcomes than implementing “off-the-shelf” models
without site-specific customization. Some authors attributed the success of their model to the custom
fit for their specific institution and input and engagement from in-house providers in the creation of the
model [38]. However, the contrast between custom models and “off-the-shelf” models in improving
clinical outcomes may be due to custom models being developed and validated in response to specific
clinical issues. While some studies implementing “off-the-shelf” models reported success in improving
patient outcomes, such as time to antibiotic administration and hospital length of stay [56], other
studies suggested that plugging in a previously validated model without custom modifications, such as
the CHADS2VASC score, exacerbated common implementation challenges due to lack of custom fit
for the institution [47]. These findings support prior studies that have expressed the importance of
local validation and customization, not just for predictive models but for EHR and health information
technology (IT) systems more broadly [20,71,72].

End user education and training and workflow integration were also common themes. This finding
supports the important role of the end user in several previously published frameworks concerning the
implementation of emerging technologies in predictive analytics and artificial intelligence [20,73,74].
Institutional investment in training is critical, as quality of training has been shown to significantly
influence users’ satisfaction with EHRs and health IT systems [75]. Similarly, the included studies
frequently emphasized workflow considerations, such as the discussion by Fossum et al. [28] on the
additional burden imposed by CDS on nurses burdened with an already high workload. One key
concern was workflow interruption, with alert fatigue being a key issue highlighted by several studies
(detailed in Table 2). Alert fatigue is a pervasive issue in providing effective CDS, and future studies
will need to examine potentially new ways of information presentation to mitigate alert fatigue and
the risk of clinicians ignoring potentially important information arising from predictive models.

Besides elements centered on end users such as training, workflow integration, and alert fatigue,
other considerations for implementation concerned higher-level organizational issues. For example,
a heart failure readmissions model described by Amarasingham [33] was not activated on weekends or
holidays, instead focusing on weekdays when follow-up interventions for high-risk patients could be
coordinated by a heart failure case manager. This illustrates the need for adequate personnel/staffing
beyond patient-facing clinicians alone to implement some of the relevant interventions downstream
from the model. Several studies [66,68] also cited the importance of adhering to organizational
preferences, achieving buy-in from health system leadership, and designating “on-the-ground”
champions to facilitate adoption. These concepts emphasize the importance of considering predictive
models within the context of health systems more broadly during implementation.

Overall, a significant portion of studies was comprised of study designs with low to moderate levels
of evidence (e.g., pre–post studies), while study designs with high levels of evidence (e.g., randomized
controlled trials) comprised the minority. The prevalence of pre–post studies may be due to the natural
progression of development and validation studies to pre–post intervention studies, often leveraging
data generated during routine clinical care. Additionally, there may be a lack of high-evidence level
study designs due to the recent adoption of predictive models into EHR over the last decade. The lack
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of randomized controlled trials reflects the need for high quality studies to ensure that predictive
models can effectively transition from development and validation to clinical implementation.

4.2. Gaps in the Literature and Opportunities for Future Investigation

This systematic review highlighted several gaps in existing literature that can serve as opportunities
for future investigation.

First, clinical domains with a high disease burden in inpatient settings (e.g., sepsis, thrombotic
disorders, readmissions) were the most well represented, while outpatient conditions were relatively
underrepresented. One reason may be that outpatient models found during the search process
often satisfied partial criteria, but not the full eligibility criteria (e.g., predictive models that were
developed but not yet available or implemented in the EHR). This may derive from the longer periods
of time associated with outpatient clinical outcomes compared to the time-limited nature of inpatient
encounters, such that outcome ascertainment for outpatient clinical domains may be better represented
in the future as more time elapses. Another reason may be the greater quantity of data available from
inpatient settings due to higher frequency of assessments (e.g., multiple vital sign measurements,
laboratory values, etc. in a single day), while outpatient data are more limited per visit and take a
longer period of time to accumulate. Models predicting clinical outcomes in the outpatient settings are
critically important given that outpatient conditions impose the greatest disease burden, and because
the vast majority of health care is delivered in outpatient settings.

Second, over a quarter of the included studies did not assess clinical outcomes. Several
authors indicated that studies are ongoing, with results pertaining to clinical outcomes still pending
following implementation. Evaluating clinical impact would be the next natural step for these studies,
which highlights the relative recency of implementing predictive models into the EHR.

Third, among the predictive models included in this review, very few used computational
methods more advanced than linear or logistic regression to develop the model. Although the use of
machine learning in the development and validation of predictive models is gaining traction in the
field of biomedical informatics, there is still a gap in evaluation of these models in terms of clinical
implementation and outcomes. Almost a third of studies that evaluated clinical outcomes showed no
improvements, thus warranting a closer examination of barriers to implementation and/or adoption.

4.3. Limitations

Due to the heterogeneous clinical domains and patient populations, we did not conduct a
meta-analysis for the included studies, and thus we were unable to quantitatively assess effects on
specific clinical domains across studies. In addition, our results cannot be generalized to studies
outside of our eligibility criteria (e.g., predictive models outside of EHR systems).

This review also did not report on the logistic aspects of predictive model implementation
that were outside the scope of this review. For instance, we did not include formal evaluation of
implementation costs. Costs were mentioned in only 4 (9.0%) of the included articles, in several cases
only briefly without rigorous economic evaluations. The limited number of studies available in the
database Business Source Complete suggests this is not a well-studied area. Our search strategy was
also limited to only English language articles and thus may not have captured implementations in
non-English speaking countries.

While conducting this review, we had expected to find a larger number of predictive models
based on machine learning and artificial intelligence. However, after implementing our inclusion
and exclusion criteria, there were very few predictive models using these advanced computational
methods that had been implemented in real clinical settings. This may be due to the relatively recent
development of machine learning-based models and thus would require several more years to produce
trends in clinical outcomes following implementation.
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5. Conclusions

Within the last decade, predictive models in EHR systems have become more common in response
to a growing amount of available data. In this systematic review, we focused on whether the rise in
development and validation of predictive models has led to effective clinical implementation and
improved patient outcomes. We have highlighted several key findings related to implementation of
predictive models and identified several promising areas for future investigation. The low to moderate
levels of evidence represented in the current studies highlight an opportunity for future randomized
control trials and cohort studies to improve generalizability. Through this systematic review, we hope
to provide guiding trends and themes to direct future studies towards establishing best practices for
implementing EHR-based predictive models.
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Appendix A Detailed PubMed Search Strategy

(((((((((((((((((((electronic data processing[MeSH Terms]) OR health plan implementation[MeSH
Terms]) OR implementation science[MeSH Terms]) OR pragmatic clinical trials as topic[MeSH
Terms]) OR implementation*[Title/Abstract]) OR pragmatic clinical trial*[Title/Abstract]) OR pragmatic
trial*[Title/Abstract]) OR randomized clinical trial*[Title/Abstract]) OR real world[Title/Abstract])
OR real-world[Title/Abstract]) OR real time[Title/Abstract]) OR real-time[Title/Abstract]) OR
applied clinical trial*[Title/Abstract]) OR practical clinical trial*[Title/Abstract]) OR bedside
technology[Title/Abstract]) OR bedside comput*[Title/Abstract]) OR prototype*[Title/Abstract]))
AND (((((((((((((((((((((((((((((((((((((((((((((((algorithm[MeSH Terms]) OR artificial intelligence[MeSH
Terms]) OR cluster analysis[MeSH Terms]) OR deep learning[MeSH Terms]) OR logistic
model[MeSH Terms]) OR machine learning[MeSH Terms]) OR unsupervised machine
learning[MeSH Terms]) OR supervised machine learning[MeSH Terms]) OR clinical decision
support systems[MeSH Terms]) OR decision support systems, clinical[MeSH Terms]) OR
algorithm*[Title/Abstract]) OR artificial intelligence*[Title/Abstract]) OR deep learning*[Title/Abstract])
OR logistic model*[Title/Abstract]) OR machine learning*[Title/Abstract]) OR clinical decision
support*[Title/Abstract]) OR medical decision support*[Title/Abstract]) OR adaptive health
system*[Title/Abstract]) OR risk prediction*[Title/Abstract]) OR learning health system*[Title/Abstract])
OR digital phenotyp*[Title/Abstract]) OR outcome prediction*[Title/Abstract]) OR phenotyping
algorithm*[Title/Abstract]) OR prediction model*[Title/Abstract]) OR predictive model*[Title/Abstract])
OR risk flag*[Title/Abstract]) OR risk score*[Title/Abstract]) OR risk stratif*[Title/Abstract])
OR risk assessment[Title/Abstract]) OR risk classif*[Title/Abstract]) OR semi-supervised
learning[Title/Abstract]) OR statistical model*[Title/Abstract]) OR probabilistic model*[Title/Abstract])
OR predictive value of tests[Title/Abstract]) OR probabilistic learning[Title/Abstract]) OR probability
learning[Title/Abstract]) OR neural network*[Title/Abstract]) OR clinical prediction rule*[Title/Abstract])
OR clinical prediction tool*[Title/Abstract]) OR clinical prediction score*[Title/Abstract]) OR
machine intelligence[Title/Abstract]) OR AI[Title/Abstract]) OR prognostic tool*[Title/Abstract])

http://www.mdpi.com/2227-9709/7/3/25/s1
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OR prediction algorithm*[Title/Abstract]) OR predictive algorithm*[Title/Abstract]))) AND
(((((((((((((((electronic health record[MeSH Terms]) OR computerized medical record[MeSH Terms])
OR computerized medical record system[MeSH Terms]) OR medical order entry systems[MeSH
Terms]) OR electronic health record*[Title/Abstract]) OR computerized medical record*[Title/Abstract])
OR electronic medical record*[Title/Abstract]) OR digital medical record*[Title/Abstract]) OR
digitized medical record*[Title/Abstract]) OR digital health[Title/Abstract]) OR computerized
patient record*[Title/Abstract]) OR electronic patient record*[Title/Abstract]) OR automated
patient record*[Title/Abstract]) OR digital patient record*[Title/Abstract]) OR digitized patient
record*[Title/Abstract])
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