
 

 
 

 

 
Informatics 2021, 8, 12. https://doi.org/10.3390/informatics8010012 www.mdpi.com/journal/informatics 

Review 

Visual Analytics for Electronic Health Records: A Review 

Neda Rostamzadeh, Sheikh S. Abdullah and Kamran Sedig * 

Insight Lab, Western University, London, ON N6A 3K7, Canada; nrostamz@uwo.ca (N.R.);  

sabdul9@uwo.ca (S.S.A.) 

* Correspondence: sedig@uwo.ca; Tel.: +1-519-661-2111 

Abstract: The increasing use of electronic health record (EHR)-based systems has led to the genera-

tion of clinical data at an unprecedented rate, which produces an untapped resource for healthcare 

experts to improve the quality of care. Despite the growing demand for adopting EHRs, the large 

amount of clinical data has made some analytical and cognitive processes more challenging. The 

emergence of a type of computational system called visual analytics has the potential to handle 

information overload challenges in EHRs by integrating analytics techniques with interactive visu-

alizations. In recent years, several EHR-based visual analytics systems have been developed to fulfill 

healthcare experts’ computational and cognitive demands. In this paper, we conduct a systematic 

literature review to present the research papers that describe the design of EHR-based visual ana-

lytics systems and provide a brief overview of 22 systems that met the selection criteria. We identify 

and explain the key dimensions of the EHR-based visual analytics design space, including visual 

analytics tasks, analytics, visualizations, and interactions. We evaluate the systems using the se-

lected dimensions and identify the gaps and areas with little prior work. 

Keywords: electronic health records; visual analytics; interaction design; visual analytics tasks; an-

alytics techniques; visualization 

 

1. Introduction 

In recent years, medical organizations are increasingly deploying electronic health 

record (EHR)-based systems that generate, store, and manage their data. Therefore, the 

amount of data available to clinical researchers and clinicians continues to grow at an un-

precedented rate, creating an untapped resource with the capacity to improve the 

healthcare system [1]. The EHR-based systems are used to detect hidden patterns and 

trends, monitor patient conditions [2], reduce medical errors [3], detect adverse drug 

events [4,5], and ultimately improve quality of care [6–8]. However, despite the evidence 

showing the benefits of EHR-based systems, they rarely improve healthcare experts’ abil-

ity to make better clinical decisions by having access to more comprehensive information 

[9,10]. Access to large volumes of clinical data has made some analytical and cognitive 

processes more difficult for healthcare experts. As the amount of data stored in EHRs con-

tinues to grow exponentially, and new EHR-based systems are implemented for those 

already overrun with too much data, there is a growing demand for computational sys-

tems that can handle the huge amount of clinical data. 

Visual analytics (VA) systems have shown significant promise in addressing infor-

mation overload challenges in EHRs by combining analytics techniques with interactive 

visualizations [11,12]. For a VA system to work well, there must be a strong coupling 

among all its components [13,14]. Such components include but are not limited to tasks, 

interactive visual representations, and analytics techniques. Analytics has the potential to 

facilitate healthcare experts’ clinical decision-making process by using techniques from 

various fields such as statistics, machine learning, and data mining. Completing analytics, 

interactive visualizations allow healthcare experts to explore the underlying data, alter 
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the representations, and guide the analytics techniques to accomplish their tasks [15–17]. 

VA systems fuse the strengths of both analytics techniques and interactive visualizations 

to support the execution of EHR-driven tasks. VA is needed to support the intuitive anal-

ysis of EHRs for healthcare experts while masking the data’s underlying complexity. Clin-

ical researchers can use VA to perform population-based analysis and gain insights from 

large volumes of patient data. Moreover, VA can also support physicians in tracking 

symptom evolution during disease progression and creating and visualizing detection 

models for disease surveillance [18–21]. The complex and diverse challenges and applica-

tions of VA in the analysis and exploration of EHRs have led to the development of several 

EHR-based VA systems, which aim to fulfill the computational and cognitive needs of 

healthcare experts. The design and development of such systems require collaboration 

with healthcare experts to assess their requirements and challenges and to better under-

stand EHR-driven tasks from their perspective. This motivates us to systematically study 

and gather healthcare experts’ needs and expectations and get an overview of the state-

of-the-art EHR-based VA systems. 

The purpose of this paper is to provide a comprehensive review of the state-of-the-

art in EHR-based VA systems. We identify the primary dimensions of the EHR-based VA 

design space through the analysis of the literature. We then use these dimensions along 

with a characterization of different types of EHR-driven VA tasks to organize the existing 

systems. Furthermore, we identify the gaps and areas with little prior work, which re-

mains a challenge for future research. To the best of our knowledge, no study has been 

conducted to review the existing VA systems that have been applied to EHRs. Thus, this 

review is equipped to help researchers identify which challenges remain insufficiently 

addressed and understand the primary dimensions that unify the existing work. Finally, 

the result can provide value to researchers and designers as an organized catalog of vari-

ous approaches that are most appropriate for EHR-driven VA tasks. 

The rest of the review is organized as follows. Section 2 presents the strategy for 

searching relevant literature and explains the selection criteria. Section 3 provides a brief 

overview of the EHR-based VA systems that met the selection criteria. In Section 4, we 

identify and explain the key dimensions of the EHR-based VA design space. In Section 5, 

we discuss how the selected EHR-based VA systems support these dimensions and iden-

tify the gaps. Finally, Section 6 concludes the paper. 

2. Methods 

2.1. Search Strategy 

We conducted a systematic literature review to retain all the peer-reviewed studies 

published between 2010 to 2020. We collected all the studies that describe the design, de-

velopment, and implementation of VA systems that have been applied to EHRs. Search 

keywords were grouped into three categories: visualization, analytics, and EHR (Table 1). 

An electronic literature search was conducted in August 2020 using PUBMED, IEEE 

XPLORE, WEB of SCIENCE, and GOOGLE SCHOLAR. We also utilized the related article 

function in PubMed on studies that were initially included to identify additional ones. 

This was supplemented using citation searching. Reference lists from highly relevant 

studies were also reviewed to find other relevant studies. 

2.2. Inclusion and Exclusion Criteria 

Articles had to describe the development of VA systems that would be applied to 

EHRs. We included articles in our review if they met the following criteria: (1) articles 

must be published in a peer-reviewed journal or conference proceedings; (2) articles must 

be full papers with empirical evidence; and (3) articles must implement a VA system to 

support EHR-driven analytical tasks. 
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Table 1. Search terms used to identify studies related to EHR-based VA. 

KEYWORDS: (K1) AND (K2) AND (K3) 

within each group, the keywords are combined by the “OR” operator 

K1 (Visualization) Visualization or visual 

K2 (Analytics) Analytics or analysis or data mining or machine learning 

K3 (EHR 1) 
EHR or electronic health record or electronic medical record or EMR 2  

or healthcare record or patient record or clinical data 
1 Electronic Health Records; 2 Electronic Medical Records. 

Articles were excluded if they were position papers explaining the need for VA, de-

scribe medical guidelines, or VA systems designed for administrative tasks with or in re-

lation to patient data (e.g., scheduling and billing). We also excluded articles describing 

static visualizations because interaction is a key characteristic of VA systems. We also did 

not include articles on VA of syndromic surveillance, geospatial environmentally aware 

data, and genetics in our review because we were focused on clinical EHR data. Further-

more, we excluded articles that report the result of abstracts, surveys, feasibility studies, 

short reports, commentaries, letters, and studies not published in English. 

2.3. Article Selection and Analysis 

We collected the authors, journal, title, year of publication, and abstract for each ar-

ticle in an Excel spreadsheet. In the first step, two reviewers screened the title and abstract 

for each article and eliminated those categorized with exclusion criteria or lacked inclu-

sion criteria. If the reviewers could not assess the article’s relevance based on the infor-

mation provided by its title and abstract, they assessed the full article. In the next step, the 

full texts of articles that were deemed to be potentially relevant and/or the articles without 

enough information were reviewed by reviewers. The studies that were cited in eligible 

articles were also reviewed using a similar screening process. The articles identified for 

the review were examined by reviewers qualitatively, as described in Section 3. 

2.4. Results 

A total of 1037 references were retrieved from our initial search of electronic data-

bases. A search of the gray literature and hand-searching references from articles resulted 

in an additional 32 papers. All titles and abstracts were reviewed, with duplicates re-

moved (n = 256). We then excluded 781 articles based on the exclusion criteria. Then the 

full text of each of the remaining 32 articles was then read; 10 of these articles were ex-

cluded since they only described a visualization technique or an analysis technique with 

static visualization. The results of the screening process in the analysis are noted in the 

flow diagram in Figure 1. Finally, 22 articles were included in the review. 
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Figure 1. Flow diagram of literature search results. 

3. EHR-Based Visual Analytics Systems 

In this section, we provide an overview of the state-of-the-art VA systems that are 

applied to EHRs. We offer a brief summary of the system’s overall goal and its analytics 

and visualization techniques. We then briefly describe how the system integrates analyti-

cal processes with interactive visualizations to help users accomplish their tasks. 

Overview of Systems 

DecisionFlow [22] is a VA system that supports the analysis and exploration of tem-

poral event sequences in high-dimensional datasets. It allows users to test different hy-

potheses regarding the factors that might affect the patient outcome and compare multiple 

complex patient event pathways by integrating on-demand statistical analysis techniques 

with interactive flow-based visualization. DecisionFlow helps users to specify a subse-

quence of interest with a milestone-based query interface. Then the matching data is ag-

gregated to generate a DecisionFlow graph that contains a linear sequence of nodes (i.e., 

milestones) connected by directed edges. The system then analyzes the graph to extract 

multiple statistics (e.g., gender and age distributions and edge summary statistics). The 

system includes three main linked views-namely, the temporal flow view, edge overview 

view, and event statists view. The temporal flow view visualizes the DecisionFlow graph 

using a directed graph of nodes representing milestones where nodes are mapped to grey 

rectangles and are arranged in temporal order from left to right. The edges that connect 

these nodes are represented by two marks—namely, the time edges and the link edges, 
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and they are color-coded to encode the average outcome. The edge overview panel sum-

marizes the subsequence of interest that are returned from the query interface by showing 

multiple aggregate statistics. The event statistic view displays a color-coded bubble chart 

that represents different edge summary statistics. 

RetainVIS [23] is a VA system that assists healthcare experts in the exploration of 

patient medical records in the context of risk prediction tasks. It provides users with the 

means to investigate common patterns in a patient’s history to identify which medical 

codes or patient visits (i.e., sequence and timing) contribute to the prediction score. It can 

also help users to conduct different what-if analyses by testing hypothetical scenarios on 

patients (e.g., edit/add/remove medical code, alter visit intervals). Furthermore, RetainVIs 

allows users to provide feedback to the model based on their domain knowledge if the 

model acts in an undesirable manner. RetainVIS generates prediction scores based on the 

RetainEX technique, a bidirectional recurrent neural networks (RNN) model that har-

nesses the temporal information stored in patient records (e.g., time intervals between 

patient visits). It increases the interpretability and interactivity of models by calculating 

code-level and visit-level contribution scores. 

This system integrates RetainEX with multiple interactive visualizations. The Over-

view summarizes patients regarding their contribution scores, medical codes, and pre-

dicted diagnosis risks using a scatter plot, multiple bar charts, an area chart, and a circle 

chart. Patient Summary shows a temporal summary of the selected patients. It contains a 

table, a code bar chart, and a contribution progress area chart. Patient Summary provides 

a summary description of the selected patients and represents aggregated contribution 

scores of medical codes over time and their mean contribution scores. Patient List shows 

selected patients in a row of rectangles. It allows users to compare and explore multiple 

patients and select a patient of interest to view their details in the Patient Details view. 

Patient Details view is composed of a line chart of prediction scores, a temporal code chart 

of contribution scores of medical codes, and a code bar chart representing the most con-

tributing medical codes for each patient. Finally, Patient Editor represents each patient 

visit horizontally in a temporal order and lists medical codes for each visit downwards. It 

allows users to test hypothetical scenarios by changing the date of the visit or inserting 

new medical codes into a visit. Once the user changes are complete, the system generates 

the new model and returns the new predicted risk and contribution scores on top of the 

original records. 

DPvis [24] is a VA system that supports clinical researchers in interactively discover-

ing and exploring disease progression patterns and studying interactions between such 

patterns and patient’s characteristics. It also allows users to test and refine hypotheses for 

multiple clinically relevant subgroup cohorts in an ad hoc manner. DPVis models disease 

progression pathways by characterizing a patient’s clinical course as a sequence of transi-

tions between multiple states where each state describes a co-occurring pattern of ob-

served symptoms and variables. Then, it uses a class of unsupervised models, namely- 

continuous-time hidden Markov models (CT-HMMs), to discover these hidden states and 

state transitions from large-scale longitudinal patient records. These models identify as-

sociations between disease progression patterns and various observed variables and pre-

dict a patient’s future states. DPVis combines the outcome of HMM models with interac-

tive visualizations to assist medical experts in interpreting these models and clinically 

make sense of the discovered patterns. 

DPVis is composed of seven linked views. The Static Variable Distribution view con-

tains a list of selected measures in a horizontal bar chart. The Observed Attributes view 

contains feature matrix, feature distribution, feature heatmap over time, and feature over 

time. It summarizes all the characteristics of disease states that are discovered by HMM. 

State Transitions view shows multiple representations of state-to-state transition patterns 

over a series of visits or over time. It includes four views-namely, Pathway over Observa-

tion, Pathway by Time Unit, Pathway Waterfall, and State Transition Chord Diagram. 

Frequently Occurring State Transition Pattern view shows a list of frequently occurring 
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state sequential patterns. Subject Timeline represents an individual patient’s observations 

over time. It contains Dual Kernel Densities view and Subject List view. State Sequence 

Query Builder allows users to create and refine cohorts based on state transitions. Cohort 

view enables users to load and save intermediate results. Once users create more than two 

cohorts in the Cohorts view, they can trigger the Comparison Mode between the selected 

views. This selection then turns all views into the Comparison Mode. 

The VA system for pharmacovigilance in electronic medical records developed by 

Ledieu et al. [25] integrates a modified version of the Smith–Waterman (SW) sequence 

alignment algorithm with an interactive web interface to detect inappropriate drug ad-

ministration and inadequate treatment decisions in patient sequences. The SW algorithm 

is used to compare a reference sequence (i.e., a sequence specified by the user) and a pa-

tient’s sequence, where each sequence is considered a string of characters. Each character 

in the sequence represents a clinical event, such as a laboratory test result or a drug ad-

ministration. The algorithm calculates a similarity score for each comparison. A high sim-

ilarity score corresponds to a higher similarity between the reference and the patient se-

quences. This VA system allows users to create the reference sequence(s) in a query inter-

face. It provides them with a visual dictionary of event types (e.g., the discretized numer-

ical events are encoded by color-coded squares or the direction of arrows represents the 

trend of change) in a grey rectangular area. To form a pattern, users can drag and drop 

these icons down to a query line. The system also enables the user to indicate time-con-

straint events in the query. The adopted SW algorithm returns the search result, which is 

displayed as a list of patients and their corresponding sequences, sorted based on their 

similarity score to the reference sequence. Each sequence is aligned to the reference pat-

tern or its closest match. The time interval between the time-constraint event and the 

aligned events is shown by a vertical line along with the time duration in days on top of 

it. 

Gotz et al. [26] develop a VA system to explore and query clinical event sequences 

stored in EHRs by combining on-demand analytics with visual queries and interactive 

visualizations (Figure 2). The visual query module provides an intuitive user interface 

that enables users to retrieve cohorts of patients that satisfy complex clinical episode spec-

ifications. Users can define a clinical episode by specifying milestones, time gaps, precon-

ditions (i.e., a set of constraints that should be satisfied before the starting milestone), and 

outcome measures in the query interface. Upon submission of the query, the system re-

turns a set of matching patient event sequences. The returned event sequence for each 

patient includes the specified milestones and several intermediate events that occur be-

tween milestones. Each episode is subdivided into a series of intermediate episodes at 

each milestone. 

Frequent pattern mining (FPM) is then performed first on the overall episode as well 

as on each of the intermediate episodes that are retrieved by the visual query module. The 

FPM engine includes two main components-namely, the frequent pattern miner and the 

statistical pattern analyzer. The frequent pattern miner uses the bitmap-based Sequential 

PAttern Miner (SPAM) [27] algorithm for pattern discovery. SPAM employs a search 

strategy that combines a depth-first traversal of the search space with an efficient pruning 

mechanism. It takes a set of event sequences and a user-specified support as inputs and 

returns a set of frequent patterns as an output. Then the statistical pattern analyzer com-

putes correlations (e.g., Pearson correlation, odds ratio, and information gain) between 

the mined patterns and the outcome measure. Finally, an interactive visualization allows 

users to explore the results and discover temporal patterns. The interactive visualization 

component is composed of three linked views. The cohort overview shows the age and 

gender distributions for patients that satisfy the query specifications. The milestone time-

line represents the sequence of milestones using a series of ordered, vertical grey bars. The 

bars are connected by color-coded edges, where each edge has two parts-namely, the time 

edge, and the link edge. The time edge maps the mean duration between the milestones 

while the link edge connects the bars to show sequentially. The pattern diagram shows 



Informatics 2021, 8, 12 7 of 31 
 

 

the set of patterns mined from the part of the episode that is selected in the milestone 

timeline in a scatter plot where the x and y axes encode the level of support for a specific 

pattern for patients with positive and negative outcomes, respectively. 

 

Figure 2. The screenshot of the VA system developed by Gotz et al. [26] including, the visual query panel, the milestone 

timeline, the cohort overview, and the pattern diagram. Source: Reprinted with permission from ref. [26], Copyright (2014), 

with permission from Elsevier. 

The VA system developed by Simpao et al. [28] facilitates the dynamic and continu-

ous monitoring of medication alerts and care providers’ responses through an automated, 

user-friendly dashboard. It allows pharmacists and care providers to examine and filter 

the alert data based on patient location and ordering provider type and to identify which 

specific orders triggered the drug-drug interaction alerts. This VA dashboard is an inte-

gral part of a hospital quality improvement initiative to improve medication safety and 

reduce alert fatigue by deactivating irrelevant alert rules. The system is developed in col-

laboration with a clinical decision support committee that is asked to perform three inter-

ventions to deactivate irrelevant drug-drug interaction alert rules. The impact of these 

interventions on pharmacists’ alerts and override rates is analyzed using an interrupted 

time-series framework with piecewise regression. Baseline IQRs and median rates are 

compared to IQRs and median rates following three intervention phases of drug-drug 

interaction deactivations and are tested for statistical significance using the Wilcoxon 

rank-sum test. The user interface of this system includes a central display area with graph-

ical and tabular data representations. Medication alert and override rates, different alert 

types, and various care providers, and patient characteristics are displayed and explored 

at a specific time point or across a user-defined time interval using multiple filters and 

limits. 

The MOSAIC dashboard system [29] aims to support the prediction and diagnosis of 

type 2 diabetes mellitus (T2DM) by analyzing clinical and home monitoring data. The 

system integrates a data querying and mining technique with an interactive user interface 

to assist caregivers in devising management strategies and therapeutic interventions for 

T2DM complications. The mining techniques are triggered by the query module that is 
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responsible for retrieving the data from the i2b2 data warehouse, calling the proper data 

mining technique, and sending the results back to the user interface. The data mining 

module implements several temporal analytics models such as temporal abstractions, the 

care flow mining algorithm, drug exposure pattern detection, and risk prediction models 

for T2DM complications. Temporal abstractions are extracted using the Time Series Ab-

stractor (JTSA) tool that provides a library of techniques that can be employed for time-

series processing and abstraction [30]. The care flow mining technique uses the temporal 

sequence of events to determine the most frequent clinical pathways patients experience 

during their care process, automatically generating groups of patients with similar care 

histories [31]. The proportion of days covered is used to summarize the dug purchase 

patterns using the data gathered from administrative resources. Finally, several risk pre-

diction models are generated to estimate the risk of T2DM complications [29]. 

The graphical user interface of MOSAIC has two primary components designed for 

(1) clinical decision support and (2) outcome assessment on populations of interest. The 

clinical decision support system dashboard is composed of three sections-namely, meta-

bolic control, frequent temporal patterns, and drug purchase patterns. The metabolic con-

trol evaluation section is based on a “traffic light” metaphor to enable quick assessment 

of the control level of certain parameters. The frequent pattern mining section is composed 

of a scatter plot and a timeline plot. The drug purchase graph shows all the purchases 

made by a patient for each drug class using a scatter plot. The outcome assessment dash-

board provides an overview of the treatments’ outcomes on the population of patients 

with T2DM to clinical researchers. It includes summary charts that represent patient 

counts grouped by clinical and demographic variables. It also shows the most frequent 

temporal patterns of the patients selected in the summary chart using timeline graphs. 

VisualDecisionLinc [32] is a VA system that helps clinicians to identify subpopula-

tions of patients with similar clinical characteristics and to understand the risks and effec-

tiveness of different treatment options for these subpopulations using psychiatric pa-

tients’ data with major depressive disorder (MDD). The system aims to improve and sim-

plify the decision-making process by reducing the number of available therapeutic op-

tions to those that have proven to be most effective with minimal side-effects. To define 

the MDD comparative population, VisualDecisionLinc uses a patient data-driven ap-

proach where the patient’s medical profile is used as ‘seed’ data (i.e., patients with a pri-

mary diagnosis of MDD and their last prescribed medications) to identify a comparable 

group of patients with similar clinical characteristics. At the computational level, the sys-

tem creates a bin for each medication and inserts patients into bins of their prescribed 

medication. At the same time, the system tags patients based on their treatment outcome 

response, which is reported in the database in the form of a clinical global impression 

(CGI) score. CGI score is a seven-point scale that offers a brief score of the clinician’s as-

sessment of the severity of the patient’s illness prior to and after starting treatment. A 

lower CGI score indicates a better treatment outcome for the patient. After the binning 

process is done, the system uses additional computational processes to quantify the col-

lective comparative MDD patient response into a ‘% Patient Improved’ score. 

VisualDecisionLinc is composed of five linked views. Data view of patient de-

mographics shows patient demographic data such as age, gender, and race, to name a 

few. Data view of summarized medication response displays ‘% Patient Improved’ score 

and the absolute number of patients that are used to compute this score. Color-coded dots 

placed next to the medication names encode the ‘% Patient Improved’ score greater than 

10 (green dots) and less (red dots). Data view of comorbidities shows a list of comorbid 

conditions among patients on a selected medication from the summarized medication 

view. Data view of contextual patient treatment outcome shows the CGI score of a patient 

over time. It also displays prescribed medications and their timespan using horizontal 

bars below the CGI temporal view. Finally, the data view of median-based historical re-

sponse to medication shows the historic outcome response to the selected medication. 

Blue and red lines reflect the median-based historical trend in medication outcome from 
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the comparative populations and patient’s response to the selected medication in the past, 

respectively. 

Care Pathway Explorer [33] is an interactive hierarchical information exploration sys-

tem that can help physicians analyze patients’ longitudinal medical records. The system 

provides an overview of the frequent patterns that are mined from patient event se-

quences. The physician then studies these patterns and interactively selects patterns of 

interest for more details. The system computes the group of patients that match the phy-

sician’s specified sub-traces. Then the event traces for those patients are extracted using a 

deeper level of the user-specified hierarchy. The system feeds these traces to the frequent 

pattern miner engine, which mines frequent patterns and analyzes how these patterns are 

associated with outcomes using a modified version of the SPAM algorithm [27]. The pat-

terns are then visualized alongside meaningful statistics. 

The visual interface of Care Pathway Explorer features two complementary views. 

The overview contains a bubble chart and represents events of the most frequent patterns 

mined by the frequent pattern miner engine. Each bubble encodes a medical event that 

occurs frequently among patients and is computationally positioned close to events with 

which it most frequently occurs to show an overview of clusters of patterns. The flow view 

shows how bubbles connect to each other using a visualization similar to the Sankey dia-

gram. Events in the most frequent patterns are encoded by nodes, and event nodes be-

longing to the same pattern are connected by edges. Both bubbles and patterns are color-

coded according to their association with the outcome, which is determined by the Pear-

son correlation. 

RegressionExplorer [34] is an interactive VA system that enables clinical researchers 

to quickly generate, compare, and evaluate many regression models. It also helps to for-

mulate new hypotheses and steer the development of models by allowing the user to com-

pare candidate models across several subpopulations. Upon loading the dataset and se-

lecting the appropriate responder that captures the condition of interest, the system allows 

the researcher to analyze the one-to-one relationships between each covariate and the re-

sponder by performing a univariate analysis. The results are displayed as colored rectan-

gles next to the variable names in the univariate analysis view. The significance level of 

an effect is determined using p-value, where a lower p-value results in a higher level of 

significance and a more saturated color. Red represents a positive effect, while blue rep-

resents a negative effect. Next, the system allows the user to perform stepwise multivari-

ate analysis by dragging variables from the list of variables to the variable selection view. 

After each selection, the system generates a new model displayed as a single row of the 

multivariate model matrix. Columns in the matrix show the levels of significance for the 

included covariates following the same convention as for the univariate view. The system 

also displays histograms, along with some basic descriptive statistics for all the covariate 

distributions to provide basic checks and interpretation during analysis. 

Another integral part of the RegressionExplorer is subgroup analysis that allows the 

user to gain more insight into the subpopulations throughout the univariate and multi-

variate analysis. To support subgroup analysis, the system enables the user to drag and 

drop a variable from the univariate analysis view to the population view, which leads to 

the partition of the population. If the user drops another variable into the population view, 

all the previously created subpopulations are partitioned recursively. The subpopulation 

tree is represented as an icicle plot. The system follows the same basic approach for both 

univariate and multivariate analysis when handling subpopulations. The primary differ-

ence is that the cells that used to show significant effects are now subdivided into sub-

cells (i.e., icicle plots). 

The VA system developed by Mica et al. [35] helps guide patient assessment and 

therapeutic decisions for physicians using severely injured patients’ clinical data in a 

trauma center (Figure 3). The system allows the user to filter cohorts of patients based on 

multiple parameters, including age, body temperature, injury severity score (ISS), multi-

ple lab results, and abbreviated injury scale (AIS) score. With every change of the filtering 
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criteria, a query is sent to the server to extract a group of patients that satisfy the query 

specifications using several algorithms such as statistical frequency grouping, time inter-

val simplification, and consecutive event merging. The system enables the user to explore 

the results using a variation of the Sankey diagram. Each node in the graph encodes a 

medical state (e.g., treatment or outcome), and each link encodes transitions between con-

secutive states in the cohort of interest. The height of nodes and links represents the rela-

tive number of patients that share the state and transition, respectively. The color encodes 

the ratio of patients that develop the outcome of interest. Statistically, to justify the distri-

bution of patients based on clinical scores, the system integrates binary logistic retrogres-

sion along with receiver operating characteristic (ROC). 

 

Figure 3. The screenshot of the VA system developed by Mica et al. [35] shows the pathway of the early death outcome of 

a hypothetical patient with an age of 35 years, an ISS of 35, and a temperature at admission of 35 °C using a Sankey 

diagram. Source: Reprinted with permission from ref. [35], Copyright (2020). 

Visual Temporal Analysis Laboratory (ViTA-Lab) [36] integrates temporal data min-

ing techniques with query-driven interactive visualizations to support a knowledge-based 

exploration of time-oriented clinical data and the discovery of interesting patterns within 

it. ViTA-Lab is composed of three main interfaces. The main visualization interface pro-

vides an overview of the longitudinal concepts and the distribution of derived temporal 

abstractions (TA) for individual and multiple patients at different temporal granularities. 

It provides the user with a knowledge-based browser and a graphical widget for selecting 

an individual patient or a group of patients. It uses a scatter diagram over time and a 

modified version of the bar chart visualization technique to show the distribution of TAs 

and help the user discover trends in these distributions. 

The temporal association chart (TAC) allows visual exploration and discovery of 

probabilistic temporal associations among the distributions of various abstract concepts 

at different times. TAC’s input is a group of patients and a set of concepts that are chosen 

within the same or a different time window panel. The system calculates the distributions 

of values for each concept within the chosen time. Each concept is represented by a rec-

tangular bar. The corresponding data values between two consecutive concepts for each 

patient are linked. Multiple links, including the same pair of values for a group of patients, 

are aggregated into a temporal association rule. This rule indicates the probability of hav-

ing the second concept’s value, given the first concept’s value, and the total frequency of 
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that combination. Thus, a group of patients who have this specific combination of values 

from two concepts, simultaneously or at different times based on the user-specified time 

period, is represented by a temporal rule. 

The pattern explorer supports the exploration of temporal patterns that are discov-

ered by data-driven computational techniques. It works based on a version of the Karma-

Lego algorithm, which is used for the discovery of frequent temporal patterns [37,38]. 

Components of the output’s temporal pattern (a pair of concept and value) are repre-

sented by horizontal lines that are ordered according to each component’s start time, 

maintaining, in a proportional fashion, the mean duration of each component and of the 

time gaps among components. The color of the same type of component in all patterns 

stays the same. The pattern explorer allows the user to recognize the meaning of a tem-

poral pattern, that is, which components make up the pattern, and what temporal associ-

ations such as overlaps, before, or after hold between them. 

RadVis [39] is a VA system that supports psychiatrists in analyzing and exploring 

multidimensional medical datasets for patients who have dementia (Figure 4). It allows 

the user to get a better understanding of the characteristics of patient clusters and analyze 

the variable values of data comprising each cluster at the same time. The system enables 

the user to select variables of interest from “Variable Selection Menu” and select “Cluster 

Segmentation Menu” to segment clusters of patients based on their traits. The user can 

choose the number of clusters for segmentation after selecting either a forgy cluster or a 

random cluster algorithm. Following either of the clustering algorithms, the cluster’s cen-

tral value is calculated based on the number of clusters. After the Euclidean distance be-

tween the central value and each node is calculated, multiple nodes are included to obtain 

clusters of similar value. This process is repeated until the central value stays constant. 

 

Figure 4. The screenshot of RadVis [39] combing 3D RadVis and parallel coordinates. Source: image used under CC-BY 

4.0 License. 

RadVis displays the distribution of data instances using 3-dimensional radial coordi-

nate visualization (3D RadVis) that prevents node overlap. Furthermore, it facilitates the 

distribution of several nodes into optimum positions regardless of the number of dimen-

sions. A patient with dementia is represented by a single node in this visualization. Nodes 

are color-coded according to the cluster they belong to. RadVis also supports a multi-fil-

tering function through parallel coordinates plot to assign different conditions for a more 

comprehensive analysis. The parallel coordinates plot is used to display both categorical 
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and numerical variables. It allows the user to check a value that satisfies a specific condi-

tion in the 3D RadVis. It also displays the variable values of a node that is selected in the 

3D RadVis. 

The predictive VA system developed by Sun et al. [40] aims to predict the risk and 

timing of deterioration in hypertension control using EHRs. The system is composed of 

three main modules. The feature engineering module converts clinical data into a feature 

matrix and a target label vector that can be used to build the predictive model. The target 

label is derived based on the physician’s assessment of blood pressure control status as 

in-control (i.e., positive) versus out-of-control (i.e., negative). The positive and negative 

transition points (from an episode of positive (negative) assessment points into negative 

(positive) points) are considered as target labels for the prediction model. Next, to turn 

event sequences into feature variables, the system specifies an observation window for 

each feature concept (e.g., diagnosis concept). It then aggregates all the events of the same 

feature concept within the observation window into a single value. The system then ap-

plies a two-level feature selection process. In the first level, within the same concept, fea-

tures are chosen based on the information gain. Then a greedy forward selection algo-

rithm is used to choose which concepts to keep. In the next step, the system starts itera-

tively combining features from different concepts until the combination fails to improve 

the performance of the prediction. Finally, various techniques, such as naive Bayes, lo-

gistic regression, and random forests, are used to generate transition point models. The 

system allows the user to explore the prediction results and other events through interac-

tive visualization. An individual patient’s timeline is represented by a line, and each hy-

pertension control assessment event is represented by a circle. Red and blue circles repre-

sent in-control and out-of-control blood pressure episodes, respectively. 

The VA system developed by Guo et al. [41] helps clinicians to explore medical rec-

ords from both multivariate and temporal perspectives and identify and analyze similar 

records (Figure 5). The system integrates an unsupervised learning-based technique with 

interactive linked views to support physicians in several tasks such as finding similar rec-

ords based on a focal patient record, comparing patients’ medical feature values at a spe-

cific time point, or identifying (dis)similar time stamps among similar records. The system 

provides two overviews of all patients: One is for patients’ similarities according to the 

combination of tests taken during the collected time period, and the other view shows 

patient’s similarities according to the test values. To create the first overview, the system 

applies the Jaccard index [42] to compute the similarity. Then it extracts clusters of similar 

patients by combing a dimensionality reduction (DR) technique (i.e., t-SNE) and a density-

based clustering method (i.e., HDBSCAN). For the second overview, the system first cal-

culates the similarity of each pair of the test records and then similar to the other overview; 

it applies t-SNE to visualize the similarity relationships. To visualize the clustering infor-

mation, each point (i.e., each patient’s record) is colored based on the assigned cluster-ID. 

The system allows the user to select a patient of interest from these overviews. It then 

automatically searches for the top-3 similar patients based on the pre-computed similari-

ties. The system uses autoencoder-based event embedding [43] and sequence to sequence 

learning (seq2seq) [44] technique to handle various event types and convert records with 

different lengths to vectors of the same length. Then, it computes the similarity of each 

pair of patients using a certain distance metric, such as the Euclidean distance. The system 

provides multiple line charts to show changes of dissimilarities of test records over time 

between the patient of interest and top-3 similar patients and to visualize a statistical over-

view of the focal and top-3 similar patients. 
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Figure 5. The screenshot of the VA system developed by Guo et al. [41]. (a,b) display each neonate’s similarities of tests 

taken and the records of test values, respectively. (c) shows changes of dissimilarities of test records over time between 

the neonate chosen from (a,b) and top-3 similar neonates. (d) displays a statistical overview of the chosen neonate and 

top-3 similar neonates. (e) provides all the test results at the selected time in (c) or (f). (f) displays the temporal changes of 

values of the chosen test in (d) or (e). (g) lists all medical test names. Source: Reprinted with permission from ref. [41], 

Copyright (2020), with permission from Elsevier. 

SubVIS [45] is a VA system to support medical experts in interpreting high-dimen-

sional clinical data and exploring subspace clusters from different perspectives (Figure 6). 

It enables the user to analyze each subspace independent of its association to a certain 

clustering technique. It allows the use of every subspace clustering technique available at 

OpenSubspace Framework [46]. SubVis allows a three-level exploration of data and clus-

ters through its interface. The first level provides the user with a general overview of all 

the detected subspace clusters, their properties, and the distribution of dimensions within 

each subspace cluster using interactive bar charts. A matrix-based heatmap is also availa-

ble to give more details on the association between the pair-wise distance. The second 

exploration level allows the user to choose a subset of relevant clusters in the multidimen-

sional scaling (MDS) [47] plot to get an aggregated overview of the cluster members in an 

aggregation table. The distance between various clusters in the MDS plot shows their pair-

wise similarity. SubVis contains various similarity measures, such as Overlapping, Jac-

card Index, and Dice Coefficient. The system enables the user to inspect the distribution 

of the cluster members in every dimension for each cluster. In the last exploration level, a 

table-lens-like view [48] supports the exploration of the actual data records and provides 

interactive coloring and sorting of the record and its dimension. 
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Figure 6. A screenshot of SubVIS [45] including (A) MDS projection plot, (B) MDS small multiples, (C) barcharts showing 

the distribution properties of the subspaces, (D) heatmap, (E) aggregation table, and (F) table lens. Source: image used 

under CC-BY License. 

The VA system developed by Huang et al. [49] supports the interactive exploration 

of patient trajectories to assist physicians and clinical researchers in identifying chronic 

diseases and determining how a group of patients with chronic diseases might go on to 

develop other comorbidities over time (Figure 7). The system first aligns patient trajecto-

ries based on the time they are diagnosed with a specific chronic disease. Then once the 

user specifies the time windows, the patient trajectories are divided based on their 

timestamps, and patients within the same time window are aggregated into one. The sys-

tem then clusters the patient records at each time window based on a similarity measure 

and creates a set of cohorts. The system supports frequency-based cohort clustering and 

hierarchical cohort clustering techniques. A cohort of patient trajectory network is built 

based on the clustering result where each node represents a cohort at a time window, and 

each edge shows the relationship between two cohorts at consecutive time windows 

where their members overlap. The system allows the user to filter edges using the vari-

ance-based association filtering technique by adjusting the entropy threshold. When the 

threshold is zero, only associations between fully overlapped cohorts are shown; in the 

case when the threshold is high, all associations are visualized. A Sankey-like timeline 

then visualizes the output results. The nodes are color-coded based on the unique comor-

bidities, and the color of the edges is determined by the two nodes it connects (i.e., a gra-

dient for smooth transitions). Each cohort has a label that shows its dominant features. In 

addition, the cardinality of both nodes and edges are represented by their height. 

CarePre [50] is a clinical decision assistance system that supports the exploration and 

interpretation of deep learning prediction models that are developed to predict future di-

agnosis events for a focal patient based on their medical background. It assists physicians 

in making more informed decisions by letting them analyze contributing factors in pre-

diction results and explore the outcomes of possible treatments through interactive visu-

alizations. CarePre allows the physician to input potential diagnoses (based on the pa-

tient’s symptoms and tests) for a focal patient into the system. The system then automati-

cally estimates the risk of future diseases for the patient based on their medical history 

using a state-of-the-art deep learning technique and allows the physician to explore the 

results and the details of the historical medical records in the prediction view. The predic-

tion view shows the patient’s event sequence leading up to the time point of prediction, 
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which is represented by rectangular nodes arranged horizontally in order of their occur-

rence. The predicted likelihood of each diagnosis is also displayed as a series of rectangu-

lar nodes where the color saturation for each node shows the prevalence of the predicted 

diagnosis across the records for a population of similar patients. 

 

Figure 7. The screenshot of the VA system developed by Huang et al. [49] shows the result of frequency-based cohort 

clustering using a Sankey diagram. Source: image used under CC-BY 4.0 License. 

In the next step, the physician can specify a query to retrieve a group of similar pa-

tients to help interpret the prediction results. CarePre measures similarity between se-

quences by computing the similarity between each pair of events using the Euclidean dis-

tance of the corresponding event vectors. It then displays event sequence data for the focal 

patient as well as a group of similar patients. It also aggregates the event sequences for 

similar patients into a flow-based visualization to allow a one-to-many comparison be-

tween the focal patient and a group of similar patients and to show the overall evolution 

of treatments and diseases over time. Lastly, the physician can explore alternative treat-

ment plans and identify the key factors that contribute to the prediction result through 

various interactions such as editing the focal patient’s events (e.g., adding events, chang-

ing the order) in the prediction view and comparing the edited event sequence in the out-

come analysis view. 

Peekquence [51] is a VA system that aims to make the frequent sequence mining re-

sults more interpretable by allowing the user to explore the patterns by ranking them 

based on their variability or correlation to the outcome. It can also integrate patterns with 

a patient timeline to help the user understand where the patterns occur in the actual data. 

Peekquence uses the SPAM [27] frequent sequence mining algorithm to detect the most 

frequent sequences. The system uses four linked views to visualize the result of SPAM on 

the patient’s medical records. All the views use an event glyph to visualize the event se-

quences. The event glyph represents each unique event type appearing in the mined pat-

terns by a circle and is color-coded based on a categorical ontology. These event glyphs 

are labeled with an abbreviation of the name of the event type. The sequence network 
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view displays the frequency of co-occurring events within patterns that are mined using 

SPAM. The event types are represented by the nodes, and the two co-occurring nodes 

within patterns are connected by an edge. The pattern list view displays all the mined 

patterns, aligned vertically. Each row represents a pattern that is visualized as a sequence 

of circular event glyphs. Furthermore, the association of the patterns with the outcome is 

represented by the stacked bar chart next to the sequence. The event co-occurrence histo-

gram view shows the frequency of co-occurring events with a selected pattern from the 

pattern list view. Each event type is represented by a bar partitioned into three blocks to 

show events occurring before, within, and after the chosen pattern. Lastly, the timeline 

view displays the patient’s event sequences aligned according to the selected pattern. 

PHENOTREE [52] is a hierarchical and interactive phenotyping VA system that al-

lows physicians to participate in the phenotyping process of large-scale patient records. It 

enables the user to explore patient cohorts, and to create, interpret, and evaluate pheno-

types by generating and navigating a phenotype hierarchy. The system uses the sparse 

principal component analysis (SPCA) to identify key clinical features that describe the 

population given a cohort or sub-cohorts of patients. These key clinical features are used 

to build deeper phenotypes at finer granularities by expanding the phenotype hierarchy. 

Patients that are associated with each key feature are grouped into individual sub-cohorts. 

The system then iteratively applies the SPCS to each sub-cohort of patients created in the 

previous step. PHENOTREE assists physicians in identifying groups of phenotypes and 

their corresponding patient sub-cohorts at different granularities through this process. 

The system utilizes the radial Reingold-Tilford tree to visualize the results. Each node in 

the tree represents a structured phenotype and a sub-cohort characterized by this pheno-

type. 

VALENCIA [53] is a VA system that aims to address the challenges of high-dimen-

sional EHRs by integrating several dimensionality reduction (DR) and cluster analysis 

(CA) techniques with real-time analytics and interactive visualizations (Figure 8). VA-

LENCIA’s analytics engine has two components—namely, DR and CA engines. The DR 

engine incorporates several DR techniques to transform EHRs from the high-dimensional 

space to one with lower dimensions. The CA engine then uses several clustering tech-

niques to classify the data points in this low-dimensional space into meaningful groups 

with similar characteristics. VALENCIA allows the user to choose the most appropriate 

combination of DR and CA techniques and explore the results through two main views—

namely, DR and CA views. The DR view has four subviews, including raw-data, pro-

jected-features, association, and variance subviews. These subviews allow the user to 

choose their features of interest, select the DR technique, adjust the configuration param-

eters, investigate how features are associated with transformed dimensions, and choose 

dimensions to be included in the CA engine. The CA view has three subviews—namely, 

hierarchical subview, frequency subview, and projected-observation subview. These sub-

views allow the user to examine the hierarchical structure of the CA results, choose the 

CA technique and configuration parameters, and observe the distribution of features in 

each subset of the data. 
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Figure 8. The screenshot of VALENCIA [53] showing (a) the DR view and (b) the CA view. Source: image by authors. 

VISA_M3R3 [54] is a VA system that allows clinical researchers to identify medica-

tions or medication combinations that are associated with a higher risk of acute kidney 

injury (AKI) (Figure 9). The system incorporates regression, frequent itemset mining, and 

interactive visualization to help the user explore the relationship between medications 

and AKI. The analytics module of Visa_M3R3 is composed of two components. The first 

component is the single-medication analyzer that focuses on finding associations between 

individual medications and AKI using multivariate regression. The multiple-medications 

analyzer aims to identify associations between medication combinations and AKI using 
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frequent itemset mining and regression. All models are validated through Bonferroni cor-

rection and represented in multiple interactive views. The regression models generated 

from single-medication and multiple-medications analyzers are represented in two scatter 

plots in the single-medication and multiple-medication views. The output of the frequent 

itemset mining is shown using a chord diagram in the frequent-itemset view. The user 

can filter and control the information presented in other views using sliders in the covari-

ates view. Finally, the medication-hierarchy view displays additional information regard-

ing data elements using a data table. 

4. Design Space 

In this section, we introduce the primary dimensions of the design space of EHR-

based VA systems and highlight the key elements in each dimension that are frequently 

used for designing and developing these systems. For a VA system to work well, there 

must be harmonious functioning among all of its components. Such components include 

VA tasks, analytics and data models, and visual representations. One way in which we 

can investigate the strength of the coupling among components of VA systems is through 

the lens of interaction. Therefore, the four key dimensions that are used to evaluate the 

existing systems include VA tasks, analytics, visualizations, and interactions (for compar-

ison see [13,55]). 

 

Figure 9. The screenshot of VISA_M3R3 [54] showing (A) the single-medication view, (B) the multiple-medication view, 

(C) the covariates view, (D) the data table, and (E) the frequent-itemset view. Source: Image by authors. 

4.1. VA Tasks 

In this section, we summarize the EHR-based VA tasks that have gained attention 

from researchers over the past decade. We classify these tasks into four categories accord-

ing to their objectives: (1) understanding the progression of diseases, (2) discovering and 

exploring cohorts of interest, (3) learning and understanding prediction models, and (4) 

discovering adverse events. 
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Understanding the Progression of Diseases: VA techniques can be used to model and 

visualize a patient’s medical condition over time, which is known as the patient’s medical 

trajectory. Research studies have shown that different patient trajectories can have differ-

ent associated risks for the same outcome [56,57]. For instance, a patient may die due to 

cardiovascular complications, kidney complications, or peripheral complications. Alt-

hough the outcome is the same, disease progression paths that lead to the outcome are 

typically different. Thus, studying such various trajectories can result in the development 

of more tailored treatment plans, the discovery of biomarkers, and the development of 

different risk estimation indices. Comorbidity analysis, which is the process of analyzing 

and exploring associations among diseases, is another key factor in improving the quality 

of care, especially for older patients who suffer from multiple diseases. Therefore, under-

standing the incidence, prevalence, and coincidence of diseases is the foundation for mak-

ing important policy decisions. Thus, there have been many EHR-based VA systems de-

veloped to accomplish this task. For instance, Huang et al. [49] have developed a system 

that supports the exploration of patient trajectories to help clinical researchers detect 

chronic diseases and determine how a set of patients with multiple chronic diseases might 

go on to develop other comorbidities over time. DPvis [24] supports the interactive explo-

ration of disease progression patterns and the discovery of interactions between such pat-

terns and patient’s characteristics. Similarly, DecisionFlow [22] and Peekquence [51] allow 

comparison of multiple complex patient event pathways by combining statistical analysis 

processes with interactive flow-based visualizations. 

Discovering and Exploring Cohorts of Interest: The identification of a cohort (group) 

of patients who meet predefined criteria from a large patient population has various use 

cases, including survival analysis, clinical trial recruitment, and other retrospective stud-

ies [58,59]. Cohort identification forms a platform for future clinical research studies in 

areas such as predicting complications, pharmacovigilance, and detecting adverse events. 

Traditionally, this process is carried out through chart reviews by primary care staff and 

research staff in individual practices to query the clinical systems for patients matching a 

specific set of criteria. However, manual cohort identification can be extremely challeng-

ing and time-consuming, depending on the complexity of the criteria. This is because the 

patient data satisfying these criteria is buried within large volumes of data stored in EHRs. 

Thus, there is a need for electronic phenotyping algorithms to replace the manual chart 

reviews for cohort identification. 

A phenotype can be defined as a specification of an observable state of an organism. 

It can be applied to patient characteristics that are inferred from EHRs, such as clinical 

conditions, blood type, or physical traits. Phenotype algorithms that characterize or iden-

tify phenotypes can be used for the direct identification of cohorts based on clinical or 

medical characteristics, risk factors, and complications, thereby allowing clinical research-

ers to improve patient outcomes. These algorithms can be generated using various forms 

of machine learning techniques. However, an integrated approach that combines these 

analysis techniques with visualization is more likely to facilitate the process of creating 

and comparing different patient cohorts, determining risk factors associated with a par-

ticular disease, and discovering hidden structures in the patient data. As a result, several 

VA systems have been developed recently to address this issue. For instance, Mane et al. 

[32] developed VisualDecisionLinc to help clinical researchers identify subpopulations of 

patients with similar clinical characteristics to help them evaluate the risks and effective-

ness of different treatment options. Similarly, PHENOTREE [52] is another VA system 

that allows clinical researchers to explore patient cohorts and create and evaluate pheno-

types by generating a phenotype hierarchy. 

Learning and Understanding Prediction Models: The focus on creating prediction 

models is increasing in many areas of clinical research. These models aim to assist physi-

cians in personalized decision making with regards to diagnosis, prognosis, and treat-

ment. Examples of successful risk prediction models are the Apache system that estimates 

the risk of hospital mortality, the Framingham heart score that predicts cardiovascular 
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mortality, and the Nottingham Prognostic Index that allocates patients with breast cancer 

to different risk groups [60–65]. Despite the strong performance of these models, it is often 

challenging for physicians to understand how the prediction models arrive at an esti-

mated risk. The black-box nature of most of these models can impede their wide adoption 

in clinical practice since there is little tolerance for errors in medical decision making. 

Thus, providing interpretability and transparency in prediction models is critical in 

validating the resulting predictions. To address these needs, VA systems provide clinical 

researchers with accurate, fast, and trustworthy interpretation of prediction models by 

integrating effective visual representations with machine learning techniques [66–68]. For 

instance, RetainVIS [23] combines interpretable and interactive RNN-based models and 

interactive visualization to allow exploration of patient records in the context of prediction 

tasks. 

Discovering adverse events: Adverse events can be defined as the harmful effects of 

medical care on a patient’s medical condition. They are caused by medical management 

rather than the patient’s underlying condition [69]. For instance, an infection developed 

during the treatment of a different condition is considered an adverse event. Adverse 

events are responsible for 2.9%–16.6% of all acute hospitalizations and studies have shown 

that 30%–58% of all these events are preventable [70–74]. Adverse events can also often be 

linked to drugs. Adverse drug events cause 3.5 million physician visits, 125,000 hospital-

izations, and 98,000 drug-related deaths each year [75]. Even though drugs are tested for 

any potential adverse events and are cleared for marketing to the medical community, 

unsuspected adverse events are occasionally detected. This is due to the fact that clinical 

trials are usually limited to short time periods and include only a small test cohort. In 

addition, the frequency of these adverse events may be so low that they are hard to detect 

in clinical trials. Another issue in detecting adverse drug events is confounding by indi-

cation. For instance, insulin is prescribed for diabetes. Myocardial infarction is a common 

comorbid disease for patients who have diabetes and thus, detecting the adverse event 

myocardial infarction for insulin is a false positive (“a confounding effect”). There are 

several approaches to detect significant adverse drug events using automatic analysis 

techniques; however, most of these approaches overlook low-frequency events. Further-

more, the domain knowledge regarding the confounding effect should be included in 

these automatic analysis techniques. VA systems can address these issues by involving 

domain experts in the analysis process. For instance, Ledieu et al. [25] developed a VA 

system for pharmacovigilance in electronic medical records to detect inappropriate drug 

administration and inadequate treatment decisions in patient sequences. VISA_M3R3 [54] 

is another EHR-based VA system that helps healthcare providers to identify medications 

that are associated with a higher risk of acute kidney injury. 

4.2. Analytics 

There have been several analytics methods used for visual analysis of EHR data. 

These methods include (1) classification, (2) clustering, (3) Pattern discovery, (4) regres-

sion, (5) inference, and (6) dimensionality reduction. 

Classification: Classification is used to classify data points into predefined categorical 

class labels. “Class” is the feature in a dataset in which users are most interested. In sta-

tistics, it can be defined as the dependent variable. In order to classy data points, a classi-

fication technique generates a model, including classification rules. Classification is a two-

step process, including training and testing. In the training step, a classification model is 

built by analyzing training data that contains class labels. The accuracy of the classification 

model depends on the degree to which classifying rules are correct. In the testing step, the 

classifier’s (i.e., classification model) ability to classify unknown data points for prediction 

is examined. Some of the most common classification techniques that are used in the anal-

ysis of EHRs are support vector machine [76,77], decision tree [78], naïve Bayes [79], and 

neural network [80]. For instance, RetainVIS [23] uses the RetainEX technique (i.e., a bidi-

rectional recurrent neural networks (RNN) model) to generate prediction scores based on 
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the temporal information stored in EHRs and help the user identify which medical codes 

or patient visits contribute to the prediction score. 

Clustering: Clustering is an unsupervised learning technique that occurs by analyz-

ing only independent variables. In other words, unlike classification techniques, cluster-

ing techniques do not use “class”. Thus, clustering is best used for exploratory studies, 

especially if those studies include large volumes of data, but very little is known about the 

data. Clustering groups the data points into a certain number of clusters so that points 

within a cluster have high similarity and points from different clusters have a low simi-

larity. The similarities between the data points are measured using their feature values. 

Some of the most commonly used clustering techniques in exploring EHRs are k-means 

[81,82], hierarchical clustering [83], model-based clustering [84], and density-based clus-

tering [85]. For instance, the VA system developed by Guo et al. [41] uses HDBSCAN 

which is a density-based clustering technique to cluster similar patients according to the 

combination of tests taken during a specific time period. 

Pattern discovery: Pattern discovery aims to identify statistically significant associa-

tions and frequently occurring patterns in the data. In the analysis of EHR data, pattern 

discovery can be further classified into frequent pattern mining and association rule min-

ing techniques [86]. The purpose of frequent pattern mining is to identify the inherent 

regularities in the EHR data. In other words, these techniques can be used to find common 

subsequences in the clinical event sequence dataset. Frequent pattern mining can be fur-

ther extended to other problems such as sequential pattern mining and time-series mining 

that are very common when dealing with clinical event sequences. Association rules can 

be considered as a second-stage output of frequent pattern mining. Association rule min-

ing is often used to discover relationships among data items. Association rule mining tech-

niques can be employed to identify underlying relationships among health conditions, 

symptoms, and diseases in the healthcare field. For instance, the VA system developed by 

Gotz et al. [26] helps the user to explore the clinical event sequences using a Frequent 

Pattern Mining (FPM) engine. The FPM engine has two main components, including the 

Frequent Pattern Miner and the Statistical Pattern Analyzer. The frequent pattern miner 

uses the SPAM [27] algorithm for pattern discovery. Then the Statistical Pattern Analyzer 

computes correlations between the mined patterns and the outcome measure. 

Regression: Regression techniques are often used to identify associations between 

features, such as the extent to which feature A affects feature B. Logistic regression is a 

special type of regression that is commonly used in the analysis of clinical data [87]. It 

draws a separating line among classes using the training data; then, it applies the line to 

classify the test data’s unknown data points. Logistic regression is often used to analyze 

the relationship between a dependent feature (e.g., patient outcomes) and one or more 

independent features (e.g., patient comorbidities, symptoms, and laboratory test results). 

For instance, RegressionExplorer [34] allows the user to formulate a new hypothesis and 

steer the development of models by creating, comparing, and evaluating multiple regres-

sion models. 

Inference: Inference refers to the process of reaching conclusions based on the evi-

dence found in the existing data. However, conclusions drawn from inference are only 

justifiable under some specific conditions and can be false when applied to unobserved 

data. One of the inference techniques used in the analysis of the clinical event sequences 

is graphical models. Graphical models show the conditional dependence between clinical 

events using an event correlation graph, such as the Markov chain [88] and Bayesian Net-

works [89]. For instance, DPvis [24] uses continuous-time hidden Markov models to 

learn how various diseases go through different states, discover biomarkers (i.e., observed 

variables) that can characterize the disease progression, and to use these biomarkers to 

identify diseases earlier in patients. 

Dimensionality Reduction: Dimensionality reduction is the process of transforming 

a high-dimensional dataset into a dataset with reduced dimensionality without losing too 

much information [90]. Dimensionality reduction techniques help the user to get a better 
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understanding of the underlying structure of the data by removing multicollinearity and 

creating a dataset with a smaller volume. In clinical settings, dimensionality reduction is 

often required, as EHRs are often high dimensional. Thus, by reducing the dimensions, 

one can mitigate this issue and possibly decrease the computational time for analysis and 

visualization of the EHR data. For instance, PHENOTREE [52] uses sparse principal com-

ponent analysis (SPCA) to identify primary clinical features that describe the patient pop-

ulation to assist the user in building and navigating a phenotype hierarchy and exploring 

patient cohorts. 

4.3. Visualizations 

We identify four categories of visualizations that are commonly used in EHR-based 

VA systems: (1) Relation-based, (2) time-based, (3) hierarchy-based, and (4) flow-based 

visualizations. 

Relation-based: Relation-based visualizations show connections and relationships 

between two or more attributes. They are inherent to the clustering and association tasks 

within VA. A variety of visualization techniques can be used to display relations, such as 

scatter plots, parallel coordinates plots, bubble charts, bar charts, and heatmaps. For in-

stance, Gotz et al. [26] use a scatter plot to show the distribution of the most frequent 

patterns with respect to their level of support for patients with positive and negative out-

comes. 

Time-based: Time-based visualizations show data or the sequence of clinical events 

over a time period. The main function of these visualizations is to assist the analysis and 

reasoning process of healthcare experts when investigating patients’ clinical history. The 

primary time-based visualization technique is Timeline. Timeline displays a series of clin-

ical events in a temporal order where each event is generally represented by an icon and 

is encoded by size, shape, or color to distinguish events with different characteristics. For 

instance, Peekquence [51] displays each patient’s entire event sequence in a timeline to 

assist users in discovering patterns in the patient’s event sequences. 

Hierarchy-based: Hierarchy-based visualizations show how data items are ordered 

and ranked in a system. Several visualization techniques can be used to display the hier-

archical structure of the data, such as tree diagrams, treemaps, and icicle plots. For in-

stance, DecisionFlow [22] aggregates clinical event sequences with a similar occurrence of 

milestone events into a tree of sequences, where each node encodes an event positioned 

according to its prefix in the sequence. VALENCIA [53] uses a treemap to display the 

distribution of patient characteristics in different clusters. 

Flow-based: Flow-based visualizations show flows and their quantities with respect 

to one another. Sankey diagrams and parallel sets are two of the main flow-based visual-

ization techniques that are used in EHR-based VA systems to provide an overview of 

transitions between different types of clinical events. For instance, Care Pathway Explorer 

[33] uses a Sankey diagram to show how clinical events in the most frequent patterns are 

connected to each other, where each event is represented by a node and nodes belonging 

to the same pattern are connected by edges. 

4.4. Interactions 

Interaction is an integral part of VA and plays a vital role in the success of EHR-based 

VA systems. We adapted the epistemic actions introduced as part of the framework pro-

posed by Sedig et al. [91] to classify and evaluate interactions used in EHR-based VA sys-

tems. Epistemic actions are actions that are taken to alter the visualizations in a manner 

that supports the user’s analytical and cognitive needs (mental processes). The subset of 

the actions identified in the framework commonly used in EHR-based VA systems [91] 

include: (1) arranging, (2) comparing, (3) drilling, (4) filtering, (5) searching, (6) selecting, 

(7) transforming, (8) translating, (9) animating/freezing, (10) collapsing/expanding, (11) 

inserting/removing, and (12) linking/unlinking. 
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Arranging: Arranging refers to acting upon visualizations to change their ordering, 

either temporally or spatially. Some variants of this epistemic action that are commonly 

used in EHR-based VA systems are sorting, ordering, organizing, and ranking. For in-

stance, VALENCIA [53] supports arranging by allowing the user to sort the heatmap that 

represents the result of dimensionality reduction techniques based on either a dimension 

or a feature by clicking on the corresponding column or row. 

Comparing: Comparing refers to acting upon visualizations to determine their de-

gree of similarity or dissimilarity. The degree of similarity is often defined as the distance 

between or proximity of value or meaning in EHRs-based VA systems. For instance, Re-

gressionExplorer [34] allows the user to investigate a regression model’s behavior on a 

specific subpopulation and compare it with its behavior on a different subpopulation. It 

supports this action by letting the user drag and drop a feature from the variable selection 

view to the population view, which results in the partition of the patient population. 

Drilling: Drilling is acting upon visualizations to bring out deep information that is 

currently not displayed. Its main functionality is to make perceptually inaccessible infor-

mation available for further investigation. Drilling is a fundamental action in EHR-based 

VA systems as it helps the user process and examines desired information more deeply 

when dealing with a large volume of data stored in EHRs. For instance, Visa_M3R3 [54] 

supports this action by allowing the user to hover their mouse over a glyph representing 

a regression model in the scatter plot to get additional information about the correspond-

ing model. 

Filtering: Filtering refers to acting upon visualizations to show a subset of their ele-

ments based on specific criteria. It allows the user to adjust the level of details, which is 

an essential feature of the process of abstraction in the exploration of complex high-di-

mensional EHRs. Thus, filtering is integral to many EHR-based VA tasks. For instance, 

the VA system developed by Mica et al. [35] allows the user to filter a cohort of patients 

according to various parameters (e.g., body temperature, age, and lab results). 

Searching: Searching refers to acting upon visualizations to locate or seek out the ex-

istence of position of certain relationships, items, or structures. Some variants of this ac-

tion are querying and seeking. Searching is commonly used in EHR-based VA systems. 

For instance, Visa_M3R3 [54] supports this action by allowing the user to enter the name 

of the medication of interest in a search bar, allowing that medication to get highlighted 

in other views. 

Selecting: Selecting refers to acting upon visualizations to focus on or choose them 

either individually or as a group. This action is necessary for performing other actions in 

VA systems. By selecting an information item and making it visually distinctive, the user 

can keep track of it within a large volume of information, even when it is going through 

some changes. Most of the EHR-based VA systems support selecting. For instance, Deci-

sionFlow [22] allows the user to perform edge selection by clicking on time edges in the 

temporal flow view. The system then outlines the corresponding rectangular mark repre-

senting the edge and updates the overview and the edge statistics view to display infor-

mation regarding the selected edge. 

Transforming: Transforming refers to acting upon visualizations to modify their ge-

ometric form. This epistemic action can change the look, size, or orientation of visualiza-

tions by scaling, rotating, magnifying, and/or distorting them. Magnifying visualizations 

is the most common variant of this action in EHR-based VA systems. For instance, 

Visa_M3R3 [54] applies the cartesian fisheye distortion technique on both axes of the scat-

ter plot representing regression models to help the user distinguish between models when 

the glyphs are densely clustered. 

Translating: Translating is acting upon visualizations to convert them into alternative 

conceptually- or informationally-equivalent forms. This action has a high degree of utility 

for all EHR-based VA tasks as each alternative visualization form reveals different aspects 

of the data. For instance, SubVIS [45] supports translating by allowing the user to choose 
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a more advanced representation of glyphs to show the subspace’s underlying dimensions 

where each dimension is encoded by a small line around the border of the dot. 

Animating/Freezing: Animating/Freezing refers to acting upon dynamic visualiza-

tions to create movement in constituent parts or oppositely to stop. Animating can be used 

to observe temporal trends and show complex relationships among clinical events in 

EHRs. For instance, the VA system developed by Gotz et al. [26] uses a three-staged ani-

mation process to transition between different views in the Pattern Diagram view to high-

light temporal patterns by allowing comparison between mining results at different parts 

of a clinical episode. 

Collapsing/Expanding: Collapsing/Expanding is acting upon visualizations to make 

them compact or, oppositely, make them diffuse. These actions can facilitate investigating 

the associations among data items when dealing with complex high-dimensional EHRs. 

Collapsing enables the user to condense a set of data items into one, thus reducing com-

plexity and facilitating the understanding of overall associations and patterns within 

EHRs while expanding allows the user to explore them in more detail. For instance, DPvis 

[24] allows the user to convert Pathway over Observation diagram (i.e., a stacked Sankey 

diagram displaying pathways for subjects) into a bipartite Sankey diagram, which in-

cludes two stacked bars with paths between them. The converted view simplifies the tran-

sition by only displaying the changeover from a start to an end, thereby allowing the user 

to follow the state pathways between two consecutive patient visits. 

Inserting/Removing: Inserting/Removing refers to acting upon visualizations to add 

new visualizations into them, or oppositely to take out unwanted or unnecessary parts. 

Such actions can facilitate the exploration of EHRs, allowing the user to create hypothet-

ical scenarios by interjecting or getting rid of clinical events in patient trajectories and ob-

serving the effect. For instance, CarePre [50] enables the user to edit the focal patients’ 

event sequence within the prediction view by inserting new events and removing existing 

ones. This allows the user to determine key factors that affect the prediction results and 

explore how changes in the patient’s record (i.e., a novel treatment or the absence of a 

comorbidity) impact those results. 

Linking/Unlinking: linking/Unlinking refers to acting upon visualizations to estab-

lish an association between them, or oppositely to disconnect their associations. In gen-

eral, EHR-based VA systems with multiple coordinated views are assumed to support 

these actions. For instance, in VisualDecisionLinc [32], all the views are linked together to 

create a coordinated display, where filtering updates on one of the views prompts relevant 

updates to data items in other views. This aids the user in their decision-making process 

and evaluation of multiple treatment options by helping them to better understand the 

relationship between different data elements. 

5. Discussion and Limitations 

There are many challenges that designers might face when developing EHR-based 

VA systems. In addition to common data-related problems such as data integration, ease 

of use, and interpretability, EHRs introduce several domain-specific challenges. One of 

the main challenges is that EHRs often contain different data types such as medications, 

procedures, diagnosis codes, unstructured clinical codes, radiology results, and labora-

tory tests. Each of these types of data is composed of a large number of features. For in-

stance, there are around 68,000 unique diagnostic codes in the ICD-10 (International Clas-

sification of Diseases—Tenth Revision) coding system. Across all data types, the number 

of features can increase to the hundreds of thousands. The other issue is the high propor-

tion of missing data in EHRs caused by either documentation issues (e.g., human errors) 

or data collection issues. Adding to this challenge is that the absence of clinical events is 

often not recorded in EHRs. This makes it very difficult to differentiate between clinical 

events that have not occurred and missing events. Data sparsity in EHRs is one of the 

other challenges that is unavoidable because most patients take only specific medical ex-

aminations and treatments. In addition, there is a challenge of evaluating EHR-based VA 



Informatics 2021, 8, 12 25 of 31 
 

 

systems as designers have to refine and validate their prototypes by testing them in real-

istic environments with overloaded physicians. Finally, another critical issue is that many 

clinical features are temporal. VA systems should therefore be able to uncover novel tem-

poral patterns involving discrete and interval clinical events. Therefore, the design of 

EHR-based VA systems requires a deep understanding of users’ needs and expectations, 

VA tasks, individual components of VA systems, and how to best integrate them. 

The reviewed VA systems demonstrate a broad spectrum of VA tasks and analytics 

methods, visualizations, and interactions to deal with the challenges of complex data 

stored in EHRs. The EHR-based VA systems are getting increasingly popular in recent 

years. Figure 10 includes a timeline that shows most of these systems were developed 

between 2014 to 2020. We evaluate these systems by analyzing their strengths and weak-

nesses using the dimensions introduced in Section 4. Figure 11 provides an overview of 

the characteristics of the systems with respect to the four primary dimensions, including 

VA tasks, analytics, visualizations, and interactions. 

 

Figure 10. The figure shows the original order of the creation of the VA systems in a timeline [22–26,29,32–36,39–41,45,49–

54]. 

The most common VA task that is supported by the systems is discovering and ex-

ploring patient cohorts. This task’s popularity is mostly because of its numerous use cases, 

including survival analysis, clinical trial recruitment, and other kinds of retrospective 

studies [58,59]. Moreover, identifying patients who satisfy pre-defined criteria can form 

the platform for future studies in areas such as predicting patient outcomes, pharmacovig-

ilance, and understanding patient trajectories. Thus, as seen in Figure 11, discovering and 

exploring patient cohorts is supported by most systems that support other VA tasks. Other 

VA tasks supported by several systems are understanding the progression of a disease 

and learning and exploring prediction models. Understanding the incidence, prevalence, 

and coincidence of diseases is the foundation on which important policy decisions are 

made, and thus researchers have spent considerable efforts on this task. Similarly, learn-

ing and exploring prediction models is the most natural and immediately impactful task. 

Conversely, discovering adverse events is not as popular as the other VA tasks. This could 

be due to the fact that this task requires extensive collaborations. 
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Figure 11. The reviewed EHR-based visual analytics system. Each system is labeled by the rele-

vant element in the design space. The rows are grouped and colored by dimensions of the design 

space: VA tasks, analytics, visualization, and interaction [22–26,28,29,32–36,39–41,45,49–54].  

Pattern discovery is one of the most widely used analytics methods in EHR-based 

VA systems. It is often used to uncover common subsequences in the clinical event se-

quences and quantify the similarity between event sequences. This analytics method is 

commonly used in most of the systems that support understanding the progression of 

diseases. The other popular analytics method is clustering. For instance, the VA system 

developed by Gotz et al. [26] and Care Pathway Explorer [33] use the SPAM [27] frequent 

sequence mining algorithm to detect the most frequent patterns and examines how these 

patterns are associated with patient outcomes. Clustering often aims to organize patients 

into several groups, where patients within each group have similar characteristics. Most 

of the systems that support cohort discovery tasks use different clustering techniques. For 

instance, the VA system developed by Guo et al. [41], VALENCIA [53], and RadVis [39] 

apply several clustering techniques to assists clinical researchers in the identification of 

cohorts of patients with similar clinical characteristics. One of the other commonly used 

analytics methods is classification. It is often used in VA systems that support learning 

and exploring prediction models. For instance, RetainVIS [23] and CarePre [50] support 

this VA task by creating deep learning prediction models and allowing the user to explore 

and interpret the results. Dimensionality reduction, regression, and inference are the other 

analytics methods that are used in EHR-based VA techniques. Dimensionality reduction 

techniques are usually used as a pre-processing step, followed by clustering techniques. 

Most of the systems use multiple visualizations to allow the user to explore the data 

and the analytics results from different perspectives. The most common visualization 

used in the systems is relation-based visualizations, including scatter plots, bar charts, 

heatmaps, and parallel coordinates plots. Scatter plots are most suitable in representing 

clustering techniques, while bar charts are usually used to show the distribution of clinical 

features and their contributions to the prediction models. The other common visualization 

used in the EHR-based VA systems is time-based. The reviewed systems frequently adopt 

time-based visualizations such as timelines to display temporal distribution of clinical 

events in different time granularities and reveal temporal information among clinical 

event sequences. CarePre [50] and RetainVIS [23] represent patient’s clinical events in a 
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temporal order in a time-based visualization that allows the user to conduct what-if anal-

yses by modifying these events and get the newly generated predicted risks for the pa-

tient. Thus, the systems can display the result of classification and pattern discovery tech-

niques by adopting time-based visualizations. Flow-based visualizations such as Sankey 

diagrams and parallel sets have also been adopted by many EHR-based VA systems. They 

are mostly used to provide an overview of the progression pathways of clinical events 

within a cohort and thus, help the user to understand which clinical features, pathways, 

or other structures are more associated with the outcome of interest. Finally, a small num-

ber of EHR-based VA systems adopt hierarchy-based visualizations such as icicle plots 

and treemap to reveal the hierarchical organization of features or event sequences within 

EHRs. For instance, while DecisionFlow [22] uses a hierarchy-based tree to display the 

aggregated progression patterns of interest, VALENCIA [53] allows the user to explore 

the hierarchical structure of clustering results using a tree map. 

EHR-based VA studied in this review support a wide range of interactions. Selecting, 

filtering, likening/unlinking, and drilling are the most common epistemic actions sup-

ported by the systems. Selecting is supported by all the systems as this action is often 

regarded as a way for the user to perform additional manipulations on the selected data 

items. Filtering is also supported by most of the systems since these systems need to han-

dle a large volume of data stored in EHRs. Likening/unlinking is another common action 

supported by the systems as most of the VA systems with multiple views support this 

action through brushing and linking techniques. Drilling is the fourth epistemic action to 

play a leading part in the systems. Almost all of the reviewed systems provide a function 

to display additional details about data items, typically in a tooltip. Comparing is a com-

mon epistemic action in the reviewed systems, especially when investigating the similar-

ities and differences between clinical event sequence data. Some of the reviewed systems 

support searching action through an intuitive visual query interface. It is surprising that 

the systems do not more widely support the translating action, given the wide range of 

possible visual encodings. Inserting/removing actions are mostly utilized in the systems 

that allow the user to test different hypotheses regarding the factors that might affect the 

patient outcome by adding and removing different event types to/from the patient’s event 

sequence. Collapsing/expanding action is not widely supported by the reviewed systems. 

These actions are mostly used in systems that adopt a hierarchy-based visualization. Fi-

nally, animating/freezing is only supported by three systems. It is interesting to note that 

the systems that support these actions are used to perform pattern discovery and under-

standing the progression of diseases. 

As shown in Figure 11, this review enables researchers to identify the EHR-based VA 

research areas that require more attention. First, it appears that most of the existing sys-

tems support a limited number of analytics methods, which is not appropriate for han-

dling ill-defined tasks in EHRs. Second, bipolar actions (e.g., animating/freezing and col-

lapsing/expanding) are not commonly supported by the systems in comparison to unipo-

lar action patterns (e.g., selecting and comparing). Lastly, most of the systems mainly al-

low for interactive exploration of the analytics results rather than illustrating the under-

lying working mechanisms of those techniques, which is essential in building trust with 

the user in healthcare settings. The findings of this paper can provide value to designers 

as an organized catalog of different approaches that are most suitable for EHR-driven 

tasks. 

This review has a few key limitations. First, we do not investigate the usability, and 

the user base of these systems as our review relies only on the descriptions of the VA 

systems found in publications. Second, we could not examine the accuracy and complete-

ness of the data sources the reviewed systems are using. Finally, we excluded the EHR-

based VA systems with static visualizations as interaction is one of the main dimensions 

of our proposed design space. 
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6. Conclusions 

In this paper, we conduct a systematic literature review to gather research papers 

that describe the design and development of EHR-based VA systems and provide a com-

prehensive overview of these systems. We then propose a design space, including four 

primary dimensions used to characterize and evaluate the existing EHR-based VA sys-

tems. These key dimensions include VA tasks, analytics, visualizations, and interactions. 

This review shows the major application of analytics, visualizations, and interactions in 

supporting the execution of EHR-driven VA tasks. We connect and unify the existing 

work using the dimensions identified in the proposed design space. Furthermore, we 

identify the challenges that a designer might confront when developing EHR-based VA 

systems. Finally, we discuss areas of little prior work and identify promising future re-

search directions. 
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