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Abstract: The use of data visualization is increasing; however, there is little empirical explanation
for how it supports users. Our goal in this paper is to deepen our understanding of the role
of interactive visualizations in a particular context of decision making. Specifically, we attempt
to understand the role of the working memory system, which is a concept to understand the
mechanism of the processing and temporary storage of information in variety of cognitive tasks.
We compared two interfaces, SimulSort and its non-visual counterpart Typical Sorting, with a
multi-attribute decision-making problem. Because decision outcomes are known to be affected by
the limitations of a person’s working memory, we conducted a crowdsourcing-based user study
using SimulSort to understand how working memory, especially the phonological loop, can benefit
from the using visualizations. We examined the impact on working memory with a well known
dual-task methodology by designing a concurrent task to tap into the main decision-making task.
The experiment was conducted with a total of 137 participants and an ordered logistic regression using
a proportional odds model was applied to analyze the decision quality. The results supported the
hypothesis that when using SimulSort, participants required less working memory than they required
with Typical Sorting to accomplish the multi-attribute decision-making task even though SimulSort
outperformed Typical Sorting in terms of decision quality. We also provide methodologies to conduct
working memory studies by implementing an articulatory suppression task on crowdsourcing
platforms in which experimenters have less control over the participants.

Keywords: information visualization; decision making; working memory; crowdsourcing-based
user study

1. Introduction

Data visualization is widely used for understanding public data through dashboards [1–3],
utilized in mobile services to understand personal data [4,5], and is gaining interest even for K-12
education [6,7]. Even though the importance is growing we have less understanding on how it is
helping the users understand data. One of the commonly accepted definitions of data visualization
(henceforth, visualization) is “the use of computer-supported, interactive, visual representations of
abstract data to amplify cognition” [8]. An interesting phrase is that visualizations “amplify cognition”.
Numerous studies [9] have demonstrated that visualizations help people find novel insights and
serendipitous findings. These findings could be results of amplified cognition, but it is difficult to
explain how visualizations amplify cognition. In general, the cognition amplification claim emphasizes
that the final product of accomplishing a task or gaining insight is something the user could not
have done without the visualization. Previous work has been focused mainly on visual perception
to understand what makes visualizations effective e.g., [10–15], but they are not sufficient to explain
higher level cognition. As noted by [16] (2004), it is difficult to conduct controlled studies with
visualizations, which makes it challenging to have detailed observation of cognitive processes.
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Recently, research has been conducted to understand the underlying impact of visualizations
on the human cognitive process [17–19]. However, the majority of these researches still remain on
recognition and recall tasks on static visualizations. Padilla et al. introduce methods to evaluate
working memory with visualization tasks using geospatial maps in a controlled-lab environment [20].
The authors utilized pupillometry and dual-task experimental designs and show how visuo-spatial
sketchpad memory plays a role with static geospatial visualizations. However, several visualizations
have visual encodings that represent non-spatial data. For example, bar charts and line charts show
numeric values and people execute common tasks while utilizing these graphs such as reading,
comparing, or memorizing numeric values. Working memory consists of various components that
can hold a limited amount of transformable information for a finite period of time [21]. A well-known
model suggests that the working memory consists of two temporary memory systems, a phonological
loop and a visuo-spatial sketchpad [22]. The phonological loop is involved in verbal information and
the visuo-spatial sketchpad serves as a temporal storage for visual and spatial information. The tasks
mentioned earlier above may involve the phonological loop as it is well known to be used for math
calculations [23].

Therefore, in this study we would like to deepen our understanding of the effect of visualizations
on human cognition by looking into working memory, especially about the phonological loop,
with interactive visualizations. Thus, the goal of this study is to obtain robust, empirical evidence
showing how visualization amplifies cognition. To overcome the aforementioned challenges, we have
made two choices in the design of the experiment.

First, we chose “multi-attribute decision making” as the experimental task, which we experience
in everyday life such as selecting a car or renting a house. It can be expressed in a matrix format,
where rows represent alternatives, and columns represent the attributes considered (e.g., horsepower,
MPG for cars and rent price, distance to workplace for houses). Unlike other tasks often supported by
visualizations, the performance of multi-attribute decision making can be objectively and quantitatively
measured, so that we can see the effect of factors more clearly. In addition, this task is commonly used
in choice-making experiments to understand consumers and is known to be a mentally demanding
task [24]. It still presents sufficient cognitive challenges in that a participant must perform complex
mental processing to accomplish the task, which is far more complicated than a perception-level task
(e.g., picking a red circle out of blue circles).

Second, out of many visualization tools used to support multi-attribute decision making
refer to [25], we chose SimulSort [26]. SimulSort has been empirically tested by a series of
studies [27–29], so there are proven experimental settings and comparable empirical data. Its interface
is also simple enough to investigate the role of visualizations without concerns about confounding
factors. In addition, a previous study using SimulSort [28] showed that participants could
evaluate more information without employing greater effort. To find a better explanation of these
phenomena, we examined the role of working memory to explain how cognition was amplified
with visualizations–eventually visualizations unburden working memory to accomplish more
complicated tasks.

We made these choices to improve internal validity while sacrificing external validity,
but we believe that this study can provide far more robust evidence showing how visualizations
amplify cognition.

The contributions of this paper are as follows:

• We provided quantitative empirical evidence showing that the interactive visualization, SimulSort,
amplifies cognition, more specifically unburdening working memory on the phonological
loop; and

• We suggest an experimental method to vary the burden on working memory with a phonological
suppression task in a crowdsourcing-based study in which controlling participants’ behaviors
is challenging.
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2. Background

2.1. Multi-Attribute Decision Making

Multi-attribute decision making occurs when the decision maker has to select one option from
a set of alternatives, each of which has a set of attributes [30]. This is a common situation in which
one can easily organize the data in tabular form [31]. The decision-making process is cognitively
demanding as the goal is to select the best option considering all of the given information. For example,
when people purchase a car, they may consider several aspects such as price, fuel economy, horsepower,
and consumer ratings. Specifically, the consumer may want a car with a lower price, lower fuel
economy, higher horsepower, and higher consumer ratings. They need to compare all the attributes
and furthermore, one can collect more information about the car to consider. However, giving
decision-makers more information to consider does not mean that they will make better decisions.
This phenomenon is due to that even with more information, people have a hard time processing all
the given data. The decision making process becomes more difficult when there are several alternatives
to compare. Simon introduced the concept of bounded rationality that has implications for human
information processing systems in which the overall cognitive capacity is limited, including working
memory [32]. In other words, decision makers keep information-processing demands within the
bounds of their limited cognitive capacity and might not be able to make a rational choice if they
process requires a high level of computational effort. Even when it entails sacrificing decision accuracy,
many people select effort reduction [33,34]. This suggests that external aids could help decision makers
achieve higher decision quality by reducing the cognitive load so as to not exceed the decision maker’s
effort limitations. Bettman also suggested design implications based on processing capabilities of
the decision maker [35]. One approach is to examine whether visualization can lower the memory
demands. The external system can partially decouple the memory system from the processing system,
so that eventually, the information can be easily processed without relying on memory.

2.2. Visualization Techniques

There have been several visualization tools to project multi-dimensional data to be perceived
more easily, especially presuming the tabular forms. For example, TableLens supports large data sets
and expands the boundaries of a table that can be shown on a screen, allowing users to magnify certain
areas for detailed examination [36]. LineUp supports multi-attribute ranking tasks and interactive
refinement of weights, helping the user to follow the shuffling in rank that happens through transition
animation and highlighting. It also supports stacked bar charts, which reflect the cell value and also
help in visualizing the sum of multiple items [37]. Mostly these tools support large data sets and are
intended to use for exploration, filtering, or weight adjustments to attributes. One standard function
to interact with columns is to sort a column in a descending or ascending order. One problem with
this one-column sorting is that as the sorting is done for a single column, data sequences for other
columns are changed accordingly. For example, with the car data set explained in the previous section,
if one is interested in lower price and sorts by this attribute in ascending order, the car with the lowest
price will be shown on the top. Next, when the user wants to see the consumer ratings in a descending
order, the previous sorted results disappear and the car with highest rating will show on top. To keep
track of the continuous shuffling, the user needs a substitute method to record the results.

To overcome this problem, SimulSort (see Figure 1a) presents all columns sorted simultaneously
so that one can see the relative values or utilities (i.e., pros and cons) of an alternative over multiple
attributes [26]. SimulSort can be explained as a tabular look of parallel-coordinate plots (PCPs).
PCP is an example of a classic approach to projecting hyper-dimensional data onto a 2-D display.
The attributes are represented as axes parallel to each other, and a data point with multiple attributes
is visualized as a poly line connecting each data dot on each axis [38]. As one option is represented in
a line, data points in PCP are initially hidden and require additional interactions in order to retrieve
the data. Therefore, SimulSort adopts the idea that all columns can be sorted simultaneously, but still



Informatics 2020, 7, 53 4 of 19

maintain the cells for the data to be shown. In order to find a corresponding attribute of each item,
the user has to follow the highlighted cells which change color by hovering the mouse over (yellow
color) or selecting an item (green color). This visual representation is expected to avoid the constant
shuffling of rows when sorting each column separately in common spreadsheet applications. SimulSort
offers insights to users by presenting the trend of the data at a glance; because it preserves the tabular
form that reveals the values, however, there is a limit to the number of alternatives and attributes that
can be represented on the screen without additional interaction techniques (e.g., zooming).

(a) SimulSort interface

(b) Typical Sorting interface

Figure 1. Example of the two interfaces, SimulSort and Typical Sorting, comparing two alternatives;
item 15 is highlighted in green, and item 5 is highlighted in yellow. (a) SimulSort: The comparison
of the two items can be done by comparing the vertical positions of the highlighted cells. (b) Typical
Sorting: The comparison of the two items can be done by reading the face values of all of the cells.

The value of using SimulSort interface for evaluation studies is that it has a nonvisual interface
counterpart, Typical Sorting (see Figure 1b), which differs only in terms of the sorting technique.
Previous studies comparing these two interfaces showed that SimulSort enhanced the decision
quality and shortened the time spent with higher decision outcomes compared to a Typical Sorting
interface [27]. The participants could also apply more cognitively-demanding decision strategies
while making a decision [28]. Therefore, to deepen the understanding of why visual aids are
effective, we chose to extend the studies by borrowing the methodological approaches from previous
experiments. The details of the task are explained in Section 4.2 as the experiment in the paper adopts
the same data sets and tasks.

2.3. Visual Representation in Decision Making

Lurie introduced a framework to understand how visual representations can affect
decision-making processes that involve large amounts of data [25]. Based on extensive literature
reviews, the authors introduced several testable propositions. Visualizations could offer a way to shift
the cognitive load to the human perceptual system [39], which will eventually expand an individual’s
capability to solve problems [40]. For example, pre-attentive features can be processed readily with
little effort [41]. Due to visual representations, the ease of assessment and comparability of the given
information could be changed [42]. If it becomes to be easier to evaluate the options, it is likely to
lead the decision maker to more information through acquisition, weighting, and comparing [43].
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In particular, visual representations lead to intuitive judgments by supporting simultaneous processing.
They enhance the decision maker’s ability to evaluate large amounts of information [44]. However,
these propositions about the effectiveness of visualizations should be tested empirically.

2.4. Working Memory

Working memory is the cognitive system responsible for temporarily storing and manipulating
information during a cognitive activity. The model of working memory was proposed by Baddeley [22]
and has been widely used to explain the process used to accomplish cognitive tasks. According
to the multiple-component working-memory model [22], the working memory consists of three
components: a limited capacity of two temporary memory systems, a phonological loop and a
visuo-spatial sketchpad, and a central executive controller. The phonological loop is involved in the
temporary storage of verbal information and it was initially named the articulatory loop because a
vocal or subvocal rehearsal was assumed to be necessary to maintain information. The visuo-spatial
sketchpad serves as a temporal storage for visual and spatial information. The principle role of
the central executive system is to coordinate the actions between the phonological loop and the
visuo-spatial sketchpad.

As the main decision-making task requires the decision maker to evaluate different alternatives
that consist of numbers, the components involving arithmetic are our main interest. The phonological
loop is known to be important for retaining information in verbal form during mental addition [23,45].
Widaman et al. [46] showed that subvocal articulation in counting and arithmetic is important.
Along with the phonological loop, the central executive is involved in a simple arithmetic problem [23].
The visuo-spatial sketchpad also has been investigated to see how it is used during math calculations.
However, in this case the experiments verified whether numbers were present on a screen and whether
a vertical or horizontal arrangement of numbers had an impact on accuracy. As the form of the
numbers was not to be changed in the experimental interface, we did not take visuo-spatial sketchpad
into further consideration.

Dual-task methodology is often used to measure whether a working memory component is used
in a given cognitive task [45]. The experiment is designed to have a primary cognitive task of interest
and includes a secondary task that taps into the component of the working memory. If the secondary
task disrupts the performance of the primary cognitive task compared to the control condition with
only the primary task then one can infer that the component used for the secondary task is involved
in the performance of the primary cognitive task. For example, if the performance of a primary task
decreases when phonological suppression is added (e.g., by counting a number out loud) but not
while a spatial task is performed (e.g., moving the non-preferred hand in a pattern), it can be inferred
that the primary task involves the phonological loop but not the visuo-spatial sketchpad component.
Different secondary tasks have been implemented, by adding memory span tasks to remember a series
of numbers, operation span tasks to read or listen to a series of statements, or visuo-spatial memory
span tasks to remember a array of items.

2.5. Visualization and Human Cognition

A large number of researches wanted understand the role of interactive visualizations in human
cognitive activities [17–19,47]. Ref. [19] (2010) attempts to understand the dynamics between mental
models and visualizations that are considered to be external representations. With a top-down
approach, the authors explain that humans enhance reasoning using visualizations by an interactive
process with the medium: internalization, processing, augmentations and creation. Ref. [18] (2015)
conducted a more lower-level experiment on how pictographic representations had impact on memory,
speed of finding information, and engagement and preference in seeking out these visualizations.
Pictographs were found to help people remember information and entice people to inspect visuailzation
more closely. Recently, ref. [20] (2019) initiated to provide practical cross-domain methodological
guidance for objectively evaluating working memory demands in data visualizations. The authors
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conducted a study with geospatial visualizations to compare of the average elevations of two regions
that was to be a visual-spatial aggregation task related to the visuo-spatial sketchpad. The results
show that the use of dual-task experimental designs and pupil dilation can reveal working memory
demands associated with task difficulty and dual-tasking. However, the study does not reveal how to
conduct a dual-task working memory experiment for testing the phonological loop and is limited to a
controlled-lab setting.

3. Hypotheses

One of the main visual features of SimulSort (henceforth, SS) and Typical Sorting (henceforth,
TS) is the visual bar (see Figure 1), which consists of the three main components: number, color and
vertical location. First, a number is a value of an alternative’s attribute. Second, visual bars can be one
of two colors (i.e., green or yellow) that appear when a decision maker is hovering over or selecting a
cell in both SS and TS. The same color of visual bars indicates the same alternative among the given
options so the decision maker can interpret the same-colored cell as representing attribute values for
any single alternative. Third, vertical location exhibits different features in SS and TS. Because the
vertical location of a visual bar in SS is determined based on a numerical value in the cell, the vertical
locations of cells for the same alternative are inconsistent. However, the vertical location of every cell
for an alternative in TS is the same.

The numerical component of the visual bars is essential for comparing the values of an attribute
in two alternatives. This is a common component of the visual bars used identically in both SS and
TS. In addition, the vertical locations of the visual bars may have a complementary role in comparing
values in SS. Because the vertical location of a cell represents its relative value compared to other
attributes in a column in SS, a decision maker could use this characteristic to compare values between
two alternatives. For example, with SS, a decision maker can compare the value in two alternatives
for every attribute and decide which one is higher than the other without reading the exact values
simply by comparing the relative vertical height in each attribute. However, in a TS environment the
decision maker might have to read the numbers and compare the face values to determine which one
is higher than the other. Thus, SS may allow the decision maker to perform fewer mental subtraction
calculations when making a decision.

We believe that some part of the analytical task might be converted into a perceptual task by
using the vertical locations of the visual bars in SS for processing information. Graphical elements
in visualizations lead to releasing working memory resources by shifting some cognitive tasks to
perceptual tasks [48,49]. Therefore, the cognitive operations performed using SS might occupy less
working memory capacity than with TS. To support this hypothesis, working memory was considered
to be a system that is used by a decision maker to process information when making a decision [50].
In particular, we focused on the phonological loop because simple arithmetic, which is a key cognitive
operation involved in multi-attribute decision-making tasks [51], is known to involve the phonological
loop [52]. In this study we adopted the methodology to add a articulatory task as a secondary task to
suppress the phonological loop. This would tap on the working memory while performing the the
primary multi-attribute decision-making task. Because the cognitive operation of comparing values
with SS might rely more on the vertical locations of the visual bars, and because it might occupy fewer
working memory resources than with TS, the decision quality may not be significantly affected by
the addition of the secondary task. In contrast, the cognitive operations with TS might rely more on
the number component of the visual bars and on mental calculations that might use more working
memory capacity. Thus in this case the decision quality may be influenced by the addition of the
secondary task in this case. Therefore, the hypotheses for this study are as follows:

Hypothesis 1 (H1). In data processing using SS, the decision quality would not be different with the added
phonological suppression task.
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Hypothesis 2 (H2). In data processing using TS, the decision quality would decrease with the addition of a
phonological suppression task.

4. Experiment

We compared the two interfaces SS and TS (see Figure 1a,b accordingly) by borrowing the
experimental methods from previous studies [27]. In order to examine the impact on working
memory, the dual-task methodology was employed by designing a concurrent task to tap into the
main decision-making task.

4.1. Data Sets

We used the same data sets from the previous study [27]. Each data set was randomly generated
which had 15 alternatives (i.e., rows) and seven attributes (i.e., columns) consisted with a two-digit
numerical value from 10 to 99. To maintain similar difficulty level for each data set, the Average of
Inter-Attribute Correlations (AIAC) value was controlled [24]. The AIAC calculated by computing
the average of the correlations among all of the combinations of the two columns out of all of the
columns. The task to select the best alternative becomes more difficult when the AIAC value is lower,
as the decision maker needs to consider the trade-off due to negative correlation between attributes.
When the AIAC is higher (maximum = 1), there is fewer trade-offs to consider, therefore selecting the
best alternative becomes easier [53]. In real situations, negative correlation exist such as price and
certain aspects for a product. Therefore, in our study, the AIAC value was controlled to be low around
0.01 to generate the appropriate level of difficulty [27]. If a decision maker does not consider all of the
columns, it is likely that the decision quality of the choice will decrease.

The data was also context-free as we did not want to introduce participants’ preferences during
the decision-making process. For example, if we used a car dataset, participants could favor certain
attributes to be more important, which results in having no objectively best option. This kind
of context-free experimental task has been widely used in other decision science and economic
studies [54].

4.2. Design of Primary and Secondary Tasks

4.2.1. Primary Task

The decision-making task was to selection the best option out of 15 options, with the highest
utility by considering seven attributes. The calculation for utility was borrowed from economics and
decision science, which is the sum of its normalized attribute values. The evaluation of whether a
number was high or low was relative for each attribute. For a car dataset, face value 8 for cylinder size
could be a large value even though it was a smaller number than 45, which may be a small number for
the fuel economy attribute. To mimic such a reality in calculation, the attribute-wise utility of a face
value of a cell was normalized within that attribute. Eventually, the utility of an option was calculated
by summing all seven normalized attributed values, as shown in Equation (1):

utilityi =
7

∑
j=0

Tij − min T.j

max T.j − min T.j
, (1)

where utilityi is the ith alternative’s utility, utilityij is the jth attribute-wise utility of the ith alternative,
and Tij is the face value in the jth attribute of the ith alternative in data set T. Due to the normalization,
the range of the attribute-wise utility was [0, 1]. As the dataset was generated randomly, the range
of utility for the options was within in the range of [0, 7]. Intuitively, the participants had to select an
option that had high attribute-wise values as much as possible.



Informatics 2020, 7, 53 8 of 19

4.2.2. Secondary Task

The secondary task was chosen for articulatory suppression to investigate the role of the
phonological loop in decision-making tasks. The task was to recite the alphabet following a beep.
A common procedure for the secondary task included asking participants to continuously rehearse a
word such as “the” when they heard a beep sound, while performing the primary task [45]. However,
as the experiment was conducted over Amazon Mechanical Turk, we had to make sure that participants
were performing the secondary task properly. Therefore, we selected the secondary task to be
rehearsing the alphabet. The participants started from the letter “a” and recited the alphabet in
order on each beep. If they reached the letter “z,” the participants had to start from “a” again. At the
end of the trials, participants were asked to enter the letter on the last beep in a pop-up window.
To make the answer for the last letter different for each trial, the interval of the beep was selected
randomly to be between 700 ms to 1200 ms. The bonus payment scheme was designed to encourage
participants to perform the secondary task more actively (see Rewards section).

4.3. Experimental Design

The experiment followed the Split-Plot design, which involves two experiment factors, interface
(i.e., SS vs. TS) and the existence of the secondary task, which was the phonological memory load
suppression task (i.e., only primary task and primary task with secondary phonological memory task).
The main effects of interface and the existence of the secondary task were considered fixed, whereas
the effects of participants and the interaction between the participants and interface was considered
random. Each three positions were measured eight times.

Given the split-plot design, the model for the experiment was as follows:

yijkl = µ + si + αj + (sα)ij + βk + (αβ)jk + εijlk, (2)

where si represents the random subject effect; αj represents the whole-plot factor, interface (j = SS,
TS), βk represents the split-plot factor, the existence of the secondary task (k = 0, 1); l (l = 1, 2, ..., 8)
represents the replicates.

4.4. Participants

A total of 139 crowdsourced workers were recruited on Amazon Mechanical Turk and one
participant was removed as they were detected to be a random clicker [55] and one participant was
removed due to a technical issue with the audio. Eventually, 137 legitimate participants (60 female)
remained with 68 participants for SS and 69 participants for TS. The ages ranged from 19 to 65 years
old (µ = 32.2, σ = 10.8). The countries in which they lived were as follows: USA, 90.7%; India, 9.3%.
The education levels of participants were as follows: high school graduate or below, 10%; enrolled
as college student, 30%; associate degree, 6.4%; Bachelor’s degree, 43.6%; Master’s degree, 5.8%;
and professional degree, 4.2%. The major of the participants who reported were as follows: Science
and Math, 10.7%; Business, 9.3%; Engineering, 8.6%; and Liberal Arts, 7.9%.

4.5. Procedure

The participants read the instructions of the experiment on Amazon Mechanical Turk and if the
participant accepted our HIT, they were redirected to an experimental website. After accepting the IRB
consent form the participants started the experiment. Each participant had two initial trials each for
only the primary task, only the secondary task, and the primary task with the secondary task. This was
to help the participants get comfortable with all three types of settings. Though these six trials were not
used for analysis, the participants were not informed that they were practice sessions. Next, four trials
were given to only perform the secondary task to help participants recite the alphabet. Next, the two
settings with and without the secondary task were performed eight times each. To minimize the
confusion between switching the conditions for each trial, four consecutive trials had the same settings.



Informatics 2020, 7, 53 9 of 19

The eight trials with only the primary task were used to detect whether a participant was a random
clicker. For each trial, there was a time limit of 40 s to finish the task. After the 26 trials were done,
individual working-memory capacity was measured using operated span task (OSPAN). Finally,
a demographic survey was conducted. The procedure is shown in Figure 2.

Figure 2. Flowchart of the procedure of the experiment.

4.6. Measurements

4.6.1. Decision Quality

As mentioned in the Data Sets and Primary task sections, the data sets were generated randomly
to be different for each trial, therefore the highest utility of the best option differed for each trial.
In order to be comparable among each trial, we normalized the utility of options. We followed the
measure decision quality used in the previous study [27], calculated as follows:

Decision quality =
utilityi − min(utility·)

max(utility·)− min(utility·)
, (3)

where utilityi is derived from Equation (1). Eventually the decision quality ranged from 0 to 1, in which
1 was the maximum decision quality when the best option was selected and 0 when the worst option
was selected.

4.6.2. Individual Working Memory Span

Although the main interest of this study is not investigating individual differences of working
memory capacity, we measured the working memory capacity for each participant. There are different
methods to measure the individual working-memory capacity such as operation span, reading
span, and counting span. Different working-memory span measurements have shown to have
good reliability and validity [56]. These tasks require a series of recall of the to-be-remembered
tasks along with the distracting tasks, which have been shown to be good predictors of individual
differences in different types of cognitive performance [57]. Particularly, operated span task (OSPAN)
requires solving a series of math operations while remembering a set of words. Considering the online
environment, we adopted the automated version of OSPAN [58], as it only requires interaction with
the mouse. The participants were asked to solve a series of math problems and remember the letters
shown. A sequence of math problems and letters form a set. For example, in the case in which the
set size is three, three math problems and three letters are shown. The participants have to recall the
three letters in the same order and actual position. There were five different set sizes, which ranged
from 3 to 7 and each set size was shown twice. A total of 10 sets, which contained a total of 50 math
problems and 50 letters to remember. Because the participants should be attempting to solve both
the math problems and remember the letters, the task imposed an 85% accuracy rate for the math
problems. It was mentioned that they would not be paid if the accuracy was lower than 85% on the
instructions. The OSPAN score was calculated by the sum of all perfectly recalled letters, which ranged
from 0 to 50.
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4.7. Rewards

The base payment for participating in the task was $1.80, and the maximum bonus for each of the
trials was as follows: only the primary task ($0.12), only the secondary task ($0.06), both the primary
and secondary tasks ($0.12 and $0.06 for each task). For the trials with only primary task, the bonus
amount was calculated proportionally to the participants’ decision quality. If they selected the best
item, they would get the maximum reward. For the reciting-only alphabet task, they were paid if
the alphabet was correct. For the trial with both primary and secondary task, the participants were
informed that they would receive no bonus if the alphabet was wrong, regardless of their performance
for the decision-making task. This was to make sure that the participants would focus on the secondary
task while doing the primary task. If they got the secondary task correct, the bonus amount of $0.06
was given for getting the secondary task correct and bonus proportionally to the decision quality
for the primary task (max $0.06) was added. For the OSPAN task, $0.20 was paid if the participants
finished the OSPAN task with an accuracy of the math problems higher than 85%. The average earning
for the participants was $3.95 (σ = 0.55).

5. Results

5.1. Secondary Task Performance

First, we examined the performance of the secondary task. The letter the participants entered
was checked to see if it matched with the last letter on the beep. The number of trials in which the
participants entered the correct letter is shown in Table 1. The distribution of the number of incorrect
and correct trials was similar for both SS and TS interfaces. The mean response time to enter the letter
and click on the done button to close the pop-up window was 1.7 s for SS (σ = 0.3) and 2.0 s for TS
(σ = 0.2).

The difference between the correct letter and the letter entered by the participants was calculated
for the error size using the ASCII code of the lower case alphabet letter. However, as the participants
were asked to start from “a” again after they reached “z,” if the letter was incorrect, it was not clear
whether they overcounted or undercounted the letter. For example, the ASCII code is 97 for “a” and
122 for “z,” the difference between the two letters by ASCII code would be 25 (122 − 97). However,
if we consider the alphabet to be loop, the distance between two can be 1. Therefore, the error size
was calculated by following these rules: (1) calculate the absolute difference of the two ASCII codes;
(2) subtract the value from 26 (the length of the alphabet); and (3) select the smaller value of the two.
The distribution of errors is shown in Figure 3.

For these types of secondary tasks, it is important to ensure that participants were focusing on
both the primary and the secondary task. Although an incorrect letter was selected in the secondary
task, all the data was included for further analysis. We believe that even though participants paid
attention to the secondary tasks, errors can occur and the distribution of the error size seems reasonable
without showing much difference between the two interfaces.

Table 1. Number of trials in which case participants entered the correct letter for the secondary task.

Interface
Performance

Incorrect Correct

SimulSort (SS) 159 385
Typical Sorting (TS) 173 379
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Figure 3. Histogram of the error size for the secondary task.

5.2. Decision Quality

To give an overview of the decision quality comparing the two interfaces, Figure 4 depicts the
decision quality for each group. It is shown to help understand the decision quality with the scale
of the actual response [0, 1] before categorizing it into three levels. With the SS interface, the mean
decision quality for only the primary task and the primary task combined with the secondary task
were 0.86 and 0.84, respectively. With the TS interface, the mean decision quality for only the primary
task and the primary task combined with the secondary task were 0.80 and 0.75, respectively.

Primary+SecondaryOnly Primary

0.90

0.85

0.80

0.75

Primary+SecondaryOnly Primary

SS

Type of Task
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n 
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Figure 4. Interval plot of decision quality for both interfaces (SimulSort—SS and Typical Sorting—TS)
and the comparing the settings with only the primary task and the primary combined with the
secondary task (95% CI for the mean).

The decision quality of the responses did not follow a normal distribution. As the assumptions of
the standard linear mixed model did not hold, we categorized the responses into three groups and
conducted an ordered logistic regression using the proportional odds model with PROC GLIMMIX.
By grouping the decision quality, we made a trade-off between losing the granularity of the decision
measurement and keeping the mixed model split-plot design into analysis. Using visual inspection,
the threshold to determine the three groups in the histogram was to inspect for two locations
where the frequency declined the most. After splitting the histogram, three sections remained,
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one for each of the levels. Each section had its own peak representing an individual distribution
for each level. The range of decision quality for the three levels was: low [0,0.7625), medium [0.7625,
0.9875), and high [0.9875, 1]. The items that are included in the high-level decision quality was
the top-ranked item, for the medium-level decision quality the next top 3 to 4 ranked items were
included, the remaining were included in the low-level decision quality range depending on the
dataset. The main effects of the interface and the existence of the secondary task were considered fixed,
whereas the effects of participants and the interaction between the participants and the secondary task
were considered random.

The probability of having a higher level of decision quality was affected by the interface
(F(1, 127) = 25.20, p < 0.0001) and the existence of a secondary task (F(1, 1932) = 5.65, p = 0.0175).
The interaction effect was found to be not significant (F(1, 1932) = 0.21, p = 0.6478). To test the
hypotheses that a secondary task had an impact within each interface, the odds ratios were computed.
A pairwise comparison using an odds ratio revealed that the secondary task had an impact on the
decision quality level (see Figure 5a). For the SS interface, the probability of completing only a primary
task (π = 0.4874) was not different from that for a primary task combined with a secondary task
(π = 0.4479) (H1 confirmed). For the TS interface, the probability for only a primary task (π = 0.3479)
was significantly higher than that of a primary task combined with a secondary task (π = 0.2969)
(H2 confirmed). While the overall decision quality was higher with SS, only TS was impacted by the
secondary task. This indicates that the strategies chosen by the users while using SS required less
working memory for accomplishing the tasks. For each OSPAN group, while the participants used SS
always, they outperformed the participants using TS for all cases (see Figure 5c).

0 1 2 3

0 1 2 3

0 1 2 3
Odds Ratio

(a) Existence of Secondary Task 
      for each Interface

(b) OSPAN Groups by each Interface

(c) Interface for each OSPAN Group 

SS, Primary vs. Primary+Secondary

*TS, Primary vs. Primary+Secondary

SS, Low vs. Medium

SS, Low vs. High

SS, Medium vs. High

TS, Low vs. Medium

TS, Low vs. High

TS, Medium vs. High

*Low, SS vs. TS

*Medium, SS vs. TS

*HIgh, SS vs. TS

Figure 5. The 95% confidence intervals of odds ratios of different comparisons. The asterisk mark (*)
indicates statistically significant odds ratios. Comparison of (a) the existence of secondary task for
each interface; (b) operated span task (OSPAN) groups by each interface; and (c) interfaces for each
OSPAN group.



Informatics 2020, 7, 53 13 of 19

5.3. Individual Difference of Working Memory Span

5.3.1. Individual OSPAN Score

Only participants who had over 85% accuracy were included. With this criterion, eight participants
were filtered. A total of 129 participants (66 for SS and 63 for TS) were included for further analysis.
The distribution of the OSPAN scores are shown in Figure 6.

A common method to use OSPAN scores in analysis is to divide the participants into groups
of high, middle, and low OSPAN groups (e.g., [59,60]). The quantile of the score is used and the
participants in the lower quantile are grouped as “low” and the participants in the higher quantile are
grouped as “high”. The others are considered as the “middle” group. The lower group had OSPAN
scores below or equal to 11 and the higher group had scores greater than or equal to 41. The number of
participants for each group is shown in Table 2.

5.3.2. Decision Quality by OSPAN Groups

The trials that only had the primary task were included in the analysis, as the interest was to see
the performance on object selection decision-making task. The OSPAN group was added to the model
for further analysis using PROC GLIMMIX.

The probability of having a higher level of decision quality was affected by interface
(F(1, 1025) = 23.54, p < 0.0001) and not by the OSPAN group (F(2, 1025) = 2.12, p = 0.1209). In order
to see the impact of interface within each OSPAN group, a pairwise comparison using odds ratio is
reported in Figure 5b. For the low OSPAN group, the probability for SS (π = 0.4662) was higher than
that for TS (π = 0.2942). For the medium OSPAN group, the probability for SS (π = 0.5150) was
higher than that for TS (π = 0.3811). For the high OSPAN group, the probability for SS (π = 0.4893)
was higher than that for TS (π = 0.3681). Figure 7 depicts the decision quality for the two interfaces
divided into the OSPAN groups. It is shown to help understand the decision quality with the scale of
the actual response [0, 1] before categorizing into three levels.
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Figure 6. Distribution of OSPAN score of the participants.
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Figure 7. Interval plot of decision quality for both two interfaces and each OSPAN group (95% CI for
the mean).

Table 2. Number of participants for each OSPAN group.

Interface
OSPAN Group

Low Medium High

SS 19 30 17
TS 15 32 16

6. Discussion

6.1. Unburdening Working Memory

Through this study, it was shown that using SS leads to utilizing less working memory capacity
than using TS, especially on the phonological loop. The decision quality did not drop during the
secondary task with SS, whereas it dropped significantly with TS. Core processes required for
evaluating alternatives, such as subtracting or multiplying values, might require more working
memory resources while using TS than SS, which could not be fully achieved due to the secondary
task. Although people apply different strategies by fully or partially relying on visual information,
and extracting visual information demands higher attention, overall we believe that using visual
bars in SS helps accomplish certain processes, allowing individuals to use less working memory
to accomplish tasks. While using SS, the task of problem solving might become easier because the
participants do not have to fully engage in a complicated mental calculation. Instead, they might shift
to using visual bars in SS by using less cognitive capacity to accomplish the task. Thus, they can use
their remaining cognitive capacity to perform other tasks.

This will also refine the claim that the effectiveness or benefit of using an information visualization
technique results from amplifying cognition [8]. We believe that the outcome of using these
visualizations in interpreted as “amplified cognition” because the final product is something the
user could not have done without the visualizations. Through visual perception, the cognitive abilities
required during the process decreases with the user able to accomplish the goal more easily. One similar
example is that multiplying three-digit numbers becomes easier when using a paper and pencil than
when doing it in your head [61]. If the visual interface is well designed, then complex problem solving
can become a simple task. It is possible that while using SimulSort, the task of decision making became
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easier because the participants did not have to fully engage in a complicated mental calculation with
the numbers.

6.2. Individual Difference on Decision Quality

By considering the working memory capacity of individuals, we could see if one type of visual
aid, SimulSort, was beneficial to different groups. In this experiment, all three OSPAN groups (i.e., low,
medium, and high) using SS had higher decision quality than the groups using TS. Considering that
the decision outcome was higher with SS than TS, we can see that this result is applicable for all three
OSPAN groups, without favoring a particular group. Therefore, even for people with low working
memory capacity, the performance for decision-making tasks may be as comparable to other people
with higher cognitive capacity.

Among the three OSPAN groups using SS and TS, there was no difference in terms of the decision
quality within each interface. This was unexpected, as the hypotheses were derived from the fact that
the decision-making tasks required working-memory capacity. There are two possible speculations.
As shown in Figure 5b, a marginal difference was shown between the low and medium OSPAN group
with the TS interface, and the decision quality of the medium group is relatively higher than that of the
low group. Because the method to divide the group used quartiles, with the sample for this experiment,
only a few remained for each group, as shown in Table 2. If a large sample size is collected, it might be
able detect difference among different OSPAN groups. Another possibility is that the OSPAN measure
was not articulated enough to measure cognitive capacity. The maximum score for this experiment
was 50, which is similar to studies that also ranged from 42 to 56 e.g., [59,60]). There are also tests
that have more sets with a maximum score of 75 [58], which might be able to detect the difference in
cognitive capacity with more granularity.

6.3. Conducting Online Working Memory Experiments

In previous studies, experiments to investigate the effects on working memory with dual-task
methodology have been conducted in a controlled-lab setting [57,62]. However, it is challenging to
conduct these types of experiments online because the experimenter can not have full control over
participants. The main concern is if the participants are actually making an effort to accomplish
both primary and secondary tasks. In order to overcome this issue, we designed a way to measure
the accuracy of the secondary task. We could have an exact answer as the secondary task was to
recite the alphabet on the beep within a time constraint. By having this measure to check accuracy,
we could motivate the participants to do the task by designing the reward scheme to reflect the
performance. In this experiment, participants were penalized if they missed the secondary task,
which was easy enough to accomplish if they were focused on it. The results of this study also shows
that an online experiment can be an appropriate experimental method to investigate the impacts on
working memory when conducting a secondary task. In spite of the concern, a lot of participants
can be recruited, and they can be sufficiently controlled with an online experiment environment.
However, one limitation is that this task could require more control from the central-executive controller
compared to a simple task such as reciting the same word, “the”, on a beep.

7. Conclusions

Through this study we investigated how visualization techniques could help decision makers
reach better decision outcomes, especially, by examining the role of working memory. Although
visualizations are developed to rely on a human’s visual system, the tasks required to associate with
a higher cognition level for data analytic. Therefore, we conducted a study to understand better
how the working memory is affected by these data visualizations. Working memory consists of
various components that can hold a limited amount of transformable information for a finite period.
A well-known model suggests that the working memory consists of two temporary memory systems,
a phonological loop, and a visuo-spatial sketchpad [22]. In our study we focus the phonological loop
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that is involved in verbal information. This study revealed that SimulSort occupied less working
memory capacity compared to Typical Sorting, while accomplishing multi-attribute decision-making
tasks. A common concurrent task methodology showed that performance deteriorated only with
Typical Sorting whereas SimulSort was not affected by the added secondary task. The result of
occupying less working memory while processing information could be due to the visual information
retrieved. We believe that certain visual encodings can efficiently shift subprocesses to accomplish the
task effectively.

Further studies can be conducted on what subprocesses should be externalized and what
visual representation can be effective to support the whole process. Working with multi-attribute
decision-making problems were interesting as a large amount of literature has already suggested
clues of what steps are required to reach the optimal goal and the behavior that people actually do.
Retrospectively, we could find how SimulSort was actually supporting these subtasks in a visual
way. We believe that while designing a tool for certain tasks, tasks analysis could be an interesting
way to determine the type of subtasks that can be transferred into visual representations. Obviously,
visualizations rely on visual perception and it is an important aspect to look into. Early works that
have focused on the perceptual aspects of effective visual representations can be also extended to see
the effect on working memory, and how it can support our cognition in terms of accomplishing more
high-level tasks.

Additionally, we should investigate different visual aspects of tabular visualizations. For example,
a standard visual encoding is to add a horizontal bar in the cell to show the size of the face value.
This shows the distribution for a particular column that also provides a visual cue to help the
decision-making process. We should also compare how the polylines in PCP play a different role
compared to the cells preserved in tabular visualizations. Researchers have developed several tabular
visualizations attempting to come up with a full-function tool aiming at different aspects that can help
people understand two-dimensional data. We believe that we need a better understanding of how
users utilize these tools. However, the user studies may be more qualitative as the tools have several
functions. Along with the rigorously controlled experiments on visual aspects, these findings can lead
to theoretical frameworks to suggest design guidelines and predict the value of visualizations.
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